DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS Volume 18, Number 2&3, June & July 2007 Website: http://aimSciences.org

pp. 499-515

CONTINUOUS DEPENDENCE OF ATTRACTORS ON PARAMETERS OF NON-AUTONOMOUS DYNAMICAL SYSTEMS AND INFINITE ITERATED FUNCTION SYSTEMS

DAVID CHEBAN

State University of Moldova Department of Mathematics and Informatics A. Mateevich Street 60, MD–2009 Chişinău, Moldova

CRISTIANA MAMMANA

Institute of Economics and Finances University of Macerata, str. Crescimbeni 14, I–62100 Macerata, Italy

ABSTRACT. The paper is dedicated to the study of the problem of continuous dependence of compact global attractors on parameters of non-autonomous dynamical systems and infinite iterated function systems (IIFS). We prove that if a family of non-autonomous dynamical systems $\langle (X, \mathbb{T}_1, \pi_\lambda), (Y, \mathbb{T}_2, \sigma), h \rangle$ depending on parameter $\lambda \in \Lambda$ is uniformly contracting (in the generalized sense), then each system of this family admits a compact global attractor J^{λ} and the mapping $\lambda \to J^{\lambda}$ is continuous with respect to the Hausdorff metric. As an application we give a generalization of well known Theorem of Bransley concerning the continuous dependence of fractals on parameters.

1. Introduction. The aim of this paper is the study of the problem of existence of compact global attractors of non-autonomous dynamical systems and their continuous dependence on parameters. The problem of the upper semi-continuous dependence on parameters of global attractors of dynamical systems is well studied (both autonomous and non-autonomous, see for example Caraballo, Langa and Robinson [3], Caraballo and Langa [4], Cheban [6, 7] Hale and Raugel [15], Hale [16] and also see the bibliography therein). The problem of the lower semi-continuous dependence on parameters of global attractors is less extensively studied. Note, for example, the works of Dupaix, Hilhorst and Kostin [11], Elliott and Kostin [13], Hale [16], Hale and Raugel [17], Kapitanskii and Kostin [20], Kostin [21], Li and Kloeden [22], Stuart and Humphries [28] and the bibliography therein.

The paper is dedicated to the study of the problem of continuous dependence of compact global attractors on parameters of non-autonomous dynamical systems and infinite iterated function systems (IIFS). We prove that if a family of nonautonomous dynamical systems $\langle (X, \mathbb{T}_1, \pi_\lambda), (Y, \mathbb{T}_2, \sigma), h \rangle$ depending on parameter $\lambda \in \Lambda$ is uniformly contracting (in the generalized sense), then each system of this family admits a compact global attractor J_λ and the mapping $\lambda \to J_\lambda$ is continuous with respect to the Hausdorff metric. As an application we give a generalization of

²⁰⁰⁰ Mathematics Subject Classification. 37B25, 37B55, 39A11, 39C10, 39C55.

 $Key\ words\ and\ phrases.$ Global attractor; non-autonomous dynamical system; infinite iterated functions systems.

well known Theorem of Bransley concerning the continuous dependence of fractals on parameters.

This paper is organized as follows.

In Section 2 we give some notions and facts from the theory of set-valued dynamical systems which we use in our paper.

Section 3 is dedicated to the study of upper semi-continuous (generally speaking set-valued) invariant sections of non-autonomous dynamical systems. They play a very important role in the study of non-autonomous dynamical systems. We give the sufficient conditions which guarantee the existence of a unique globally exponentially stable invariant section. The main result of this paper is Theorem 3.

We give in section 4 a new approach to the study of discrete inclusions (DI)which is based on non-autonomous dynamical systems (See also our previous works [8, 9, 10], where we study the IFSs (both linear [8, 9] and nonlinear [10] cases) in the framework of non-autonomous dynamical systems (cocycles).). We show that every DI in a natural way generates some non-autonomous dynamical system (cocycle), which plays an important role in its study (see Sections 7 and 8).

In section 5 we study some properties of Lipschitz maps. We introduce the notion of spectral radius for Lipschitzian maps and we give the necessary and sufficient conditions that a Lipschitzian mapping is contracting in the generalized sense in the term of its spectral radius (Lemma 3).

In Section 6 we study the relation between a compact global attractor of cocycle and the skew-product dynamical system (respectively, set-valued dynamical system) associated by the given cocycle.

Section 7 is dedicated to the study of the problem of continuous dependence of attractors of infinite iterated function systems. We give a generalization of well known Theorem of Bransley concerning the continuous dependence of fractals on parameters (Theorem 10).

2. Set-Valued dynamical systems and their compact global attractors. Let (X, ρ) be a complete metric space, \mathbb{S} be a group of real (\mathbb{R}) or integer (\mathbb{Z}) numbers, $\mathbb{T} \ (\mathbb{S}_+ \subseteq \mathbb{T})$ be a subsemi-group of \mathbb{S} . If $A \subseteq X$ and $x \in X$, then we denote by $\rho(x, A)$ the distance from the point x to the set A, i.e. $\rho(x, A) = \inf\{\rho(x, a) :$ $a \in A$. We denote by $B(A, \varepsilon)$ an ε -neighborhood of the set A, i.e. $B(A, \varepsilon) = \{x \in A\}$ $X: \rho(x,A) < \varepsilon$, by K(X) we denote the family of all non-empty compact subsets of X. For every point $x \in X$ and number $t \in \mathbb{T}$ we put in correspondence a closed compact subset $\pi(t, x) \in K(X)$. So, if $\pi(P, A) = \bigcup \{\pi(t, x) : t \in P, x \in A\} (P \subseteq \mathbb{T}),$ then

- (i) $\pi(0, x) = x$ for all $x \in X$;
- (i) $\pi(t_2, \pi(t_1, x)) = \pi(t_1 + t_2, x)$ for all $x \in X$ and $t_1, t_2 \in \mathbb{T}$; (ii) $\lim_{x \to x_0, t \to t_0} \beta(\pi(t, x), \pi(t_0, x_0)) = 0$ for all $x_0 \in X$ and $t_0 \in \mathbb{T}$, where $\beta(A, B) = \sup\{\rho(a, B) : a \in A\}$ is a semi-deviation of the set $A \subseteq X$ from the set $B \subseteq X$.

In this case it is said (see, for example, [27] and [23] and the bibliography therein) that there is defined a set-valued semi-group dynamical system.

Let $\mathbb{T} = \mathbb{S}$ and be fulfilled the next condition:

(i) if $p \in \pi(t, x)$, then $x \in \pi(-t, p)$ for all $x, p \in X$ and $t \in \mathbb{T}$.

Then it is said that there is defined a set-valued group dynamical system (X, \mathbb{T}, π) or a bilateral (two-sided) dynamical system.

Definition 1. Let $\mathbb{T}' \subset \mathbb{S}$ ($\mathbb{T} \subset \mathbb{T}'$). A continuous mapping $\gamma_x : \mathbb{T} \to X$ is called a motion of the set-valued dynamical system (X, \mathbb{T}, π) issuing from the point $x \in X$ at the initial moment t = 0 and defined on \mathbb{T}' , if

a. $\gamma_x(0) = x;$

b. $\gamma_x(t_2) \in \pi(t_2 - t_1, \gamma_x(t_1))$ for all $t_1, t_2 \in \mathbb{T}'$ $(t_2 > t_1)$.

The set of all motions of (X, \mathbb{T}, π) , passing through the point x at the initial moment t = 0 is denoted by $\mathcal{F}_x(\pi)$ and we define $\mathcal{F}(\pi) := \bigcup \{\mathcal{F}_x(\pi) \mid x \in X\}$ (or simply \mathcal{F}).

Definition 2. Any trajectory $\gamma \in \mathcal{F}(\pi)$ defined on S is called a full (entire) trajectory of the dynamical system (X, \mathbb{T}, π) .

Denote by $\Phi(\pi)$ the set of all full trajectories of the dynamical system (X, \mathbb{T}, π) and $\Phi_x(\pi) := \mathcal{F}_x(\pi) \bigcap \Phi(\pi)$.

Theorem 1. [27] Let (X, \mathbb{T}, π) be a semi-group dynamical system and X be a compact and invariant set (i.e. $\pi^t X = X$ for all $t \in \mathbb{T}$, where $\pi^t := \pi(t, \cdot)$). Then

- (i) $\mathcal{F}(\pi) = \Phi(\pi)$, *i.e.* every motion $\gamma \in \mathcal{F}_x(\pi)$ can be extended on \mathbb{S} (this means that there exists $\tilde{\gamma} \in \Phi_x(\pi)$ such that $\tilde{\gamma}(t) = \gamma(t)$ for all $t \in \mathbb{T}$);
- (ii) there exists a group (generally speaking set-valued) dynamical system (X, S, π̃) such that π̃|_{T×X} = π.

