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Abstract

This paper assesses the capability of using a new data-driven approach to predict the bond

strength between steel rebar and concrete subjected to high temperatures. The analysis

has been conducted using a novel evolutionary polynomial regression analysis (EPR-

MOGA) that employs soft computing techniques, and new correlations have been pro-

posed. The proposed correlations provide better predictions and enhanced accuracy than

existing approaches, such as classical regression analysis. Based on this novel approach, the

resulting correlations have achieved a lower mean absolute error (MAE), and root mean

square error (RMSE), a mean (μ) close to the optimum value (1.0) and a higher coeffi-

cient of determination (R2) compared to available correlations, which use classical

regression analysis. Based on their enhanced performance, the proposed correlations

can be used to obtain better optimised and more robust design calculations.
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1 | INTRODUCTION

International standards, such as the CEB/FIB Model Code 20101 and

Eurocode 2,2 provide means of evaluating concrete behaviour for

structural fire design. Both simplified and more advanced methods

based on tables or curves describing concrete compressive strength

evolution and other properties at high temperatures are presented in

these standards. Nonetheless, the existing guidelines do not address

the loss of bond between the steel reinforcement and the concrete

during or after exposure to high temperatures. The bond between

steel rebar and concrete is critical to the structural strength of a rein-

forced concrete (RC) element. After an RC component is exposed to

high temperatures, the bond between reinforcing steel and concrete

is weakened. The main reason for this bond degradation is the reduc-

tion in concrete strength and possible plastic deformation of the

embedded steel rebar.3 The reduced concrete–steel bond can signifi-

cantly impact the structural behaviour of the RC members as this

affects the transfer of tensile stress.4 One other factor that plays a

significant role in bond strength degradation is the corrosion of the

steel, as it can impact the bond between the steel and concrete, caus-

ing deterioration of the structural performance.5 The effect of the

bond subjected to elevated temperatures has been explored to some

extent in the existing literature in an effort to determine the main var-

iables that impact performance and hence develop analytical correla-

tions to predict the bond strength.6–9 Nevertheless, the bond

between steel and concrete at high temperatures remains one of the

least studied phenomena in concrete research.10 The failure mecha-

nism of a RC member, including the bond between the concrete and

steel, is affected by heat application; this is in part due to the con-

crete's temperature gradient.10,11 Since there is a difference in heat

conductivity between concrete and steel, this property can be influen-

tial during a fire because significant temperature gradients within the

structural element can emerge. The resulting temperature change

directly affects the compressive strength of the concrete due to the
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dehydration of the C–S–H gel and can induce thermal spalling. The

following factors have been identified as causes of thermal spalling:

the heating rate that the concrete experiences,12 the incompatibility

of thermal strains of components (cement paste, aggregates, steel) or

layers with various temperatures and coefficients of thermal

expansion,11,13–17 and the pore pressure build-up induced by steam

ejected during the dehydration of the C–S–H gel and portlandite12 as

well as CO2 expelled during the calcination of limestone aggregates

(in cases where limestone aggregates predominate).18

When steel fibres are added to the concrete mix, the steel fibre

content influences the temperature gradient as steel fibres, being dis-

tributed throughout the concrete section, distribute the heat much

faster within the concrete.7 A variety of parameters must be consid-

ered when evaluating the performance of concrete in a structural

member subjected to high temperatures. Key parameters include the

exposure period, temperature degree, peak temperature, member

dimensions, concrete humidity, concrete age, aggregate type, cement

chemical composition, water-cement ratio (w/c) and the structural

member's loading circumstances.3

The main variables that control bond strength, according to the

literature,6–9 are the compressive strength after high-temperature

exposure (fc), the concrete age at testing (A), where fibres are used,

the total volume of fibres within the concrete (V), the surface temper-

ature at failure (T), the ratio of the duration of thermal saturation at

the maximum target temperature to the minimum size of the pull-out

specimen squared (Δ), the length-to-diameter ratio (l=d) (i.e., the bond

length of the embedded ribbed bar to the diameter of the bar), and

finally, the cover-to-diameter ratio of the embedded ribbed bar to bar

diameter (c=d). Various researchers have proposed the following analyt-

ical correlations to predict the bond strength (Tb) at ambient and high

temperatures. At this point, it should be highlighted that there is a

very limited number of existing high-temperature correlations in the

open literature: Yang et al.5 (equation 1), Varona et al.6 (equation 2),

Varona et al.6 (equation 3).

