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Summary. - This paper describes a fingerprint verification system including preprocessing, 

Wavelet transform, feature extraction using multiple domains, and ensemble subspace discriminant 

classifier. The system is implemented in MATLAB using Wavelet Toolbox, Image Processing 

Toolbox, and Statistics and Machine Learning Toolbox. First, the motivation and novelty, followed 

by the review of the previous work, are presented. Next, all steps are described in detail. Three 

fingerprint databases from the literature are used. The proposed method’s performance is compared 

with state-of-the-art techniques based on different classifiers utilizing the accuracy metric. The 

proposed algorithm achieves high accuracy at 97.5% for the DB3-FVC2000 subset. 

Keywords: fingerprint verification, image processing, classification learner, feature extraction, 

accuracy, ensemble subspace classifier. 

Resumen. - Este documento describe un sistema de verificación de huellas dactilares que incluye 

preprocesamiento, transformada Wavelet, extracción de características utilizando múltiples 

dominios y clasificador discriminante subespacial de conjunto. El sistema se implementa en 

MATLAB utilizando Wavelet Toolbox, Image Processing Toolbox y Statistics and Machine 

Learning Toolbox. En primer lugar, se presenta la motivación y la novedad, seguido de la revisión 

del trabajo anterior. A continuación, se describen todos los pasos en detalle. Se utilizan tres bases 

de datos de huellas dactilares de la literatura. El rendimiento del método propuesto se compara 

con técnicas de última generación basadas en diferentes clasificadores que utilizan la métrica de 

precisión. El algoritmo propuesto logra una alta precisión del 97,5 % para el subconjunto DB3-

FVC2000. 

Palabras clave: verificación de huellas dactilares, procesamiento de imágenes, aprendizaje de 

clasificación, extracción de características, precisión, clasificador subespacial de conjunto. 
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Resumo. - Este documento descreve um sistema de verificação de impressão digital que inclui pré-

processamento, transformada Wavelet, extração de recursos usando vários domínios e 

classificador discriminante de subespaço de conjunto. O sistema é implementado em MATLAB 

usando Wavelet Toolbox, Image Processing Toolbox e Statistics and Machine Learning Toolbox. 

A motivação e a novidade são apresentadas primeiro, seguidas pela revisão do trabalho anterior. 

Todas as etapas são descritas em detalhes a seguir. Três bancos de dados de impressões digitais 

da literatura são usados. O desempenho do método proposto é comparado com técnicas do estado 

da arte baseadas em diferentes classificadores que utilizam a métrica de precisão. O algoritmo 

proposto atinge uma alta precisão de 97,5% para o subconjunto DB3-FVC2000. 

 

Palavras-chave: verificação de impressão digital, processamento de imagem, aprendizado de 

classificação, extração de recursos, precisão, classificador de subespaço de conjunto. 
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1. Introduction. - The fingerprint is one biometrics that fulfills two essential attributes for 

unambiguous recognition: uniqueness and stability over time. Fingerprints remain relatively 

unchanged for life, and even the fingerprints of identical twins are different [1]. The other two 

biometrics that fulfills these requirements are the face and iris [2]. Fingerprints are famous for 

many reasons, they are accessible, do not provide more information than necessary, such as an 

individual’s race or health, and fingerprint sensors have a relatively low price [3].  

There are many reasons to use biometrics, including improving the convenience and efficiency of 

routine access transactions, reducing fraud, and improving public safety and national security [4]. 

Nowadays, multiple devices have finger-imaging sensors that better protect them from intruders, 

another security measure in addition to the specific password, or even face recognition. 

Commonly, low-cost sensors’ fingerprints are low resolution; moreover, the scanner and 

acquisition software is not flexible to be customized. As a result, developers deal with low-

resolution fingerprints in their applications. Since most early research relies on features such as 

ridges, delta, and core (minutiae) points, the location of these points needs to be determined. 

Although this process can be relatively simple for a human, it requires complicated computation 

to be extracted by a computer. This problem is even more complex for low-resolution fingerprint 

images since some ridges can be broken in the image and wrongly considered as the core [5]. 