Definition 3. A system (X, \mathbb{T}, π) is called [5, 7] compactly dissipative, if there exists a nonempty compact $K \subseteq X$ such that

$$\lim_{t \to +\infty} \beta(\pi^t M, K) = 0;$$

for all $M \in K(X)$, where $\pi^t M := \pi(t, M)$.

Let (X, \mathbb{T}, π) be compactly dissipative and K be a compact set attracting every compact subset of X. Let us set

$$J := \omega(K) := \bigcap_{t \ge 0} \overline{\bigcup_{\tau \ge t} \pi^{\tau} K}.$$
 (1)

It can be shown [5, 7] that the set J defined by equality (1) does not depends on the choice of the attractor K, but is characterized only by the properties of the dynamical system (X, \mathbb{T}, π) itself. The set J is called a center of Levinson of the compact dissipative system (X, \mathbb{T}, π) .

Theorem 2. [5, 7] If (X, \mathbb{T}, π) is a compactly dissipative dynamical system and J is its center of Levinson, then :

- (i) J is invariant, i.e. $\pi^t J = J$ for all $t \in \mathbb{T}$;
- (ii) J is orbitally stable, i.e. for any ε > 0 there exists δ(ε) > 0 such that ρ(x, J) < δ implies β(π(t, x), J) < ε for all t ≥ 0;
- (iii) J is an attractor of the family of all compact subsets of X;
- (iv) J is the maximal compact invariant set of (X, \mathbb{T}, π) .

3. Upper semi-continuous invariant sections of non-autonomous dynamical systems and their continuous dependence on parameters. In this section we study the upper semi-continuous (generally speaking set-valued) invariant sections of non-autonomous dynamical systems. They play a very important role in the study of non-autonomous dynamical systems. We give the sufficient conditions which guarantee the existence of a unique globally exponentially stable invariant section and their continuous dependence on parameters.

Lemma 1. Let X and Λ be complete metric spaces. Let $(X, \mathbb{T}, \pi_{\lambda})$ $(\lambda \in \Lambda)$ be a family of dynamical systems satisfying the following conditions:

- (i) the family of dynamical systems (X, T, π_λ) (λ ∈ Λ) is uniformly contracting, i.e. there exist two positive numbers N and ν such that ρ(π_λ(t, x₁), π_λ(t, x₂)) ≤ Ne^{-νt}ρ(x₁, x₂) for all λ ∈ Λ, t ∈ T and x₁, x₂ ∈ X;
- (ii) for each $t \in \mathbb{T}$ the mapping $(\lambda, x) \mapsto \pi_{\lambda}(t, x)$ is continuous.

Then for each $\lambda \in \Lambda$ the dynamical system $(X, \mathbb{T}, \pi_{\lambda})$ admits a unique stationary point p_{λ} and the mapping $\lambda \mapsto p_{\lambda}$ is continuous.

Proof. Let Λ' be a compact subset of Λ . Denote by $C(\Lambda', X)$ the space of all continuous functions $\varphi : \Lambda' \mapsto X$ with distance $r(\varphi_1, \varphi_2) := \max\{\rho(\varphi_1(\lambda), \varphi_2(\lambda)) : \lambda \in \Lambda'\}$. $(C(\Lambda', X), r)$ is a complete metric space. Note that under the conditions of the lemma if $\varphi \in C(\Lambda', X)$ then also $\psi_t \in C(\Lambda', X)$, where $\psi_t(\lambda) := \pi_\lambda(t, \varphi(\lambda))$ for all $\lambda \in \Lambda'$, where $t \in \mathbb{T}$. Denote by $S_{\Lambda'}^t$ the mapping from $C(\Lambda', X)$ into itself defined by equality $(S_{\Lambda'}^t \varphi)(\lambda) := \pi_\lambda(t, \varphi(\lambda))$ for all $t \in \mathbb{T}$ and $\lambda \in \Lambda'$. It is easy to check that $\{S_{\Lambda'}^t\}_{t\in\mathbb{T}}$ is a commutative semi-group (with respect to composition) and $r(S_{\Lambda'}^t \varphi_1, S_{\Lambda'}^t \varphi_2) \leq \mathcal{N}e^{-\nu t}r(\varphi_1, \varphi_2)$ for all $t \in \mathbb{T}$ and $\varphi_1, \varphi_2 \in C(\Lambda', X)$. Hence there exists a unique common fix point $\varphi_{\Lambda'} \in C(\Lambda', X)$ of semi-group $\{S_{\Lambda'}^t\}_{t\in\mathbb{T}}$. In particularly $\pi_\lambda(t, \varphi_{\Lambda'}(\lambda)) = \varphi_{\Lambda'}(\lambda)$ for all $\lambda \in \Lambda'$, i.e. $p_\lambda := \varphi_{\Lambda'}(\lambda)$ is a unique stationary point of dynamical system $(X, \mathbb{T}, \pi_\lambda)$ and the mapping $\lambda \mapsto p_\lambda$ from Λ' into X is continuous.

Thus we have a family of commutative semi-groups $\{S_{\Lambda'}^t\}_{t\in\mathbb{T}}$ depending on parameter $\Lambda' \in K(\Lambda)$. It is easy to check that the following statements are true:

- a. for each $\Lambda' \in K(\Lambda)$ the commutative semi-group $\{S_{\Lambda'}^t\}_{t\in\mathbb{T}}$ admits a unique stationary point $\varphi_{\Lambda'} \in C(\Lambda', X)$;
- stationary point $\varphi_{\Lambda'} \in C(\Lambda', X)$; b. if $\Lambda' \subseteq \Lambda''$ then $\tilde{\varphi}_{\Lambda''} = \varphi_{\Lambda'}$, where $\tilde{\varphi}_{\Lambda''}$ is the restriction on Λ' of function $\varphi_{\Lambda''}$;
- c. $\varphi_{\Lambda'}(\lambda) = \varphi_{\Lambda''}(\lambda)$ for all $\lambda \in \Lambda' \cap \Lambda''$ and $\Lambda', \Lambda'' \in K(\Lambda)$.

Denote by $C(\Lambda, X)$ the space of all continuous functions $\varphi : \Lambda \mapsto X$ equipped with compact-open topology (the topology of convergence uniform on every compact subset $\Lambda' \subseteq \Lambda$). Let S^t be the mapping from $C(\Lambda, X)$ into itself defined by equality $(S^t \varphi)(\lambda) := \pi_\lambda(t, \varphi(\lambda))$ for all $t \in \mathbb{T}$ and $\lambda \in \Lambda$. It is easy to check that $\{S^t\}_{t \in \mathbb{T}}$ is a commutative semi-group (with respect to composition). We define now the mapping $\varphi : \Lambda \mapsto X$ as follow:

$$\varphi(\lambda) := \varphi_{\Lambda'}(\lambda), \tag{2}$$

where $\Lambda' \in K(\Lambda)$ is an arbitrary compact subset of Λ containing λ . According to properties a.-c. by equality (2) a function $\varphi \in C(\Lambda, X)$ is correctly defined and it is a unique stationary point of the semi-group $\{S^t\}_{t\in\mathbb{T}}$. This means that $S^t\varphi = \varphi$ for all $t \in \mathbb{T}$ or equivalently $\pi_{\lambda}(t,\varphi(\lambda)) = \varphi(\lambda)$ for all $\lambda \in \Lambda$ and $t \in \mathbb{T}$, i.e. the point $p_{\lambda} := \varphi(\lambda)$ is a unique stationary point of dynamical system $(X, \mathbb{T}, \pi_{\lambda})$ and the mapping $\lambda \mapsto p_{\lambda}$ is continuous.

Remark 1. Lemma 1 is also true if

- (i) we replace the condition of uniform contraction by the following weaker condition: for each compact subset $\Lambda' \subseteq \Lambda$ there are two positive numbers $\mathcal{N}_{\Lambda'}$ and $\nu_{\Lambda'}$ such that $\rho(\pi_{\lambda}(t, x_1), \pi_{\lambda}(t, x_2)) \leq \mathcal{N}_{\Lambda'} e^{-\nu_{\Lambda'} t} \rho(x_1, x_2)$ for all $\lambda \in \Lambda', t \in \mathbb{T}$ and $x_1, x_2 \in X$;
- (ii) we consider in place of family of dynamical systems $(X, \mathbb{T}, \pi_{\lambda})_{\lambda \in \Lambda}$ an arbitrary family of commutative semi-groups $\{\pi_{\lambda}^t\}_{t \in \mathbb{T}}$ $(\lambda \in \Lambda)$ with conditions:
 - (a) for each $t \in \mathbb{T}$ the mapping $(\lambda, x) \mapsto \pi_{\lambda}^{t} x$ is continuous;
 - (b) there are two positive numbers \mathcal{N} and ν such that $\rho(\pi_{\lambda}(t, x_1), \pi_{\lambda}(t, x_2)) \leq \mathcal{N}e^{-\nu t}\rho(x_1, x_2)$ for all $\lambda \in \Lambda, t \in \mathbb{T}$ and $x_1, x_2 \in X$.