Tb ¼ β
ffiffiffiffiffiffiffiffiffiffiffi
fc Tð Þ

p
ð1Þ

Where β can be taken as 3.5 for T = 20�C to 400�C and as 2.5

for T = 600�C to 800�C.

For normal strength concrete;Tb ¼0:354 fc�0:15 ð2Þ

For high strength concrete;Tb ¼0:393 fc�3:43 ð3Þ

However, the above-mentioned analytical correlations have been

developed based on classical regression analysis. The current Euro-

code approach adopts a simplified estimation depending on the design

tensile strength of concrete using factors to simulate “good” or “poor”
bond conditions. In contrast, the current developments in artificial

intelligence (AI) and machine learning (ML) are increasingly becoming

valuable tools for structural engineers and have the potential to

develop improved design guidance.19 Implementing novel AI and pro-

gressive regression analysis approaches that use the multi-objective

evolutionary polynomial regression analysis (EPR-MOGA) may offer

significant benefits to current practice. Such techniques have been

successfully used in civil engineering disciplines such as geotechnical

and hydraulic engineering, providing prediction correlations with

improved accuracy over existing approaches.20–28 This new technique

can produce very good predictions with less complexity than other

soft computing techniques, such as genetic programming (GP) and

Multivariate Adaptive Regression Splines (MARS).29 It should be noted

that GP generates correlations in tree structures of variable size and

then performs a global search of the correlation expression; this tends

to create long and complex correlations.30,31 On the other hand, EPR-

MOGA uses a pre-specified general form of a correlation with a

known number of terms (set by the user) to search for the best sym-

bolic correlation via an evolutionary process.

Nevertheless, an extensive review of past studies showed that

this approach (EPR-MOGA) has not been used to predict the bond

strength at either ambient or elevated temperatures except for the

specific case of underwater concrete Assaad et al.32 The analysis con-

ducted by Assaad et al.32 focused on capturing the washout effect on

the bond characteristics using regression correlations. The present

work aims to implement the new approach that would provide a sim-

ple, more accurate and consistent correlation to evaluate bond

strength employing EPR-MOGA, thus potentially resulting in a safer

and more economical design. Towards this, the EPR-MOGA approach

will be used to propose new correlations to predict the bond strength

at ambient and elevated temperatures. Additionally, since the avail-

able analytical correlations have not been examined rigorously in past

studies, the performance of EPR-MOGA will be compared with other

commonly used analytical correlations.

2 | DEVELOPMENT OF THE
METHODOLOGY

This research explores the accuracy of the EPR-MOGA in predicting

rebar-to-concrete bond strength at ambient and elevated tempera-

tures. The variables used to train and test the correlation are based on

an experimental database obtained from the existing literature,9 and

the results of EOR-MOGA will be compared to the prevalent existing

analytical correlations.

2.1 | Data collection

The data used in the study is based on the database developed by

Varona et al.9 the database included concrete with and without fibre

additions. The database comprises 316 data points of the bond

strength at different temperatures. Varona et al.6 built this database

and utilised it to develop analytical regression correlations. Based on

the literature review conducted, the relevant parameters that impact

the bond strength (Tb) at both ambient and elevated temperatures

were selected.6 Table 1 presents the statistics of the data obtained

from Varona et al.9 used in this study. In addition, Figure 1 illustrates

2 AL HAMD ET AL.
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the histograms of the frequency of input and output variables. The

visual representation of the data shows a good variation between the

input and output. The need for further testing in the future is also

recommended.

2.2 | Multi-objective evolutionary polynomial
regression analysis (EPR-MOGA)

EPR-MOGA can be defined as an intelligent computational method

that uses the input data to create an innovative novel solution for

practical problems.22,33,34 This approach is based on regression analy-

sis and uses a genetic algorithm (GA) to produce a mathematical cor-

relation that can describe the relationship between the physical input

variables.30,31 The EPR-MOGA uses regression analysis and imple-

ments a GA to search for the best correlation. This GA is also

enhanced by adding more than one objective to control the correla-

tion complexity and ensure the accuracy and fitness of the new corre-

lations.35 Thus, the advantages of this regression technique over the

classical regression approach are as follows:

1. The best mathematical correlation is found automatically by a

search algorithm. Thus, the user needs to specify the correlation

structure, the number of terms of the correlation, and the expo-

nents' range and step, unlike classical regression analysis, where

the user needs to try every possible correlation manually.