Nowadays, researchers explore non-minutiae representations by considering fingerprint images as 

oriented textures that combine the global and local information in a fingerprint [1]. In this work, 

the focus is on non-minutiae techniques, which implies that there is no need to analyze every local 

feature in the fingerprint, but rather texture-based features are calculated. A complete image of a 

fingerprint cannot be used or processed every time because the memory required to perform that 

task can be enormous. This problem slows down the processing speed of the system for recognition. 

For this reason, only prominent features are extracted from each image, and a feature set is created 

[1]. Our hypothesis for this research states that implementing more texture descriptors leads to 
more accurate fingerprint verification results.  

One of the most popular non-minutiae approaches is the Wavelet transform. This technique 

produces spatial, and frequency representations used to create features that describe the textural 

characteristics of a fingerprint. A fingerprint image has distinct features with some frequency and 

direction. The corresponding subimages have larger energies using the Wavelet transform. By 

applying the Wavelet transform, vital information of the original image is transformed into a 

compressed image without much loss of information. The Wavelet transform has been widely used 

in signal processing, pattern recognition, and texture recognition [6]. 

This compressed information can be obtained from the same subject with similar results creating a 

set that can be used for pattern classification. A supervised machine learning algorithm is helpful 

for fingerprint verification since it generates a model that learns from image data in the form of 

feature vectors. In the training stage, a model is generated from the input feature vectors and their 

expected output values (labels) to map any new data to one of the trained categories. The training 

data consist of a set of training examples, each group having a pair consisting of an input object 

and the desired output value. A supervised learning algorithm learns from this training pair 

relationship and produces an inferred function [7]. 

In ensemble classification, multiple homogeneous or heterogeneous classifiers are combined to 

solve a similar classification problem. This approach enhances the generalization of models and 

improves the classification results even using weak classifiers [8]. 

This paper presents an extended version of the fingerprint verification system based on the Wavelet 

transform and ensemble subspace discriminant classifier [9]. It contains a detailed description of 

the image processing techniques applied to the preprocessing algorithm and more information 

regarding the features computed to classify the fingerprint images. This extended version includes 

more classification results obtained from the 12 fingerprint image subsets analyzed in this work.  

This paper is organized as follows: Section 2 elaborates on motivation and novelty, while the next 
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section presents a review of previous works on fingerprint recognition. A detailed description of 

the proposed method is presented in Section 4. Section 5 reports the main results and discussion, 

and Section 6 states the conclusions. 

 

2. Motivation and novelty. - Fingerprints are images obtained when the fingertip surface touches 

another surface, and even on the same hand, each fingertip surface describes a different pattern. 

Each person has unique designs on each fingertip surface. The probability of coinciding with other 

fingerprints is almost zero [10]. Human fingerprints are mainly different, and the overall shape 

does not change over time which is beneficial for machine learning applications because a good 

classifier should be stable over time. Its inputs should be consistent inside their pattern realm. 

Below we present the principal motivations for the study of fingerprints: 

• Fingerprint image databases highly depend on the finger’s surface status including 

external variables such as humidity, dust, temperature, etc. These parameters affect the 

accuracy of the recognition system and make the identification process more difficult, 

especially with low-quality fingerprint datasets [10].  

• A fingerprint recognition system requires a minimum Equal Error Rate (EER), possibly 

zero, to provide high accuracy values, which is one of the most critical parameters of a 

fingerprint recognition system [1]. 

• A complete fingerprint image cannot be used or processed every time as the memory 

required might be significant, which reduces the processing speed. Also, pixel-by-pixel 

comparison with the query image may consume most of the time of the processor and a 

shift by a one-pixel value may lead to a complete mismatch and pseudo results. Hence, 

only prominent features must be extracted from each image, and a feature database is 

formed [1].  

• Ensemble classifiers have increasingly gained more attention in different pattern 

recognition applications. This classification method combines the results of classifiers 

with varying accuracy scores with different techniques (voting, average, etc.). Thus, it is 

possible to obtain better predictive results from a single classifier [11]. 

• Wavelets are used to decompose the fingerprint image into different levels of resolution 

to ease information interpretation. Wavelet coefficients are independent, creating a set of 

features of the actual fingerprint image at different resolutions, which is useful for 

classification purposes [6]. 

The above analysis shows the principal task in fingerprint processing. Our main objective and 

motivation for this research are to get high accuracy in verification; using ensemble classifiers may 

be very useful in this task. A comparison was performed with previous simple models to choose 

the correct classifier. The results show that the ensemble subspace provides the highest accuracy 

compared to other machine learning algorithms. Consequently, our approach is based on the 

ensemble subspace discriminant approach.  