Definition 4. Let X be a metric space and Y be a topological space. The set-valued mapping $\gamma : Y \to K(X)$ is said to be upper semi-continuous (or β -continuous), if $\lim_{y \to y_0} \beta(\gamma(y), \gamma(y_0)) = 0$ for all $y_0 \in Y$.

Definition 5. Let (X, h, Y) be a fiber space, i.e. $h : X \mapsto Y$ is a continuous mapping from X onto Y. The mapping $\gamma : Y \to K(X)$ is called a section (selector) of the fiber space (X, h, Y), if $h(\gamma(y)) = y$ for all $y \in Y$.

Remark 2. Let $X := W \times Y$. Then $\gamma : Y \to X$ is a section of the fiber space (X, h, Y) $(h := pr_2 : X \to Y)$, if and only if $\gamma = (\psi, Id_Y)$ where $\psi : W \to K(W)$.

Definition 6. Let (X, \mathbb{T}_1, π) and $(Y, \mathbb{T}_2, \sigma)$ ($\mathbb{S}_+ \subseteq \mathbb{T}_1 \subseteq \mathbb{T}_2 \subseteq \mathbb{S}$) be two dynamical systems. The mapping $h: X \to Y$ is called a homomorphism (respectively isomorphism) of the dynamical system (X, \mathbb{T}_1, π) on $(Y, \mathbb{T}_2, \sigma)$, if the mapping h is continuous (respectively homeomorphic) and $h(\pi(x, t)) = \sigma(h(x), t)$ ($t \in \mathbb{T}_1, x \in X$).

Remark 3. In this work we show that every IFS generates some non-autonomous dynamical system (see Section 4 and also [10]). Many examples of non-autonomous dynamical systems, generated by non-autonomous differential/difference equations (ODEs, PDEs and functional-differential equations) can be found by the reader, for example, in the books [7] and [24].

Definition 7. A triplet $\langle (X, \mathbb{T}_1, \pi), (Y, \mathbb{T}_2, \sigma), h \rangle$, where *h* is a homomorphism of (X, \mathbb{T}_1, π) on $(Y, \mathbb{T}_2, \sigma)$ and (X, h, Y) is a fiber space, is called a non-autonomous dynamical system.

Definition 8. A mapping $\gamma : Y \to X$ is called an invariant section of the nonautonomous dynamical system $\langle (X, \mathbb{T}_1, \pi), (Y, \mathbb{T}_2, \sigma), h \rangle$, if it is a section of the fiber space (X, h, Y) and $\gamma(Y)$ is an invariant subset of the dynamical system (X, \mathbb{T}, π) (or, equivalently, $\pi^t \gamma(y) = \gamma(\sigma^t y)$ for all $t \in \mathbb{T}$ and $y \in Y$).

Denote by $\alpha: K(X) \times K(X) \to \mathbb{R}_+$ the Hausdorff distance on K(X), i.e.

$$\alpha(A, B) := \max(\beta(A, B), \beta(B, A)).$$

Theorem 3. Let Λ be a metric space, $\langle (X, \mathbb{T}_1, \pi_\lambda), (Y, \mathbb{T}_2, \sigma), h \rangle$ ($\lambda \in \Lambda$) be a family of non-autonomous dynamical system and suppose the following conditions are fulfilled:

- (i) the space Y is compact;
- (ii) Y is invariant, i.e. $\sigma^t Y = Y$ for all $t \in \mathbb{T}_2$;
- (iii) the non-autonomous dynamical systems $\langle (X, \mathbb{T}_1, \pi_\lambda), (Y, \mathbb{T}_2, \sigma), h \rangle$ are equicontracting in the extended sense, i.e. there exist positive numbers N and ν such that

$$\rho(\pi_{\lambda}(t, x_1), \pi_{\lambda}(t, x_2)) \le N e^{-\nu t} \rho(x_1, x_2)$$
(3)

for all $\lambda \in \Lambda$, $x_1, x_2 \in X$ $(h(x_1) = h(x_2))$ and $t \in \mathbb{T}_1$;

- (iv) for each $t \in \mathbb{T}_1$ the mapping $(\lambda, x) \to \pi_{\lambda}(t, x)$ from $\Lambda \times X$ into X is continuous;
- (v) $\Gamma(Y,X) = \{\gamma \mid \gamma : Y \to K(X) \text{ is a set-valued } \beta\text{-continuous mapping and } h(\gamma(y)) = y \text{ for all } y \in Y\} \neq \emptyset.$

Then

- (i) for each $\lambda \in \Lambda$ there exists a unique invariant section $\gamma_{\lambda} \in \Gamma(Y, X)$ of the non-autonomous dynamical system $\langle (X, \mathbb{T}_1, \pi_{\lambda}), (Y, \mathbb{T}_2, \sigma), h \rangle$;
- (ii) the non-autonomous dynamical system ⟨(X, T₁, π_λ), (Y, T₂, σ), h⟩ is compactly dissipative (i.e. (X, T₁, π_λ) is compactly dissipative) and its Levinson's center J^λ = γ_λ(Y);
- (iii) $\pi_{\lambda}^{t} J_{y}^{\lambda} = J_{\sigma(t,y)}^{\lambda}$ for all $t \in \mathbb{T}_{1}$ and $y \in Y$;
- (iv) the mapping $\lambda \to \gamma_{\lambda}$ is continuous, i.e.

$$\lim_{\lambda \to \lambda_0} \sup_{y \in Y} \alpha(\gamma_\lambda(y), \gamma_{\lambda_0}(y)) = 0$$

(v) if (Y, T₂, σ) is a group-dynamical system (i.e. T₂ = S), then the unique invariant section γ_λ of the non-autonomous dynamical system ((X, T₁, π_λ), (Y, T₂, σ), h) is one-valued (i.e. γ_λ(y) consists a single point for any y ∈ Y) and

$$\rho(\pi_{\lambda}(t,x),\pi_{\lambda}(t,\gamma_{\lambda}(h(x)))) \le Ne^{-\nu t}\rho(x,\gamma_{\lambda}(h(x)))$$
(4)

for all $x \in X$ and $t \in \mathbb{T}$.

Proof. Since the space Y is compact and invariant, then according to Theorem 1 the semi-group dynamical system (Y, \mathbb{T}, σ) can be prolonged to a group set-valued dynamical system $(Y, \mathbb{S}, \tilde{\sigma})$ (this means that $\tilde{\sigma}(s, y) = \sigma(s, y)$ for all $(s, y) \in \mathbb{T} \times Y$).

Let $\alpha : K(X) \times K(X) \to \mathbb{R}_+$ be the Hausdorff's distance on K(X) and $d : \Gamma(Y, X) \times \Gamma(Y, X) \to \mathbb{R}_+$ be the function defined by the equality

$$d(\gamma_1, \gamma_2) := \sup_{y \in Y} \alpha(\gamma_1(y), \gamma_2(y)).$$
(5)

Note that (5) defines a complete distance on $\Gamma(Y, X)$ (see [10]).

For $t \in \mathbb{T}_1$ and $\lambda \in \Lambda$, by S_{λ}^t we denote the mapping of $\Gamma(Y, X)$ into itself defined by the equality $(S_{\lambda}^t \gamma)(y) = \pi_{\lambda}(t, \gamma((\sigma^t)^{-1}y))$ for all $t \in \mathbb{T}_1$, $y \in Y$ and $\gamma \in \Gamma(Y, X)$. It is easy to see that $S_{\lambda}^t \gamma \in \Gamma(Y, X)$, $S_{\lambda}^t S_{\lambda}^\tau = S_{\lambda}^{t+\tau}$ for all $t, \tau \in \mathbb{T}_1$ and $\gamma \in \Gamma(Y, X)$ and, hence, $\{S_{\lambda}^t\}_{t \in \mathbb{T}_1}$ forms a commutative semi-group. We will show that

$$d(S_{\lambda}^{t}\gamma_{1}, S_{\lambda}^{t}\gamma_{2}) \leq \mathcal{N}e^{-\nu t}d(\gamma_{1}, \gamma_{2})$$
(6)

for all $t \in \mathbb{T}_1$ and $\gamma_i \in \Gamma(Y, X)$ (i = 1, 2). In fact. To prove the inequality (6) it is sufficient to show that

$$\alpha(\pi_{\lambda}^{t}\gamma_{1}(\sigma^{-t}y),\pi_{\lambda}^{t}\gamma_{2}(\sigma^{-t}y) \leq \mathcal{N}e^{-\nu t}d(\gamma_{1},\gamma_{2})$$
(7)

for all $y \in Y$, where $\sigma^{-t}y := \{q \in Y \mid \sigma(t,q) = y\}.$

Let $v \in \pi_{\lambda}^{t} \gamma_{2}(\sigma^{-t}y)$ be an arbitrary element, then there is $q \in \sigma^{-t}y$ and $x_{2}(y) \in \gamma_{2}(q)$ so that $v = \pi_{\lambda}^{t} x_{2}(y)$. We choose $x_{1}(y) \in \gamma_{1}(q)$ such that

$$\rho(x_1(y), x_2(y)) \le \alpha(\gamma_1(q), \gamma_2(q)) \le d(\gamma_1, \gamma_2) \tag{8}$$