2. The EPR-MOGA overcomes the overfitting problem correlated

with other regression analyses that do not include AI approaches.

Overfitting usually occurs when the developed correlation learns

the details of the data, including the noise; this adversely affects

the performance of the developed new correlation when used to

predict the results of newly generated data. This implies that the

developed correlation picks the noise and the random variations in

the data used in the correlation development.

To conduct the analysis, the user only needs to identify the struc-

ture of the required correlation, the range of the exponents and the

number of terms. A full background description of the EPR-MOGA

can be found in.30,31

The performance of both the new and existing analytical correla-

tions has been examined using statistical indicators. These indicators

include the mean absolute error (MAE), root mean square error

(RMSE), mean (μ), and coefficient of determination (R2) as shown in

Equations 4–7. The same approach of accuracy examination has been

used in many previous studies, albeit in a different application.36–41

The statistical meaning for the MAE and the RMSE values describe the

best fit as the lower means. Meanwhile, the μ value is correlated with

an optimum value of 1.0, any higher value can be considered as an

overall overprediction of the correlation and vice versa.

MAE¼1
n

Xn

1
jV pð Þ �V mð Þj ð4Þ

RMSE¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn

1
V pð Þ �V mð Þ
� �2r

ð5Þ

μ¼1
n

Xn

1

V pð Þ
V mð Þ

� �
ð6Þ

R2 ¼
Pn

i¼1 V pð Þ �V pð Þaverage
� �

V mð Þ �V mð Þaverage
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 V pð Þ �V pð Þaverage

� �2Pn
i¼1 V mð Þ �V mð Þaverage

� �2
r

0
BB@

1
CCA

2

ð7Þ

In Equations 4–7, n is the number of data points used in the assess-

ment, V pð Þ is the predicted bond strength, and V mð Þ is the measured

bond strength.

3 | DEVELOPMENT OF CORRELATIONS

The correlations proposed in the present work are developed using a

multi-objective GA evolutionary polynomial regression analysis (EPR-

MOGA). As previously described, a database collected from existing

studies has been used in the EPR-MOGA analysis. The database has

been divided into two sets: training data and testing data. The training

data comprises 80% of the total data (316 data points), while the test-

ing data takes the remaining (81 data points, i.e., [20%]) in line with.23

The first set is used to train the correlation to develop the mathemati-

cal correlation, and the second set is used to validate the correlation.

This means that only the training data has been used in the correlation

development, and the testing data has been used only to assess the

ability of the new correlation to predict the bond strength using a

database that has not guided the correlation training. Division of the

database into training and testing is carried out by shuffling the data

using a random-sort function, and so forth, as available in Microsoft

Excel, and then splitting the data based on the required percentages.

TABLE 1 Statistics of the data used in the analyses

Statistical
measure

Fibre volume
fraction (V) (%)

Length
to diameter (l/d)

Cover to
diameter (c/d)

Age at

testing (A)
(days) Δ (h/dm2)

Temperature
at the surface (T) (C�)

fc cubeð Þ at
20�C (MPa)

Tb, at

failure C�

(MPa)

Minimum 0.00 2.00 1.78 28.00 0.33 20.00 0.38 1.06

Maximum 2.00 20.83 5.75 90.00 3.00 825.00 103.60 36.30

Mean 0.15 9.74 4.64 43.78 1.82 347.74 31.74 8.41

Standard deviation 0.45 6.04 1.26 23.41 1.04 250.02 17.76 6.27

AL HAMD ET AL. 3
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However, significant efforts have been made to ensure that the test-

ing data is within the statistical range of the training data to avoid cor-

relation extrapolation in the testing stage.23,42 Tables 2 and 3 present

the training and testing statistics of the data.

The selection of the input variables assumed for the modelling is

based on the relevant literature; then, a trial-and-error process is

applied using the EPR-MOGA technique to fit a mathematical correla-

tion between the input and output data to formulate the correlations.