The implementation of ensemble subspace discriminant classifiers is reported in [12] related to 

liver fibrosis in mice microscopic images. This work computed morphological and statistical 

features such as the area, perimeter, circularity, mean, median, and mode from microscopic images. 

Another ensemble approach for classifying satellite images is reported in [13]. More recently, the 

project in [14] for biometric human footprint matching applied ensemble subspace discriminant 

classifiers combined with fuzzy logic. Finally, the work presented at URUCON 2021 reported in 

[9] is one of the newest fingerprint recognition systems based on an ensemble of Linear 

Discriminant Analysis (LDA) classifiers using the random subspace method. This system utilizes 
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preprocessing to enhance the fingerprint images in conjunction with multiple domain feature 

extraction techniques. 

The novelty of this work is the application of multiple transforms for feature extraction of 

fingerprint images [9] to implement a fingerprint verification system simulated in MATLAB. This 

paper highlights essential details such as the preprocessing algorithm steps, multiple image 

processing techniques, and more insight into the feature extraction, especially texture descriptors. 

 

3. Review of previous works. - The literature on fingerprint identification systems presents similar 

subsystems: input data processing, feature extraction, and classification [10]. The main differences 

between the existing systems generally consist of the feature extraction technique and the 

classification approach [10].  Since the method proposed here is based on the Wavelet transform, 

we will review some Wavelet transform-based strategies enhanced with different machine learning 

classifiers.  

The authors in [15] proposed two methods to detect fingerprint images based on one-dimensional 

(1-D) and two-dimensional (2-D) Discrete Wavelet Transform (DWT). Three statistical parameters 

are used to evaluate those two methods: skewness, kurtosis, and convolution of the approximation 

coefficients of 1-D DWTs. The cross-correlation coefficient was used to classify the fingerprints 

of different persons.  

Reference [16] presented Wavelet features extracted directly from gray-scale fingerprint images 

without preprocessing. This system was tested on a small fingerprint database using the k-NN 

classifier. 

Wavelet co-occurrence features are reported in [17], these values are extracted from the 

approximation coefficients of fingerprint images and classified using a feedforward neural 

network. The four recognition Wavelet co-occurrence features are contrast, correlation, energy, 

and homogeneity.  

The authors in [18] presented an approach based on combining multiple domains: spatial, Fourier, 

Discrete Cosine Transform (DCT), and Wavelet. This system was designed for matching poor-

quality fingerprints using the Manhattan distance measure for classification. A Wavelet-Bands 

Selection Features (WBSF) technique is proposed in [19]. In this case, the Euclidean and City-

Block distance measures performed the pattern matching process. The method reported in [6] uses 

robust local features extracted from Haar Wavelet subheads. The classification approach in this 

paper was based on the absolute difference between the feature vectors. Another Euclidean distance 

approach is reported in [20], where the feature extraction is based on blocks of an enhanced region 

of interest (ROI). The feature vectors consist of mean energy, standard deviation, and Shannon 

entropy. The authors in [5] applied a simple method to verify low-resolution fingerprints using 

Haar-like transformations to generate feature vectors. These vectors were verified against their 

reference counterparts using the Hamming distance. 

It is common for many authors to apply a combination or a comparison of machine learning 

algorithms; for example, the authors in [21] proposed SVM and k-NN as classification methods. 

This work utilized three discrete feature extraction methods: DWT, Principal Component Analysis 

(PCA), and DCT. The fingerprint identification system in [22] was based on Gabor Wavelet and 

SVM, indicating that Gabor Wavelet features represent textural information at different scales and 

orientations, accomplishing high recognition rates using a well-tuned SVM. The authors in [7] 

implemented fingerprint classification using SVM and logistic regression classifiers. Ridge 

fingerprint contours were extracted using a canny edge detection filter, creating feature vectors. 