(by compactness of $\gamma_i(q)$ (i = 1, 2) obviously such an $x_1(y)$ exists there and additionally $h(x_1(y)) = h(x_2(y)) = q$). Then we have

$$\rho(\pi_{\lambda}^{t}x_{1}(y),\pi_{\lambda}^{t}x_{2}(y)) \leq \mathcal{N}e^{-\nu t}\rho(x_{1}(y),x_{2}(y)) \leq \mathcal{N}e^{-\nu t}d(\gamma_{1},\gamma_{2})$$

i.e. for all $v \in \pi_{\lambda}^{t} \gamma_{2}(\sigma^{-t}y)$ there exists $u := \pi^{t} x_{1}(y) \in \pi_{\lambda}^{t} \gamma_{1}(\sigma^{-t}y)$ so that $\rho(u, v) \leq \mathcal{N}e^{-\nu t}d(\gamma_{1}, \gamma_{2})$. This means that $\beta(\pi_{\lambda}^{t}\gamma_{1}(\sigma^{-t}y), \pi_{\lambda}^{t}\gamma_{2}(\sigma^{-t}y)) \leq \mathcal{N}e^{-\nu t}d(\gamma_{1}, \gamma_{2})$. Analogously, the inequality $\beta(\pi_{\lambda}^{t}\gamma_{2}(\sigma^{-t}y), \pi_{\lambda}^{t}\gamma_{1}(\sigma^{-t}y)) \leq \mathcal{N}e^{-\nu t}d(\gamma_{1}, \gamma_{2})$ can be

established and, consequently, $\alpha(\pi_{\lambda}^{t}\gamma_{1}(\sigma^{-t}y), \pi_{\lambda}^{t}\gamma_{2}(\sigma^{-t}y)) \leq \mathcal{N}e^{-\nu t}d(\gamma_{1}, \gamma_{2})$ for all $y \in Y$ and $t \in \mathbb{T}_{1}$. Thus the inequality (7) is established.

We will show now that for each $t_0 \in \mathbb{T}_1$ the mapping $(\lambda, \gamma) \to S_{\lambda}^{t_0} \gamma$ from $\Lambda \times \Gamma(Y, X)$ into $\Gamma(Y, X)$ is continuous. In fact. Let $\lambda_k \to \lambda_0$ and $\gamma_k \to \gamma_0$. We shall prove that $S_{\lambda_k}^{t_0} \gamma_k \to S_{\lambda_0}^{t_0} \gamma_0$ in the space Γ . Denote by

$$m(\lambda) := \sup_{x \in \gamma_0(Y)} \rho(\pi_\lambda^{t_0} x, \pi_{\lambda_0}^{t_0} x)$$
(9)

and note that $m(\lambda) \to 0$ as $\lambda \to \lambda_0$. If we suppose that it is not true, then there are $\varepsilon_0 > 0, \lambda_k \to \lambda_0$ and $x_k \to x_0$ ($x_k \in \gamma_0(Y)$) such that

$$\rho(\pi_{\lambda_k}^{t_0} x_k, \pi_{\lambda_0}^{t_0} x_k) \ge \varepsilon_0.$$
(10)

Passing to the limit in (10) as $k \to +\infty$ we obtain $\varepsilon_0 \leq 0$. The obtained contradiction shows that $m(\lambda) \to 0$ as $\lambda \to \lambda_0$.

Let $y \in Y$ and $v \in \pi_{\lambda_0}^{t_0} \gamma_0(\sigma^{-t_0} y)$, then there are $q \in \sigma^{-t_0} y$ and $x \in \gamma_0(q)$ such that $v = \pi_{\lambda_0}^{t_0} x$. Denote by $u := \pi_{\lambda_0}^{t_0} x$, then we have

$$\rho(u,v) = \rho(\pi_{\lambda}^{t_0}x, \pi_{\lambda_0}^{t_0}x) \le \sup_{x \in \gamma_0(Y)} \rho(\pi_{\lambda}^{t_0}x, \pi_{\lambda_0}^{t_0}x) = m(\lambda).$$

$$(11)$$

From the inequality (11) it follows $\beta(\pi_{\lambda}^{t_0}\gamma_0(\sigma^{-t_0}y), \pi_{\lambda_0}^{t_0}\gamma_0(\sigma^{-t_0}y)) \leq m(\lambda)$. Analogously one can establish the inequality $\beta(\pi_{\lambda_0}^{t_0}\gamma_0(\sigma^{-t_0}y), \pi_{\lambda_0}^{t_0}\gamma_0(\sigma^{-t_0}y)) \leq m(\lambda)$ and, consequently,

$$\alpha(\pi_{\lambda}^{t_0}\gamma_0(\sigma^{-t_0}y), \pi_{\lambda_0}^{t_0}\gamma_0(\sigma^{-t_0}y)) \le m(\lambda)$$
(12)

for all $y \in Y$ and $\lambda \in \Lambda$. From (12) it follows that

$$d(S^{t_0}_{\lambda}\gamma_0, S^{t_0}_{\lambda_0}\gamma_0) \le m(\lambda) \to 0 \tag{13}$$

as $\lambda \to \lambda_0$ and, consequently,

$$d(S_{\lambda_k}^{t_0}\gamma_k, S_{\lambda_0}^{t_0}\gamma_0) \le d(S_{\lambda_k}^{t_0}\gamma_k, S_{\lambda_k}^{t_0}\gamma_0) + d(S_{\lambda_k}^{t_0}\gamma_0, S_{\lambda_0}^{t_0}\gamma_0) \le \mathcal{N}e^{-\nu t_0}d(\gamma_k, \gamma_0) + m(\lambda_k) \to 0$$

as $\lambda_k \to \lambda_0$. By Lemma 1 (see also Remark 1) for each $\lambda \in \Lambda$ the semi-group $\{S_{\lambda}^t\}_{t \in \mathbb{T}}$ admits a unique stationary point $\gamma_{\lambda} \in \Gamma(Y, X)$ and the mapping $\lambda \to \gamma_{\lambda}$ is continuous.

Let us write by $K_{\lambda} := \gamma_{\lambda}(Y)$, then K_{λ} is a nonempty compact and invariant set of the dynamical system $(X, \mathbb{T}_1, \pi_{\lambda})$. From the inequality (3) it follows that

$$\lim_{t \to +\infty} \rho(\pi^t_\lambda M, K) = 0$$

for all $M \in K(X)$ and, consequently, the dynamical system $(X, \mathbb{T}_1, \pi_\lambda)$ is compactly dissipative and its Levinson center $J_\lambda \subseteq K_\lambda$. On the other hand, $K_\lambda \subseteq J_\lambda$, because the set $K_\lambda = \gamma_\lambda(Y)$ is compact and invariant, but J_λ is the maximal compact invariant set of $(X, \mathbb{T}_1, \pi_\lambda)$. Thus we have $J_\lambda = \gamma_\lambda(Y)$.

Now let $\mathbb{T}_2 = \mathbb{S}$. Then we will show that the set $\gamma_{\lambda}(y)$ contains a single point for any $y \in Y$. If we suppose that it is not true, then there are $y_0 \in Y$ and $x_1, x_2 \in \gamma_{\lambda}(y_0)$ $(x_1 \neq x_2)$. Let $\phi_i \in \Phi_{x_i}$ (i = 1, 2) be such that $\phi_i(\mathbb{S}) \subseteq J_{\lambda}$. Then we have

$$\pi_{\lambda}^{t}(\phi_{i}(-t)) = x_{i} \ (i = 1, 2) \tag{14}$$

for all $t \in \mathbb{T}_1$. Note that from inequality (3) and equality (14) it follows that

$$\rho(x_1, x_2) = \rho(\pi_{\lambda}^t(\phi_1(-t)), \pi_{\lambda}^t(\phi_2(-t))) \le N e^{-\nu t} \rho(\phi_1(-t), \phi_2(-t)) \le N e^{-\nu t} C$$
(15)

for all $t \in \mathbb{T}$, where $C := \sup\{\rho(\phi_1(s), \phi_2(s)) : s \in \mathbb{S}\}$. Passing to the limit in (15) as $t \to +\infty$ we obtain $x_1 = x_2$. The obtained contradiction proves our statement.