(A) Volume fraction (%) (B) Length to diameter ratio (l/d) 

(C) Cover to diameter ratio (c/d) (D) Age at testing (A) (days) 

(E) Δ (hour/dm2) (F) Temperature at the surface (T) (C°) 

(G) ( ) at 20 C°(MPa) (I) , at failure C° (MPa) 
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F IGURE 1 Histograms of the frequency of
input and output variables
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It should be noted that the trial-and-error process involved testing dif-

ferent correlation structures, different exponent ranges and different

numbers of terms of the developed correlations. However, the search

for the best fit correlation is undertaken automatically by utilising

the GA.

Significant computational efforts have been provided to train cor-

relations to predict bond strength (Tb). Three different approaches for

the input data were applied with a ratio with low error and good accu-

racy as per Tables 4–6 with R2 between 0.78–0.86, and the statistical

Mean between 1.06–1.17.

It is worth stating that the authors decided to keep these small

coefficients for the developed correlations (which will be discussed in

the following subsections) as the work aimed to improve the accuracy

of the existing correlations.

The effect of all the main variables presented in the literature5–7

has been included in the developed correlation. In the case of the

existing correlations, the crucial variables were often only implicitly

included. In contrast, this paper explicitly proposes three correlations

to include all the relevant variables and obtain more accurate correla-

tions to predict bond strength. The suitability of the correlation to be

used in practice was also considered in its development.

3.1 | Proposed EPR correlation 1

For the first proposed correlation (EPR Correlation 1), all the input

variables were included in the development of the predictive correla-

tion of the bond strength (Tb). These are the compressive strength

after high-temperature exposure (fc); the concrete age at testing (A);

total volume of fibres (if present) in relation to concrete volume (V);

the surface temperature at failure (T); the ratio of the duration of ther-

mal saturation at the maximum target temperature to the minimum

size of the pull-out specimen squared (Δ); the length-to-diameter ratio

TABLE 2 Statistics of the training data

Statistical

measure

Volume

fraction (%)

Length to

diameter (l/d)

Cover to

diameter (c/d)

Age at

testing (days) Δ (h/dm2) Temperature (�C)
fc,cube,T (MPa)

at 20�C
Tb, at

failure �C (MPa)

Minimum 0.00 2.00 1.78 28.00 0.33 20.00 0.38 1.06

Maximum 2.00 20.83 5.75 90.00 3.00 825.00 103.60 36.30

Mean 0.16 9.66 4.58 43.64 1.82 342.15 32.29 8.49

Standard

deviation

0.48 6.03 1.28 23.39 1.03 250.17 18.37 6.36

TABLE 3 Statistics of the testing data

Statistical measure
Volume
fraction (%)

Length to
diameter (l/d)

Cover to
diameter (c/d)

Age at
testing (days) Δ (h/dm2) Temperature (T) (�C)

fc,cube (MPa)
at 20�C

Tb, at
failure �C (MPa)

Minimum 0.00 2.00 1.78 28.00 0.33 20.00 5.10 1.07

Maximum 2.00 20.83 5.75 90.00 3.00 825.00 81.70 29.40

Mean 0.08 10.06 4.86 44.37 1.82 370.38 29.52 8.06

Standard deviation 0.26 6.12 1.13 23.63 1.08 249.74 14.97 5.89

TABLE 4 Statistical performance of proposed EPR Correlation 1,
which considers all of the variables

Statistical measure Training data Testing data

MAE (MPa) 1.48 1.63

RMSE (MPa) 2.42 2.62

Mean (μ) 1.10 1.17

R2 0.86 0.80

TABLE 5 Statistical performance of EPR Correlation 2, which

considers all of the variables excluding Δ

Statistical measure Training data Testing data

MAE (MPa) 1.54 1.70

RMSE (MPa) 2.39 2.51

Mean (μ) 1.06 1.13

R2 0.86 0.82

TABLE 6 Statistical performance of EPR Correlation 3, which
considers all of the variables excluding Δ and the age of concrete (A)

Statistical measure Training data Testing data

MAE (MPa) 1.89 1.73

RMSE (MPa) 2.80 2.77

Mean (μ) 1.09 1.14

R2 0.81 0.78

AL HAMD ET AL. 5
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of bond length of the embedded ribbed bar-to-bar diameter (l=d) and

the ratio of the concrete cover (c) to the diameter of the embedded

ribbed bar (c=d). One limitation of the dataset used is that the exact

nature of the concrete and the chemical make-up of the mix (including

cement type and aggregate type) are not available, these may have an

influence on the bond's thermal behaviour. The best correlation

obtained from the intelligence computing analysis is shown in

Equation 7.