The fingerprint images were enhanced using Gabor filters and the Wavelet transform. A similar 

approach in [10] proposed developing a fingerprint identification system based on image 

processing methods that clarify fingerprint contours. The matching process applied one and two-

layer perceptron neural networks, random forest, and SVM.  
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4. Description of the method. - In this work, the FVC2000 [23], FVC2002 [24], and FVC2004 

[25] fingerprint databases were used. A database is composed of four subsets, and each subset has 

80 fingerprint images acquired from 10 subjects with eight imprints. A total of 960 fingerprint 

images were applied for fingerprint recognition. Each subset presents distinct characteristics, 

including resolution, size, and quality. The steps of the proposed method are presented below. 

 

Step 1: Preprocessing 

A gray-level fingerprint image 𝐼 is defined as a 𝑀 ×𝑁 matrix, where 𝐼(𝑖, 𝑗) represents the intensity 

of the current pixel located in the ith row and jth column. An orientation image 𝑂 is defined as a 

𝑀 ×𝑁 image, where 𝑂(𝑖, 𝑗) represents the local ridge orientation at pixel (𝑖, 𝑗). The local ridge 

orientation is generally specified for a block of pixels rather than one. Former implies that the 

fingerprint image is divided into 𝑤 × 𝑤 non-overlapping blocks, and a single local ridge 

orientation is defined for each block. When analyzing a fingerprint, we can notice that the local 

ridge orientations of 90° and 270° are the same since the ridges oriented at these angles in a local 

neighborhood cannot be differentiated. A frequency image 𝐹 is a 𝑀 ×𝑁 image, where 𝐹(𝑖, 𝑗) 
represents the local ridge frequency defined as the frequency of the ridge-valley structure in a local 

neighborhood along the normal direction to the local ridge orientation. This image is specified in 

blocks as the orientation image. A region mask 𝑅 is a 𝑀 × 𝑁 image, where 𝑅(𝑖, 𝑗) indicates the 

category of a pixel [26]. There are two possible categories: 

• Recoverable pixel: Where a small amount of noise corrupts ridges and valleys, this could 

be in the form of scars, creases, smudges, etc. However, neighboring regions or pixels can 

provide information about the actual ridge-valley structures. These pixels are labeled with 

a value of 1. 

• Unrecoverable pixel: Where ridges and valleys are corrupted with a significant amount of 

noise and distortion, making the structures not visible. The neighboring regions cannot 

provide information to recover the authentic ridge-valley shapes. These pixels are labeled 

with a value of 0. 

Preprocessing of the input fingerprint images is needed before applying the Wavelet transform. 

This process involves image processing techniques such as normalization of intensities in the 

image, local orientation and frequency estimation, region mask estimation, Gabor filtering, and 

binarization to enhance the image [26, 27]. 

Normalization: This is a pixel-wise operation, and its objective is to clarify ridge-valley structures 

by reducing variations in gray-level values throughout the image. Let 𝐼(𝑖, 𝑗) denote the gray-level 

value of the pixel (𝑖, 𝑗), 𝑀, and 𝑉𝐴𝑅 the mean and variance of 𝐼, respectively. 𝑁(𝑖, 𝑗) denote the 

normalized gray-value in the pixel (𝑖, 𝑗) defined as: 

 𝑁(𝑖, 𝑗) =

{
 
 

 
 
𝑀0 +√

𝑉𝐴𝑅0(𝐼(𝑖, 𝑗) − 𝑀)2

𝑉𝐴𝑅
, 𝑖𝑓 𝐼(𝑖, 𝑗) > 𝑀 

𝑀0 − √
𝑉𝐴𝑅0(𝐼(𝑖, 𝑗) −𝑀)2

𝑉𝐴𝑅
, otherwise

, (1) 

where 𝑀0 and 𝑉𝐴𝑅0 are the desired mean and variance, respectively [26]. 

Local orientation estimation: An orientation image provides information about a fingerprint in 

oriented texture, an intrinsic property defined by invariant coordinates of ridges and valleys in a 

local neighborhood [26]. 

Local frequency estimation: The gray level intensities along ridges and valleys create a local 

neighborhood where no minutiae or singular points appear. This can be modeled as a sine-shaped 
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wave along the normal direction to the local ridge orientation. Former indicates that the local ridge 

frequency is another intrinsic property of a fingerprint image [26]. 

Region mask estimation: A fingerprint image has pixels or blocks that could be in a recoverable or 

unrecoverable region. This classification process can be done by evaluating the wave shape created 

by local ridges and valleys in terms of their amplitude, frequency, and variance [26]. 