Thus, if $\mathbb{T}_2 = \mathbb{S}$, the unique fix point $\gamma_{\lambda} \in \Gamma(Y, X)$ of the semi-group of operators $\{S_{\lambda}^t\}_{t\in\mathbb{T}_1}$ is a single-valued function and, consequently, it is continuous. Finally, inequality (4) follows from (3), because $h(\gamma_{\lambda}(h(x))) = (h \circ \gamma_{\lambda})(h(x)) = h(x)$ for all $x \in X$.

Remark 4. If $(Y, \mathbb{T}_2, \sigma)$ is a semi-group dynamical system (i.e. $\mathbb{T}_2 = \mathbb{R}_+$ or \mathbb{Z}_+), then the unique invariant section γ_{λ} of the non-autonomous dynamical system $\langle (X, \mathbb{T}_1, \pi_{\lambda}), (Y, \mathbb{T}_2, \sigma), h \rangle$ is multi-valued (i.e. $\gamma_{\lambda}(y)$ contains, generally speaking, more than one point). This fact is confirmed by the below example, which is a slight modification of example from [25, Ch1,p.42-43].

Example 1. Let Y := [-1, 1] and $(Y, \mathbb{Z}_+, \sigma)$ be a cascade generated by positive powers of the odd function g, defined on [0, 1] in the following way:

$$g(y) = \begin{cases} -2y & , \quad 0 \le y \le \frac{1}{2} \\ 2(y-1) & , \quad \frac{1}{2} < y \le 1. \end{cases}$$

It is easy to check that g(Y) = Y. Let us put $X := \mathbb{R} \times Y$ and denote by (X, \mathbb{Z}_+, π) a cascade generated by the positive powers of the mapping $P : X \to X$

$$P\left(\begin{array}{c}u\\y\end{array}\right) = \left(\begin{array}{c}f(u,y)\\g(y)\end{array}\right),\tag{16}$$

where $f(u, y) := \frac{1}{10}u + \frac{1}{2}y$. Finally, let $h = pr_2 : X \to Y$. From (16), it follows that h is a homomorphism of (X, \mathbb{Z}_+, π) onto $(Y, \mathbb{Z}_+, \sigma)$ and, consequently, $\langle (X, \mathbb{Z}_+, \pi), (Y, \mathbb{Z}_+, \sigma), h \rangle$ is a non-autonomous dynamical system. Note that

$$|(u_1, y) - (u_2, y)| = |u_1 - u_2| = 10|P(u_1, y) - P(u_2, y)|.$$
(17)

From (17), it follows that

$$|P^n(u_1, y) - P^n(u_2, y)| \le \mathcal{N}e^{-\nu n} |\langle u_1, y \rangle - \langle u_2, y \rangle|$$
(18)

for all $n \in \mathbb{Z}_+$, where $\mathcal{N} = 1$ and $\nu = \ln 10$. By Theorem 3 there exists a unique β -continuous invariant section $\gamma \in \Gamma(Y, X)$ of non-autonomous dynamical system $\langle (X, \mathbb{Z}_+, \pi), (Y, \mathbb{Z}_+, \sigma), h \rangle$. According to [25, p.43] $\gamma(y)$ is homeomorphic to the Cantor set for all $y \in [-1, 1]$.

4. Iterated function systems, discrete inclusions and cocycles.

Definition 9. A iterated function system (IFS) consists of a complete metric space (X, ρ) together with a finite set of mappings $f_i : X \mapsto X$ (i = 1, ..., m) (the notation $\{X; f_i, i = 1, ..., m\}$). The IFS $\{X; f_i, i = 1, ..., m\}$ is called hyperbolic if every function f_i (i = 1, ..., m) is a contraction.

Let W be a topological space. Denote by C(W) the space of all continuous operators $f : W \to W$ equipped with the compact-open topology. Consider a set of operators $\mathcal{M} \subseteq C(W)$ and, respectively, an ensemble (collage) of discrete dynamical systems $(W, f)_{f \in \mathcal{M}}$ ((W, f) is a discrete dynamical system generated by positive powers of map f).

Definition 10. A discrete inclusion $DI(\mathcal{M})$ is (see, for example, [14]) a set of all sequences $\{\{x_j\} \mid j \geq 0\} \subset W$ such that

$$x_j = f_{i_j} x_{j-1}$$

for some $f_{i_i} \in \mathcal{M}$ (trajectory of $DI(\mathcal{M})$), i.e.

 $x_j = f_{i_j} f_{i_{j-1}} \dots f_{i_1} x_0 \text{ all } f_{i_k} \in \mathcal{M}.$

Definition 11. A bilateral sequence $\{\{x_j\} \mid j \in \mathbb{Z}\} \subset W$ is called a full trajectory of $DI(\mathcal{M})$ (entire trajectory or trajectory on \mathbb{Z}), if $x_{n+j} = f_{i_j} x_{n+j-1}$ for all $n \in \mathbb{Z}$ and $j \in \mathbb{Z}_+$.

Let us consider the set-valued function $F: W \to K(W)$ defined by the equality $F(x) := \{f(x) \mid f \in \mathcal{M}\}$. Note that the set F(x) is compact because \mathcal{M} is so. Then the discrete inclusion $DI(\mathcal{M})$ is equivalent to the difference inclusion

$$x_j \in F(x_{j-1}). \tag{19}$$

Denote by \mathcal{F}_{x_0} the set of all trajectories of discrete inclusion (19) (or $DI(\mathcal{M})$) issuing from the point $x_0 \in W$ and $\mathcal{F} := \bigcup \{\mathcal{F}_{x_0} \mid x_0 \in W\}$.

Below we will give a new approach concerning the study of discrete inclusions $DI(\mathcal{M})$ (or difference inclusion (19)). Denote by $C(\mathbb{Z}_+, W)$ the space of all continuous mappings $f : \mathbb{Z}_+ \to W$ equipped with the compact-open topology. Let $(C(\mathbb{Z}_+, W), \mathbb{Z}_+, \sigma)$ be the dynamical system of translations (shift dynamical system or dynamical system of Bebutov [24, 26]) on $C(\mathbb{Z}_+, W)$, i.e. $\sigma(k, f) := f_k$ and f_k is a $k \in \mathbb{Z}_+$ shift of f (i.e. $f_k(n) := f(n+k)$ for all $n \in \mathbb{Z}_+$).

We may now rewrite equation (19) in the following way:

$$x_{j+1} = \omega(j)x_j, \ (\omega \in \Omega := C(\mathbb{Z}_+, \mathcal{M}))$$
(20)

where $\omega \in \Omega$ is the operator-function defined by the equality $\omega(j) := f_{i_{j+1}}$ for all $j \in \mathbb{Z}_+$. We denote by $\varphi(n, x_0, \omega)$ the solution of equation (20) issuing from the point $x_0 \in W$ at the initial moment n = 0. Note that $\mathcal{F}_{x_0} = \{\varphi(\cdot, x_0, \omega) \mid \omega \in \Omega\}$ and $\mathcal{F} = \{\varphi(\cdot, x_0, \omega) \mid x_0 \in W, \omega \in \Omega\}$, i.e. $DI(\mathcal{M})$ (or inclusion (19)) is equivalent to the family of non-autonomous equations (20) ($\omega \in \Omega$).

From the general properties of difference equations it follows that the mapping $\varphi : \mathbb{Z}_+ \times W \times \Omega \to W$ satisfies the following conditions:

- (i) $\varphi(0, x_0, \omega) = x_0$ for all $(x_0, \omega) \in W \times \Omega$;
- (ii) $\varphi(n + \tau, x_0, \omega) = \varphi(n, \varphi(\tau, x_0, \omega), \sigma(\tau, \omega))$ for all $n, \tau \in \mathbb{Z}_+$ and $(x_0, \omega) \in W \times \Omega$;
- (iii) the mapping φ is continuous;
- (iv) for any $n, \tau \in \mathbb{Z}_+$ and $\omega_1, \omega_2 \in \Omega$ there exists $\omega_3 \in \Omega$ such that

$$U(n,\omega_2)U(\tau,\omega_1) = U(n+\tau,\omega_3), \qquad (21)$$

where
$$\omega \in \Omega$$
, $U(n, \omega) := \varphi(n, \cdot, \omega) = \prod_{k=0}^{n} \omega(k)$, $\omega(k) := f_{i_k}$ $(k = 0, 1, \dots, n)$
and $f_{i_0} := Id_W$.

Let W, Ω be two topological spaces and $(\Omega, \mathbb{T}, \sigma)$ be a semi-group dynamical system on Ω .