Tb,at failure¼0:0359�
ffiffiffi
c
d

r
�

ffiffiffi
A

p
� fc,cube�0:000000075� c

d

� �

� fc,cube�T2�0:0168�
ffiffiffi
l
d

r
�

ffiffiffi
A

p
� fc,cube

�0:0000035�
ffiffiffiffi
V

p
�

ffiffiffi
Δ

p
� c

d

� �
�T2þ0:848

�
ffiffiffi
l
d

r
�

ffiffiffiffi
V

p
� c

d

� �
þ4:047

ð7Þ

The results from Equation 7 have been used in the predictions of

Tb for the proposed EPR Correlation I. The corresponding measured

values with the no-error line and the ±30% error range for training

and validation datasets are presented in Figure 2. The results show

that the predictions are close to the no-error line for both sets and

within the error range of ±30% for the training and testing data, dem-

onstrating very high prediction accuracy.

The statistical performance (MAE, RMSE, μ, and R2) for Equation 7

for both training and testing sets is shown in Table 4. The MAE for

testing and validation sets (1.48 and 1.63, respectively) is very close.

Similarly, the RMSE obtained demonstrates that there is no large error

of predictions in the correlation, where the RMSE is equal to 2.42 and

2.62, respectively, for training and testing sets. In addition, the

obtained μ value is equal to 1.10 and 1.17 for testing and training;

both numbers are very close to the optimum value of 1.0. Further-

more, the R2 ranges between 0.86 and 0.80 for both sets. In summary,

many of the predictions of the EPR Correlation 1 are within the

acceptable range of error. The results also indicated that the experi-

mental data with high bond strength reported more variabilities to the

shown trend in some cases; unlike the rest of the data, as seen in

Figure 2. This can be considered a limitation for the correlation, or it

might be due to some experimental error, yet there is insufficient

experimental data to address the current issue, indicating the need for

further experimental tests.

3.2 | EPR Proposed Correlation 2

For the second proposed correlation (EPR Correlation 2), all the input

variables were included in the prediction of the bond strength (Tb)

except for Δ(the ratio of the duration of thermal saturation, where the

water in the pores reaches boiling point, at maximum target tempera-

ture to a minimum size of pull-out specimen squared). This approach

was taken to produce a practical and convenient predictive correlation

as the variable Δ cannot be obtained easily for practical applications.

After conducting the EPR-MOGA analysis, the best correlation

obtained from the intelligence computing analysis is shown in

Equation 8.

Tb,at failure¼�0:000000112� c
d
� fc,cube�T2þ0:023� c

d
� fc,cube

�
ffiffiffi
A

p
�0:000018� c

d

� �2
� fc,cube2�

ffiffiffi
A

p
�0:0087

�
ffiffiffi
l
d

r
�

ffiffiffi
c
d

r
�

ffiffiffi
A

p
� fc,cubeþ0:0105�V� fc,cube

� c
d

� �2
þ2:789

ð8Þ

The predictions produced by this correlation are compared with

the corresponding measured values in Figure 3. Based on the figure, it

is evident that Equation 8 achieved high accuracy compared to the

no-error line and within the ±30% error range for training and

validation sets.

For the EPR Correlation 2, the statistical performance parameters

(MAE, RMSE, μ, and R2) are reported in Table 5. The MAE for training

and testing sets (1.54 and 1.70, respectively) is very close. Conversely,

the obtained RMSE expresses a low range of error in the predictions,

(A) Training data (B) Testing data
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F IGURE 2 Relationship between measured and predicted Tb using the developed correlation which considers all of the variables (EPR
Correlation 1)

6 AL HAMD ET AL.

 10991018, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/fam

.3123 by U
niversity O

f A
bertay D

undee, W
iley O

nline L
ibrary on [04/01/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



since the RMSE is equal to 2.39 and 2.51, respectively, for training

and testing sets. Last, the μ values attained (1.06, 1.13) are very close

to the optimum value of 1.0 and R2 is equal to 0.86 and 0.82 for both

sets. In summary, similar to EPR Correlation 1, EPR Correlation

2 shows high accuracy for both testing and validation sets within the

error range of ±30%. The impact of higher strength variabilities of the

experimental data is less apparent, as can be seen in Figure 2, indicat-

ing that eliminating the variable Δ had affected the noted trend in

Correlation 1.