Gabor filtering: An interesting characteristic of fingerprints is their inherent configuration of 

parallel ridges and valleys, which have a well-defined frequency and orientation providing useful 

information that helps eliminate unwanted noise. These characteristics help to eliminate undesired 

noise while preserving true ridges and valleys. Since the sinusoidal-shape waves from ridge-valley 

structures vary slowly in a local orientation, a well-tuned bandpass filter at a specific frequency 

and orientation can remove noise while preserving accurate ridge-valley structures. Gabor filters 

are suitable for bandpass filters because they have frequency-selective and orientation-selective 

properties, giving them optimal joint resolution in the spatial and frequency domains [28]. The 

even-symmetric Gabor filter has the general form: 

 
ℎ(𝑥, 𝑦: 𝜙, 𝑓) = 𝑒

−
1
2[
(𝑥 cos𝜙)2

𝜎𝑥
2 +

(𝑦sin𝜙)2

𝜎𝑦
2  ]

cos(2𝜋𝑓𝑥 cos𝜙), 
(2) 

where 𝜙 is the orientation of the Gabor filter, 𝑓 is the frequency of the sinusoidal plane wave, and 

𝜎𝑥  and 𝜎𝑦  are the space constants of the Gaussian envelope along the 𝑥 and 𝑦 axes, respectively. 

The application of Gabor filters to an image requires the following three parameters: 

• The frequency of the sinusoidal plane wave 

• The filter orientation 

• The standard deviations of the Gaussian envelope 

The first parameter corresponds to the local ridge frequency, and the second is the local ridge 

orientation. The third parameter involves a trade-off of values; the higher these values, the more 

resistant to noise the filters are, but this is more likely to create spurious ridges and valleys. In 

contrast, the smaller the values, the filters will not create spurious ridge-valley structures but will 

be less effective at removing noise. In this work, both values were implemented as 0.5. Using the 

estimated images, 𝑁 as the normalized fingerprint, 𝑂 as the orientation image, 𝐹 as the frequency 

image, and 𝑅 as the region mask, the enhanced image 𝐸 is calculated as: 

 𝐸(𝑖, 𝑗) =

{
 
 

 
 
255,                                                                                          𝑖𝑓 𝑅(𝑖, 𝑗) = 0

∑ ∑ ℎ(𝑢, 𝑣: 𝑂(𝑖, 𝑗), 𝐹(𝑖, 𝑗))𝑁(𝑖 − 𝑢, 𝑗 − 𝑣)

𝑤𝑔
2

𝑣=−
𝑤𝑔
2

𝑤𝑔
2

𝑢=−
𝑤𝑔
2

, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (3) 

where 𝑤𝑔 = 11 is the size of the Gabor filters [26]. 

Binarization: The last step is implemented using a threshold in the enhanced image 𝐸 using the 

following criteria: 

 𝐵(𝑖, 𝑗) = {
1,   𝑖𝑓 𝐸(𝑖, 𝑗) ≥ 0

0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
, (4) 

where 𝐵(𝑖, 𝑗) is the binarized version of the fingerprint, concluding the preprocessing of the input 

images. 

The following diagram presents the main steps in the enhancement algorithm used in this work: 

  
Figure 1. Flow diagram of the enhancement algorithm implemented. 

Input Image Normalization
Local 

Orientation 
Estimation

Local 
Frequency 
Estimation

Region Mask 
Estimation

Gabor Filtering Binarization
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An example of the enhancement algorithm is presented in Fig. 2 using a fingerprint from the 

FVC2000 database [23]. The initial image from the subset is illustrated in Fig.2.a. This image 

provides information regarding the ridge orientations shown in Fig.2.b. The red strokes indicate 

the angle (orientation) of the ridges. The next step involves the calculation of the ridge frequency 

used as an input for the Gabor filter presented in Fig.2.c. Lastly, binarization is performed to 

enhance the ridges and valleys from the initial fingerprint. The processed image will be composed 

with 0’s on the ridges, and 1’s on the valleys, as presented in Fig.2.d.  

 
Figure 2. Preprocessing example of the input fingerprint images. 

 

Step 2: Wavelet transform 

A popular technique in image processing is the Wavelet transform. This approach was applied to 

extract information from the fingerprint images. More information about the Wavelet transform 

procedure is available in [9]. 