Definition 12. Recall [24] that a triplet $\langle W, \varphi, (\Omega, \mathbb{T}, \sigma) \rangle$ (or briefly φ) is called a cocycle over $(\Omega, \mathbb{T}, \sigma)$ with the fiber W, if φ is a mapping from $\mathbb{T} \times W \times \Omega$ to W satisfying the following conditions:

- 1. $\varphi(0, x, \omega) = x$ for all $(x, \omega) \in W \times \Omega$;
- 2. $\varphi(n+\tau, x, \omega) = \varphi(n, \varphi(\tau, x, \omega), \sigma(\tau, \omega))$ for all $n, \tau \in \mathbb{T}$ and $(x, \omega) \in W \times \Omega$;

3. the mapping φ is continuous.

Let $X := W \times \Omega$, and define the mapping $\pi : X \times \mathbb{T} \to X$ by the equality: $\pi((u, \omega), t) := (\varphi(t, u, \omega), \sigma(t, \omega))$ (i.e. $\pi = (\varphi, \sigma)$). Then it is easy to check that (X, \mathbb{T}, π) is a dynamical system on X, which is called a skew-product dynamical system [1], [24]; but $h = pr_2 : X \to \Omega$ is a homomorphism of (X, \mathbb{T}, π) onto $(\Omega, \mathbb{T}, \sigma)$ and hence $\langle (X, \mathbb{T}, \pi), (\Omega, \mathbb{T}, \sigma), h \rangle$ is a non-autonomous dynamical system.

Thus, if we have a cocycle $\langle W, \varphi, (\Omega, \mathbb{T}, \sigma) \rangle$ over the dynamical system $(\Omega, \mathbb{T}, \sigma)$ with the fiber W, then there can be constructed a non-autonomous dynamical system $\langle (X, \mathbb{T}_1, \pi), (\Omega, \mathbb{T}, \sigma), h \rangle$ $(X := W \times \Omega)$, which we will call a non-autonomous dynamical system generated (associated) by the cocycle $\langle W, \varphi, (\Omega, \mathbb{T}, \sigma) \rangle$ over $(\Omega, \mathbb{T}, \sigma)$.

From that which has been presented above, it follows that every $DI(\mathcal{M})$ (respectively, inclusion (19)) in a natural way generates a cocycle $\langle W, \varphi, (\Omega, \mathbb{Z}_+, \sigma) \rangle$, where $\Omega = C(\mathbb{Z}_+, \mathcal{M}), (\Omega, \mathbb{Z}_+, \sigma)$ is a dynamical system of shifts on Ω and $\varphi(n, x, \omega)$ is the solution of equation (20) issuing from the point $x \in W$ at the initial moment n = 0. Thus, we can study inclusion (19) (respectively, $DI(\mathcal{M})$) in the framework of the theory of cocycles with discrete time.

Theorem 4. [10] The following statements hold:

- (i) $\Omega = \overline{Per(\sigma)}$, where $Per(\sigma)$ is the set of all periodic points of $(\Omega, \mathbb{Z}_+, \sigma)$ (i.e. $\omega \in Per(\sigma)$, if there exists $\tau \in \mathbb{N}$ such that $\sigma(\tau, \omega) = \omega$);
- (ii) the set Ω is compact;
- (iii) Ω is invariant, i.e. $\sigma^t \Omega = \Omega$ for all $t \in \mathbb{Z}_+$;
- (iv) if \mathcal{M} is a compact subset of C(W) and $\langle W, \phi, (\Omega, \mathbb{Z}_+, \sigma) \rangle$ is a cocycle generated by $DI(\mathcal{M})$, then φ satisfies the condition (21).
- 5. Some properties of Lipschitzian mappings. Let (W, ρ) be a metric space.

Definition 13. A mapping $f: W \to W$ satisfies the Lipschitz condition, if there exists a constant L > 0 such that $\rho(f(x_1), f(x_2)) \leq L\rho(x_1, x_2)$ for all $x_1, x_2 \in W$. The smallest constant with the above mentioned property is called the Lipschitz constant Lip(f) of the mapping f.

Denote by $Lip(W) := \{f : W \mapsto W \mid Lip(f) < \infty\}.$

Lemma 2. Let $f \in Lip(W)$, then the following statement hold:

- (i) $f^n \in Lip(W)$ for all $n \in \mathbb{N}$, where $f^n := f^{n-1} \circ f \ (\forall n \ge 2);$
- (ii) $Lip(f^n) \leq Lip(f)^n \ (\forall n \in \mathbb{N});$
- (iii) there exists the limit

$$r_f := \lim_{n \to \infty} (Lip(f^n))^{\frac{1}{n}};$$

(iv) $r_f \leq Lip(f)$.

Proof. The first, second and fourth statements are obvious. To prove the third statement we note that the sequence $\{b_n\}$ $(b_n := \ln(Lip(f^n)))$ is sub-additive, i.e. $b_{n_1+n_2} \leq b_{n_1} + b_{n_2}$ for all $n_1, n_2 \in \mathbb{N}$. Thus there exists the limit $\lim_{n \to \infty} \frac{b_n}{n}$ (see, for example, [19, p.27]) and, consequently, there exists also the limit

$$\lim_{n \to \infty} (Lip(f^n))^{\frac{1}{n}} = e^{\lim_{n \to \infty} \frac{b_n}{n}}.$$

Definition 14. The spectral radius of function $f \in Lip(W)$ is said to be the number $r_f := \lim_{n \to \infty} (Lip(f^n))^{\frac{1}{n}}$.

Definition 15. The function $f \in Lip(W)$ is said to be a generalized contraction (contracting in the extended sense) if $r_f < 1$.

Remark 5. 1. If $f \in Lip(W)$ is a contraction (i.e., Lip(f) < 1), then $r_f < 1$ because $r_f \leq Lip(f)$.

2. If $f \in Lip(W)$ and $r_f < 1$ then, generally speaking, f is not a contraction. This fact is confirmed by the below example. In fact, let W := C[0, 1] and $f \in Lip(W)$ is defined by equality

$$(f\varphi)(t) := \frac{3}{2} \int_0^t \varphi(s) ds$$

 $(t \in [0, 1] \text{ and } \varphi \in C[0, 1])$. It is easy to verify that $Lip(f^n) = (\frac{3}{2})^n \frac{1}{n!}$. In particular, $Lip(f) = \frac{3}{2}, Lip(f^2) = \frac{9}{8}$ and $Lip(f^3) = \frac{27}{32}$. In addition $Lip(f^n) \le 2(\frac{3}{4})^n$ for all $n \in \mathbb{N}$. Thus the mapping f is a generalized contraction, but $Lip(f) \ge 1$.

Lemma 3. The function $f \in Lip(W)$ is a generalized contraction if and only if there exist positive numbers \mathcal{N} and ν ($0 < \nu < 1$) such that

$$Lip(f^n) \le \mathcal{N}\nu^n$$
 (22)

for all $n \in \mathcal{N}$.

Proof. It is easy to see that from (22) we have $r_f \leq \nu < 1$.

Let now $r_f < 1$ and $\varepsilon \in (0, 1 - r_f)$. Then there is a number $n_0 = n_0(\varepsilon) \in \mathcal{N}$ such that $(Lip(f^n))^{\frac{1}{n}} < r_f + \varepsilon$ for all $n \in \mathbb{N}$ with $n \ge n_0$. We put $\nu := r_f + \varepsilon$ and $\mathcal{N} := \max\{1, \nu Lip(f), \nu^2 Lip(f^2), \dots, \nu^{n_0} Lip(f^{n_0})\}$, then $Lip(f^n) \le \mathcal{N}\nu^n$ for all $n \in \mathbb{N}$.

Corollary 1. The mapping f is a generalized contraction if and only if one of its iterates is contracting.

Definition 16. A subset of operators $\mathcal{M} \subseteq C(W)$ is said to be generally contracting (contracting in the extended sense), if there are positive numbers \mathcal{N} and $\nu < 1$ such that

$$L(f_{i_n} \circ f_{i_{n-1}} \circ \ldots \circ f_{i_1}) \le \mathcal{N}\nu^n$$

for all $f_{i_1}, f_{i_2}, \ldots, f_{i_n} \in \mathcal{M}$ and $n \in \mathbb{N}$.

Remark 6. 1. If the subset of operators $\mathcal{M} \subseteq C(W)$ is generally contracting, then

- (i) every function $f \in \mathcal{M}$ is generally contracting;
- (ii) every function $f := f_{i_n} \circ f_{i_{n-1}} \circ \ldots \circ f_{i_1}$ $(f_{i_k} \in \mathcal{M} \text{ for all } k = 1, \ldots, n)$ is a generalized contraction.