3.3 | EPR proposed Correlation 3

For the third proposed correlation (EPR Correlation 3), in the same

way as the previous approach, the input variables were included in

the prediction of the bond strength (Tb) except for Δ and the age of

the concrete (A). It is difficult to have an exact time scale for the bond

slippage prediction, and similarly, EPR Correlation 3 provided a more

practical approach for designers. The intelligence computing analysis

proposed the best correlation, as shown in Equation 9.

Tb,at failure¼0:6926� fc,cube�0:00000121�
ffiffiffi
c
d

r
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fc,cube

p
�T2

�0:308�
ffiffiffi
l
d

r
� fc,cubeþ0:015� l

d
�

ffiffiffi
c
d

r
� fc,cube

þ0:0147�
ffiffiffiffi
V

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fc,cube

p
� l
d
� c

d

� �2
þ6:224

ð9Þ

For EPR Correlation 3, shown in Equation 9, the corresponding

measured values indicate a high accuracy compared to the no-error

line and within the ±30% error range for training and testing sets.

However, this correlation seems to have less accuracy than EPR Cor-

relation 1 and EPR Correlation 2 (see Figure 4). This shows that the

concrete (A) age impacts the accuracy of the prediction of the data.

When the statistical performance parameters (MAE, RMSE, μ, and R2)

shown in Table 6 were compared to the first two correlations

(Tables 4 and 5), the first two correlations showed better results. The

MAE for the training and testing sets, 1.89 and 1.73, respectively, is

very close. On the other hand, the obtained RMSE expresses a low

range of errors in the predictions, since the RMSE is equal to 2.80 and

2.77, respectively, for training and testing sets. Last, the μ, value

(A) Training data (B) Testing data
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F IGURE 3 Relationship between measured and predicted Tb using the developed correlation, which considers all of the variables excluding Δ
(EPR Correlation 2)
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F IGURE 4 Relationship between measured and predicted Tb using the developed correlation which considers all of the variables excluding Δ
and the age of concrete (EPR Correlation 3)
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attained (1.09, 1.14) is very close to the optimum value of 1.0 and R2

is between 0.81 and 0.78 for both sets. In summary, similar to EPR

Correlation 1 and EPR Correlation 2, EPR Correlation 3 shows a good

accuracy for both training and testing sets within the error range of

±30% but with a lower R2. Also, as with EPR Correlation 2, the elimi-

nation of Δ and A has impacted the predications of the correlation

resulting in high data disturbance.

4 | COMPARISONS OF THE
PERFORMANCE OF THE NEW
CORRELATIONS WITH EXISTING EMPIRICAL
CORRELATIONS

The statistical performance of the three correlations developed in this

study was compared to the existing correlations.5–7,9 It should be

mentioned that there is no correlation developed in the available liter-

ature that has included all the crucial variables except for the correla-

tion developed by Varona et al.6 shown in Equation 10. However, that

correlation has not included the effect of the ratio of the duration of

the thermal parameter (Δ), which was included in EPR Correlation

1. Another shortcoming with the Varona et al. correlation is that it

produces negative values in specific conditions [6], that is, for temper-

atures above 550�C, a 28-day plain concrete with c/d = 5 and l/d

greater than 10, the correlation would predict a negative value of

coefficient “kb” due to a limitation in the CEB/FIB Model Code

2010.1

Tb ¼ kb fcð Þ0:639 ð10Þ

Where the kb is the coefficient for plain concrete

kb ¼ kb,plain concrete ¼0:268�0:00101T�0:211l
d

þ0:30c
d

þ0:0194A

And for the concrete with fibres

kb ¼ kb,plain concrete�0:187FTþ0:904VF

The statistical performance parameters (MAE, RMSE, μ, and R2)

are shown in Figures 5 and 6 for Equations 7–9 compared to

equations 1–3 developed by Yang et al. 20185 and Varona et al.