Step 3: Feature extraction using multiple domains 

This stage describes multiple transforms calculated from each preprocessed fingerprint.  

Gray Level Co-occurrence Matrix (GLCM): GLCM is a square matrix that provides specific 

properties about the spatial distribution of gray levels in the image’s texture [29]. This matrix 

shows how often a reference pixel value with intensity 𝑖 occurs in a specific relationship with 

another neighboring pixel with intensity 𝑗. In other words, each element (𝑖, 𝑗) of the GLCM is the 

number of occurrences of the pixel pair at a distance 𝑑 relative to each other [29]. This spatial 

relationship can be defined in multiple forms with different offsets and angles. For an image 𝐼 of 

size 𝑀 × 𝑁, the elements of the corresponding GLCM for a displacement vector 𝑑 = (𝑑𝑥 , 𝑑𝑦) are 

defined as: 

 𝐺𝐿𝐶𝑀 =∑∑{
1,   𝑖𝑓 𝐼(𝑥, 𝑦) = 𝑖  and  𝐼(𝑥 + 𝑑𝑥 , 𝑦 + 𝑑𝑦) = 𝑗

0,   otherwise

𝑁

𝑦=1

𝑀

𝑥=1

, (5) 

In this work we consider one neighboring pixel 𝑑 = 1 along with four possible directions [0 1] for 

0°, [-1 1] for 45°, [-1 0] for 90°, and [-1 -1] for 135° [17]. Each element of the GLCM is the number 

of times that two pixels with gray values 𝑖 and 𝑗 are neighbors in distance 𝑑 and direction 𝜃 [29]. 
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A regular histogram does not include the information about the relative position of the pixels; that 

is why for texture measurements, the GLCM is mainly used since it incorporates in the texture 

analysis not only the distribution of intensities but also the relative position of pixels in an image 

[30]. The number of possible intensity levels in the original image determines the size of the 

GLCM. We work with 8-bit images meaning there are 256 possible levels [30]. 

The GLCM is computed on the approximation image because the Wavelet transform decomposed 

the original image into these lower frequency coefficients ignoring the noise signals related to the 

higher frequencies, which are present in the detail coefficients [17]. Since this approximation has 

a lower resolution, it provides a compressed representation of the fingerprint image, allowing to 

ignore several extra details that are not relevant to the texture information for this specific 

application. The GLCM becomes a Wavelet co-occurrence matrix in the Wavelet domain. This 

matrix offers a second-order statistical texture representation of the input fingerprint image [17]. 

So far, we have only calculated the GLCM, but we need to compute the texture descriptors that 

will be a part of the feature set used for fingerprint recognition. To accomplish this objective, we 

applied the graycoprops function to generate four descriptors including contrast, correlation, 

energy, and homogeneity; whose equations are presented below: 

 𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡 =  ∑|𝑖 − 𝑗|2

𝑖,𝑗

𝐺𝐿𝐶𝑀𝑖,𝑗 , (6) 

 𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 =  ∑
(𝑖 − 𝜇𝑖)(𝑗 − 𝜇𝑗)𝐺𝐿𝐶𝑀𝑖,𝑗

𝜎𝑗𝜎𝑗
𝑖,𝑗

, (7) 

 𝐸𝑛𝑒𝑟𝑔𝑦 = ∑𝐺𝐿𝐶𝑀𝑖,𝑗
2

𝑖,𝑗

, (8) 

 𝐻𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑖𝑡𝑦 =  ∑
𝐺𝐿𝐶𝑀𝑖,𝑗

1 + |𝑖 − 𝑗|
𝑖,𝑗

, (9) 

where the first-order statistics 𝜇 and 𝜎 are the mean and variance, respectively [17]. Since we use 

four different orientations, the total number of features per fingerprint is 16 as texture descriptors. 

For each orientation, the GLCM is calculated by applying its respective offset. That means that 

equations (6) – (9) must be used four times because the GLCM variable will have four different 

values, one for each offset. 

Spatial domain, Fast Fourier Transform (FFT), and Discrete Cosine Transform (DCT): FFT and 

DCT coefficients were calculated using the normalized fingerprint image. Four features were 

computed from these coefficients, including the mean of standard deviations, the standard 

deviation of the means, the mean of the absolute deviations, and the standard deviation of the 

absolute deviations [18]. Similar features were also calculated from the spatial domain version, 

i.e., the normalized fingerprint image. Another feature was the pixel density from the binarized 

version of the fingerprint image. 