2. If $r_f < 1$ for every function $f \in \mathcal{M}$, then the subset of operators $\mathcal{M} \subseteq C(W)$, generally speaking, is not a generalized contraction. In fact, let $W := \mathbb{R}^2$ and $\mathcal{M} \subseteq C(W)$ consists from two functions $\{f_1, f_2\}$, where $f_1(x_1, x_2) := (2x_2, \frac{x_1}{4})$ and $f_2(x_1, x_2) := (5x_2, \frac{x_1}{6})$. Then $r_{f_1} = \frac{\sqrt{2}}{2}$, $r_{f_2} = \sqrt{\frac{5}{6}}$ and $r_{f_1f_2} = \frac{5}{4}$ (see [12]) and, consequently, $\mathcal{M} := \{f_1, f_2\}$ is not generally contracting.

Lemma 4. Let $\mathcal{M} = \{f_1, f_2, \ldots, f_m\}$, then the following statements hold:

- (i) If $Lip(f_i) < 1$ for all $1 \le i \le m$, then the subset of operators $\mathcal{M} \subseteq C(W)$ is generally contracting;
- (ii) Let $r_{f_i} < 1$ for all $1 \le i \le m$ and the mappings f_1, \ldots, f_m are permutable (i.e. $f_i \circ f_j = f_j \circ f_i$ for all $1 \le i, j \le m$), then the set of operators $\mathcal{M} = \{f_1, \ldots, f_m\}$ is generally contracting.

Proof. Let $Lip(f_i) < 1$ for all i = 1, ..., m. Then $Lip(f_{i_n} \circ f_{i_{n-1}} \circ ... \circ f_{i_1}) \leq Lip(f_{i_n}) \dots Lip(f_{i_1}) \leq \nu^n$ for all $n \in \mathbb{N}$, where $\nu := \max\{Lip(f_k) \mid 1 \leq k \leq m\}$. Let $n \in \mathbb{N}$ and $f_i \in \mathcal{M} := \{f_1, ..., f_m\} \ (1 \leq i_k \leq m \text{ for all } 1 \leq k \leq n)$. Then

Let $n \in \mathbb{N}$ and $f_{i_k} \in \mathcal{M} := \{f_1, \ldots, f_m\}$ $(1 \leq i_k \leq m \text{ for all } 1 \leq k \leq n)$. Then $f_{i_n} \circ f_{i_{n-1}} \circ \ldots \circ f_{i_1} = f_1^{k_1} \ldots f_m^{k_m}$, where $k_i \in \mathbb{Z}_+$ $(1 \leq i \leq m)$ with condition $k_1 + \ldots + k_m = n$. Thus we have

$$Lip(f_{i_n} \circ f_{i_{n-1}} \circ \ldots \circ f_{i_1}) = Lip(f_1^{k_1}) \ldots Lip(f_m^{k_m}).$$

$$(23)$$

Since $r_{f_i} < 1$, then by Lemma 3 there are positive numbers \mathcal{N}_i and $\nu_i < 1$ such that

$$Lip(f_i^n) \le \mathcal{N}_i \nu_i^n \tag{24}$$

for all $n \in \mathbb{N}$.

From the relations (23) and (24), it follows that

$$Lip(f_{i_n} \circ f_{i_{n-1}} \circ \ldots \circ f_{i_1}) \leq \mathcal{N}\nu^n$$

for all $n \in \mathbb{N}$, where $\mathcal{N} := \max\{\mathcal{N}_k \mid 1 \le k \le m\}$ and $\nu := \max\{\nu_k \mid 1 \le k \le m\}$. \Box

6. Relation between compact global attractors of skew-product systems, collages and cocycles.

Theorem 5. [10] Suppose the following conditions are fulfilled:

- (i) $\mathcal{M} := \{f_i : i \in I\}$ is a compact subset from C(W);
- (ii) the set \mathcal{M} of operators is contracting in the extended sense.

Then the set-valued cascade (W, F) (discrete dynamical system generated by positive powers of mapping F) is compactly dissipative, , where $F(x) := \{f(x) \mid f \in \mathcal{M}\}$ $(\forall x \in W)$.

Theorem 6. [10] Let $\langle W, \varphi, (\Omega, \mathbb{T}, \sigma \rangle$ be a cocycle, Ω be a compact space and $f : \mathbb{T} \times W :\to K(W)$ be a mapping defined by the equality

$$f(t, u) = \varphi(t, u, \Omega) \tag{25}$$

for all $u \in W$ and $t \in \mathbb{T}$.

Then the mapping f possesses the following properties:

a. f(0, u) = u for all $u \in W$;

b. $f(t, f(\tau, u)) \subseteq f(t + \tau, u)$ for all $t, \tau \in \mathbb{T}$ and $u \in W$;

c. $f: \mathbb{T} \times W \to K(W)$ is upper semi-continuous, i.e.

$$\lim_{t \to t_0, u \to u_0} \beta(f(t, u), f(t_0, u_0)) = 0 \quad \forall (t_0, u_0) \in \mathbb{T} \times W;$$

d. if the cocycle $\langle W, \varphi, (\Omega, \mathbb{T}, \sigma) \rangle$ satisfies the following condition:

 $\forall t, \tau \in \mathbb{T}, u_1, u_2 \in W \exists u_3 \text{ such that } \varphi(t, \varphi(\tau, x, u_1), u_2) = \varphi(t + \tau, x, u_3), \quad (26)$

then

$$f(t, f(\tau, u)) = f(t + \tau, u)$$

for all $t, \tau \in \mathbb{T}$ and $u \in W$.

Corollary 2. Every cocycle $\langle W, \varphi, (\Omega, \mathbb{T}, \sigma \rangle$ with the compact Ω and satisfying the condition (26) generates a set-valued dynamical system (W, \mathbb{T}, f) , where $f : \mathbb{T} \times W \to K(W)$ is defined by equality (25).

Definition 17. A cocycle φ over $(\Omega, \mathbb{T}, \sigma)$ with the fiber W is said to be a compactly dissipative one, if there is a nonempty compact $K \subseteq W$ such that

$$\lim_{t \to +\infty} \sup\{\beta(U(t,\omega)M, K) \mid \omega \in \Omega\} = 0$$
(27)

for any $M \in K(W)$, where $U(t, \omega) := \varphi(t, \cdot, \omega)$.

Definition 18. [7, Ch.II] A metric space X possesses the property (S), if for every compact subset $K \subseteq X$ there exists a connected compact subset $L \subseteq X$ such that $K \subseteq L$.

Theorem 7. [7, Ch.II] Let Y be compact, $\langle W, \varphi, (Y, \mathbb{S}, \sigma) \rangle$ be compactly dissipative and K be the nonempty compact subset of W appearing in the equality (27). Then the following statements hold:

- (i) $w \in I_y$ $(y \in Y)$ if and only if there exits a complete trajectory $\nu : \mathbb{S} \to W$ of the cocycle φ , satisfying the following conditions: $\nu(0) = w$ and $\nu(\mathbb{S})$ is relatively compact;
- (ii) $I_y \ (y \in Y)$ is connected, if the space W possesses the property (S).

Definition 19. The smallest compact set $I \subseteq W$ with property (27) is said to be a Levinson center of cocycle φ .

Theorem 8. [10]

- (i) Let (W, φ, (Ω, T, σ)) be a cocycle with the compact Ω and satisfying the condition (26). Then the following statements are equivalent:
 - (a) the cocycle φ is compactly dissipative;
 - (b) the skew-product dynamical system (X, T, π) generated by the cocycle φ is compactly dissipative;
 - (c) the set-valued dynamical system (W, \mathbb{T}, f) generated by the cocycle φ is compactly dissipative.
- (ii) Let (W, φ, (Ω, T, σ)) be a compact dissipative cocycle and the following conditions be fulfilled:
 - (a) Ω is compact and invariant ($\sigma^t \Omega = \Omega$ for all $t \in \mathbb{T}$);
 - (b) the cocycle φ satisfies condition (26).

Then $I = pr_1(J)$, where J is the Levinson's center of the skew-product dynamical system (X, \mathbb{T}, π) (generated by the cocycle φ) and I is the Levinson center of the set-valued dynamical system (W, \mathbb{T}, f) (generated by the cocycle φ).

Denote by $\Phi(\varphi)$ the set of all full trajectories of the cocycle φ .

Corollary 3. Let $\langle W, \varphi, (\Omega, \mathbb{T}, \sigma) \rangle$ be a compactly dissipative cocycle and the following conditions be fulfilled:

- (i) Ω is compact and invariant;
- (ii) the cocycle φ satisfies condition (26).

Then $I = \{u \in W : \exists \eta \in \Phi(\varphi), \eta(0) = u \text{ and } \eta(\mathbb{S}) \text{ is relatively compact} \}.$

7. Continuous dependence of attractors of IFS.

Theorem 9. [10] Suppose that the following conditions are fulfilled:

(i) \mathcal{M} is a compact subset of C(W);

(ii) \mathcal{M} is contracting in the extended sense.