20186 for both the training and the testing sets. The results show that

the proposed new correlations are more accurate, achieving lower

error for both sets.

The main significant difference between the developed and exist-

ing correlations is that the new correlations achieved much less MAE

and RMSE for both sets. As for the mean value μ, it can be noticed

that all the new correlations are much closer to the optimum value of

1.0. Finally, the new correlation returned a R2 between 0.78–0.86;

this range is very high compared to the existing correlations in the

literature.5,7

Ultimately, the correlation EPR Correlation 1 (Equation 8) has

given the best fit for both data sets achieving high accuracy in predic-

tions, as can be seen from Figures 5 and 6. The statistical performance
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MAE is 1.48 for training and 1.63 for testing, the RSME is 2.42 for

training and 2.62 for testing, the μ is 1.1 for training and 1.17 for test-

ing, and the R2 is 0.86 for training, 0.80 for testing. This means that all

the variables are needed to predict the bond strength. However, for

practical reasons, EPR Correlation 2 excludes only one of the vari-

ables, that is, the ratio of the duration of thermal saturation at maxi-

mum target temperature to a minimum size of pull-out specimen

squared (Δ), this correlation could be used in practice to give reliable

predictions for the bond strength at elevated temperatures as the sta-

tistical performance of the correlation R2 is 0.86 for training and 0.80

for testing, and the μ is 1.06 for training and 1.13 for testing. Never-

theless, with the third correlation from EPR Correlation 3, even if it

was shown to be a less accurate prediction, the first two were still

better than the other correlations proposed in the literature,5–7 with

R2 being 0.81 for training and 0.78 for testing; meanwhile, the R2 for

the existing correlations is below 0.50.

5 | CONCLUSIONS AND FUTURE WORK

This study applied the novel EPR-MOGA technique to predict the

bond strength between concrete and steel rebar at elevated tempera-

tures using data obtained from the literature. The results showed that

much higher accuracy was achieved using the new approach. Three

new correlations were developed. Consequently, the outcomes of this

work provide a potentially powerful and straightforward approach for

designers and have shown improved accuracy compared to existing

correlations. Taking the limitations of the presented work into consid-

eration, the following conclusions can be drawn:

1. The three proposed correlations showed accuracy better than the

existing correlations in the available literature, with R2 between

0.78 and 0.86 compared to R2 below 0.50 for the available existing

correlations.

2. The first proposed correlation, EPR Correlation 1, showed the best

accuracy, including all the variables. The MAE for testing and vali-

dation sets (1.48 and 1.63, respectively) is close. Similarly, the

RMSE obtained demonstrates no significant error in predictions in

the correlation, whereby the RMSE is equal to 2.42 and 2.62,

respectively, for training and testing sets. In addition, the obtained

Mean (μ) value is equal to 1.10 and 1.17 for testing and training;

both numbers are very close to the optimum value of 1.0. Further-

more, the R2 ranges between 0.86 and 0.80 for both sets.

3. The second proposed correlation, EPR Correlation 2, showed a

high accuracy after excluding one of the variables that would be

difficult to obtain in practice. The statistical performance reported

that the MAE for training and testing sets (1.54 and 1.70, respec-

tively) is close. On the other hand, the obtained RMSE express a

low range of error in the predictions since the RMSE is equal to

2.39 and 2.51, respectively, for training and testing sets. Last, the μ

values attained (1.06, 1.13) are close to the optimum value of 1.0

and R2 is equal to 0.86 and 0.82 for both sets.

4. In the third proposed correlation, EPR Correlation 3, the statistical

performance is not as efficient as Correlations 1 and 2 but showed

much better accuracy than the results obtained from the existing

correlations, with the Mean μ, value attained (1.09, 1.14)

approaching the optimum value of 1.0. R2 is between 0.81 and

0.78 for both sets compared to the Mean μ value between 0.8 to

1.2 and R2 below 0.50.
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To conclude, this work has presented a coherent methodology to

implement a well-established soft computing approach using an AI

algorithm to develop three correlations that can be easily used in

practice. Further refinement of the correlations can be undertaken in

the future. Such refinements should include the introduction of more

experimental data; currently, the availability of experimental data for

concrete in high temperatures is limited, particularly in the case of

fibre-RC.
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