Statistic measures from the Wavelet transform: A subsequent 2-D DWT was applied to the 

binarized fingerprints. In this step, we used the Wavelet base “db12”. Various statistic measures 

were calculated from each one of the detail coefficient images [21].  

Wavelet-Bands Selection Features (WBSF): WBSF separates the horizontal and vertical 

coefficient details into sub-bands giving information in both directions. Based on the same 2-D 

DWT processed in the previous step, the mean and standard deviations of the sub-bands provide 

the set of 36 features from this step [19]. 

The total amount of features computed for each fingerprint image is 170. All the features are 

collected into a table and labeled with a categorical variable representing the fingerprint owner. 
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Step 4: Ensemble Subspace Discriminant Classifier 

One of the benefits of ensemble classifiers is their capacity to merge results from various “weak” 

learners into a high-quality ensemble model. Linear Discriminant Analysis (LDA) classifiers were 

chosen as the individual learners used in this step. LDA is a fundamental data analysis method that 

establishes the lower dimension subspace in which the data points from the original problem are 

separable. This separability is specified in terms of mean and variance values [31]. The subspace 

discriminant algorithm has medium prediction speed and low memory usage. The main advantage 

of utilizing a subspace ensemble is less memory than ensembles with all predictors [32]. In [33] is 

presented a description of the steps executed by the random subspace algorithm. 

 

5. Results and discussion. - The method proposed in this paper was implemented in MATLAB 

R2019b. The implementation included the application of several toolboxes, including the Wavelet 

toolbox, Image Processing toolbox, and Statistics and Machine Learning toolbox. More details 

regarding the specific functions used for signal processing are included in [9]. 

The Classification Learner application is an intuitive interface for training machine learning 

models. The feature table produced for each subset has a size of 80x171, 80 imprints of fingerprints 

(10 subjects with eight fingerprints per subject), and 171 features (including the categorical 

variable). The learners applied to create the ensemble are LDA classifiers. 10-fold cross-validation 

was employed to generalize the data and prevent overfitting. Table I summarizes the highest 

accuracy values obtained for the twelve subsets analyzed in this work. 

 

Database Accuracy 

DB1-FVC2000 95 % 

DB2-FVC2000 95 % 

DB3-FVC2000 97.5 % 

DB4-FVC2000 95 % 

DB1-FVC2002 85 % 

DB2-FVC2002 76.3 % 

DB3-FVC2002 85 % 

DB4-FVC2002 83.8 % 

DB1-FVC2004 78.8 % 

DB2-FVC2004 65 % 

DB3-FVC2004 95 % 

DB4_FVC2004 80 % 

Table I. Results of the classification process for every database. 

 

The preprocessing enhancement algorithm has shown high and acceptable performance for several 

subsets in the three databases included in this work. The following figure compares boxplots for 

the validation accuracies for all subsets used in this system. 
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Figure 3. Boxplots of the accuracy values computed for each database. 

 

The boxplots for the FVC2000 database (the first four boxplots) have a higher distribution for the 

quartiles, as can be noticed in Fig. 3. This behavior is consistent with the average accuracy values 

reported among the highest for all 12 subsets. On the contrary, the remaining eight subsets have 

wider quartiles, but almost for every classifier, the fingerprint verification system achieves a 100% 

accuracy for at least one-fold in the cross-validation implemented.  

Another algorithm performance comparison is presented in the Receiver Operating Characteristic 

(ROC) curves. The positive class must be the same so a fair comparison can be made between all 

databases; in this case, Subject-Eight was chosen. Fig. 4 presents the results for the FVC2000 

database. 
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Figure 4. ROC curves for the FVC2000 database (Top left: DB1, top right: DB2, bottom left: 

DB3, bottom right: DB4). 

 

A good classifier should have a ROC curve as close as possible to the top left, which in this case 

is true for the four subsets. As a result, we can prove again that high performance from the 

FVC2000 database can be inferred from the ROC curves presented. For the FVC2002 database, 

the next ROC curves were obtained.  
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Figure 5. ROC curves for the FVC2002 database (Top left: DB1, top right: DB2, bottom left: 

DB3, bottom right: DB4). 

 

For the FVC2002 database, it can be implied that for the DB4 subset, the algorithm performance 

is inferior, which is analogous to the lower accuracy value obtained for this subset at 83.8%. 

Finally, for the FVC2004, we have the following ROC curves. 
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Figure 6. ROC curves for the FVC2004 database (Top left: DB1, top right: DB2, bottom left: 

DB3, bottom right: DB4). 

 

This database provides the lowest accuracy values for the classification, which can be noticed from 

the ROC curves presented in Fig. 6. Note that these ROC curves were computed using only one 

positive class; if we choose a different class, we will obtain different results. The ROC curves will 

represent the behavior performance that was already reported using accuracy in Table I. 

To compare the performance of the classifiers from literature with the proposed method, we utilized 

the “accuracy” metric. This comparison is presented in Table II.  
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Work Feature Extraction 

Number 

of 

Features 

Classification 

Model 

Training 

Time 
Database Accuracy 

Suwarno, 

et al. [5] 

Haar-like 

transformation 
100 

Hamming 

distance 
n/a Custom set 80 % 

Abdul-

Haleem, 

et al. [6] 

Energy, local ridge 

features, statistic 

measures, invariant 

moments 

119 
Absolute 

difference 
n/a 

DB3 

(FVC2004) 
96.87 % 

Velapure, 

et al. [7] 

Ridge contours, 

Gabor filter 
≈ 16384 SVM 

Not 

reported 

Fingerprint 

Color 

Image.v1 

87.5 % 

Nguyen, 

et al. [10] 
Statistic measures 256 

Random 

forest 

10 h 50 

min 
FVC group 95.8 % 

Iloanusi, 

et al. [18] 

Spatial, FFT, DCT, 

statistic measures 
17 

Manhattan 

distance 
n/a 

DB4 

(FVC2000) 
96.89 % 

Tang, et 

al. [20] 

Statistic measures, 

Shannon entropy 
1152 

Normalize 

Euclidean 

distance 

n/a FVC2000 96.84 % 

Akbar, et 

al. [21] 
DWT, PCA, DCT 40 SVM 

Not 

reported 

CASIA 

Version_5.0 

(Dataset1) 

95 % 

Jirandeh, 

et al. [22] 
Gabor Wavelet 160 SVM ≈ 170 s PolyU HRF 95.5 % 

This 

work 

Spatial, FFT, DCT, 

GLCM, WBSF, 

statistic measures 

170 

Ensemble 

Subspace 

Discriminant 

13.202 s 
DB3 

(FVC2000) 
97.5 % 

Table II. Comparison of results 

 

The values in the table correspond to the highest accuracies achieved in each work. Our system 

obtained an accuracy of 97.5 % for the set “B” from the FVC2000 database subset DB3. A thorough 

description of Table II can be found in [9].  

In this extended version, we have included a new column indicating each author’s database. 
Suwarno, et al. [5] used fingerprints captured by a commercial scanner, creating their own custom 

set, while Abdul-Haleem, et al. [6] used the DB3 subset from the FVC2004 database. Velapure, et 

al. [7] applied the Fingerprint Color Image Database.v1, from MATLAB Central File Exchange. 

Nguyen, et al. [10] used the FVC group database, but subsets were not specified. Iloanusi, et al. 

[18] applied the DB4 subset from the FVC2000 database, Tang, et al. [20] used the FVC2000 

database. Akbar, et al. [21] utilized the CASIA Fingerprint Image Database Version_5.0 (Dataset1) 

and Jirandeh, et al. [22] used the PolyU HRF database. It is worth noting that although not all 

databases are the same, the comparison provides a good insight into the general performance of the 

proposed system in fingerprint verification research. 

 

6. Conclusions. - This paper presents a fingerprint verification system based on DWT, multiple 

domain feature extraction, and Ensemble Subspace Classifier. The preprocessing algorithm used 

to enhance the original fingerprint images from the three datasets applies image processing 

techniques such as normalization, local orientation estimation, local frequency estimation, region 

estimation, and binarization. This work also explains why this approach is helpful for fingerprint 

image processing. This paper evaluated 12 fingerprint image subsets from which the highest 

accuracy (97.5 %, obtained for the DB3-FVC2000 subset) is compared with related works 

proposed in the literature.  
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