Then

- (i) I_ω := {u ∈ W : a solution φ(n, u, ω) of equation (20) is defined on Z and φ(Z, u, ω) is relatively compact} ≠ Ø for all ω ∈ Ω, i.e. every equation (20) admits at least one solution defined on Z with relatively compact range of values;
- (ii) the sets I_{ω} ($\omega \in \Omega$) and $I := \bigcup \{I_{\omega} : \omega \in \Omega\}$ are compact;
- (iii) the set-valued map $\omega \to I_{\omega}$ is upper semi-continuous;
- (iv) the family of compact sets $\{I_{\omega} : \omega \in \Omega\}$ is invariant with respect to the cocycle φ , i.e. $\varphi(n, I_{\omega}, \omega) = I_{\sigma^n \omega}$ for all $n \in \mathbb{Z}_+$ and $\omega \in \Omega$;
- (v) $\rho(\varphi(n, u_1, \omega), \varphi(n, u_2, \omega)) \leq \mathcal{N}e^{-\nu n}\rho(u_1, u_2)$ for all $n \in \mathbb{Z}_+$ and $\omega \in \Omega$ and $u_1, u_2 \in W$, where \mathcal{N} and ν are positive numbers from the definition of the contractivity of \mathcal{M} in the extended sense;
- (vi) if every map $f \in \mathcal{M}$ is invertible, then
 - (a) I_{ω} consists of a single point u_{ω} ;
 - (b) the map $\omega \to u_{\omega}$ is continuous;
 - (c) $\varphi(n, u_{\omega}, \omega) = u_{\sigma(n,\omega)}$ for all $n \in \mathbb{Z}_+$ and $\omega \in \Omega$;
 - (d) $\rho(\varphi(n, u, \omega), \varphi(n, u_{\omega}, \omega)) \leq \mathcal{N}e^{-\nu n}\rho(u, u_{\omega}) \text{ for all } n \in \mathbb{Z}_{+} \text{ and } \omega \in \Omega.$

Let Λ be a compact metric space. Denote by $C(\Lambda \times W, W)$ the space of all continuous functions $f : \Lambda \times W \mapsto W$ equipped with compact-open topology. If $f \in C(\Lambda \times W, W)$ then we denote by $f^{\lambda} := f(\lambda, \cdot) \in C(W)$ and $\mathcal{M}^{\lambda} := \{f^{\lambda} \mid f \in \mathcal{M}\}.$

Consider a set of operators $\mathcal{M} \subseteq C(\Lambda \times W, W)$ and, respectively, an ensemble (collage) of discrete dynamical systems $(W, f_{\lambda})_{f_{\lambda} \in \mathcal{M}_{\lambda}}$ ((W, f_{λ}) is a discrete dynamical system generated by positive powers of map f_{λ}).

We consider the equation

$$x_{j+1} = \omega(\cdot, j) x_j, \ (\omega \in \Omega := C(\Lambda \times \mathbb{Z}_+, \mathcal{M}))$$
(28)

or

$$x_{j+1} = \omega(\lambda, j) x_j, \ (\lambda \in \Lambda, \ \omega(\lambda, \cdot) \in \Omega_\lambda := C(\mathbb{Z}_+, \mathcal{M})),$$
(29)

where $\omega \in \Omega$ is the operator-function defined by the equality $\omega(\cdot, j) := f_{i_{j+1}} \in C(\Lambda \times W, W)$ (or $\omega(\lambda, j) := f_{i_{j+1}}^{\lambda} \in C(W, W)$ for all $\lambda \in \Lambda$) for all $j \in \mathbb{Z}_+$, i.e. $\omega(j)$ is a continuous function depending on two variables $\lambda \in \Lambda$ and $x \in W$. We denote by $\varphi(\cdot, n, x_0, \omega)$ the solution of equation (28) (respectively, by $\varphi(\lambda, n, x_0, \omega)$ the solution of equation $x_0 \in W$ at the initial moment n = 0.

From the general properties of difference equations it follows that the mapping $\varphi : \Lambda \times \mathbb{Z}_+ \times W \times \Omega \to W$ satisfies the following conditions:

- (i) $\varphi(\lambda, 0, x_0, \omega) = x_0$ for all $(\lambda, x_0, \omega) \in \Lambda \times W \times \Omega$;
- (ii) $\varphi(\lambda, n+\tau, x_0, \omega) = \varphi(\lambda, n, \varphi(\lambda, \tau, x_0, \omega), \sigma(\tau, \omega))$ for all $n, \tau \in \mathbb{Z}_+$ and $(\lambda, x_0, \omega) \in \Lambda \times W \times \Omega$;
- (iii) the mapping φ is continuous;
- (iv) for any $n, \tau \in \mathbb{Z}_+$ and $\omega_1, \omega_2 \in \Omega$ there exists $\omega_3 \in \Omega$ such that

$$U(\lambda, n, \omega_2)U(\lambda, \tau, \omega_1) = U(\lambda, n + \tau, \omega_3),$$

where $\omega \in \Omega$, $U(\lambda, n, \omega) := \varphi(\lambda, n, \cdot, \omega) = \prod_{k=0}^{n} \omega(\lambda, k)$, $\omega(\lambda, k) := f_{i_k}^{\lambda}$ $(k = 0, 1, \ldots, n)$ and $f_{i_0}^{\lambda} := Id_W$.

Let $X := W \times \Omega$, and define the mapping $\pi_{\lambda} : X \times \mathbb{T} \to X$ by the equality: $\pi_{\lambda}((u,\omega),t) := (\varphi(\lambda,t,u,\omega),\sigma(t,\omega))$ (i.e. $\pi_{\lambda} = (\varphi_{\lambda},\sigma)$). Then it is easy to check that for each $\lambda \in \Lambda$ the triplet $(X,\mathbb{T},\pi_{\lambda})$ is a dynamical system on X, but $h = pr_2 : X \to \Omega$ is a homomorphism of $(X,\mathbb{T},\pi_{\lambda})$ onto $(\Omega,\mathbb{T},\sigma)$ and hence

 $\langle (X, \mathbb{T}, \pi_{\lambda}), (\Omega, \mathbb{T}, \sigma), h \rangle$ is a family of non-autonomous dynamical systems depending on parameter $\lambda \in \Lambda$. Applying Theorem 3 to the family of dynamical systems $\langle (X, \mathbb{T}, \pi_{\lambda}), (\Omega, \mathbb{T}, \sigma), h \rangle$ we will receive the following result.

Theorem 10. Suppose that the following conditions hold:

- (i) Λ be a compact metric space;
- (ii) \mathcal{M} be a nonempty compact subset of $C(\Lambda \times W, W)$, where W is a complete metric space;
- (iii) the subset $\mathcal{M} \subseteq C(\Lambda \times W, W)$ is generalized contracting, i.e. there are two positive numbers \mathcal{N} and $\nu < 1$ such that $Lip(f_{i_n}^{\lambda} \circ \ldots \circ f_{i_1}^{\lambda}) \leq \mathcal{N}\nu^n$ for all $\lambda \in \Lambda, n \in \mathbb{N}$ and $i_1, \ldots, i_n \in \mathbb{N}$ where $f_k^{\lambda} := f_k(\lambda, \cdot)$ and $f_k \in \mathcal{M}$.

Then the following statements hold:

- (i) for each $\lambda \in \Lambda$ the non-autonomous dynamical system $\langle (X, \mathbb{Z}_+, \pi_\lambda), (\Omega, \mathbb{Z}_+, \sigma), h \rangle$ is compactly dissipative;
- (ii)

$$\rho(\pi_{\lambda}(n, x_1), \pi_{\lambda}(n, x_2)) \le \mathcal{N}\nu^n \rho(x_1, x_2)$$
(30)

for all $n \in \mathbb{Z}_+$ and $x, x_2 \in X$ $(h(x_1) = h(x_2))$, i.e. the family of nonautonomous dynamical systems $\langle (X, \mathbb{Z}_+, \pi_\lambda), (\Omega, \mathbb{Z}_+, \sigma), h \rangle$ is generalized contracting;

- (iii) for each $(\lambda, \omega) \in \Lambda \times \Omega$ the set $I_{\omega}^{\lambda} := \{u \in W \mid \text{the solution } \varphi(\lambda, n, u, \omega) \text{ of equation (29) defined on } \mathbb{Z} \text{ with relatively compact range of values } \varphi(\lambda, \mathbb{Z}, u, \omega)\}$ is nonempty and compact;
- (iv) for each $\lambda \in \Lambda$ the family of subsets $\mathcal{I}^{\lambda} := \{I_{\omega}^{\lambda} \mid \omega \in \Omega\}$ is invariant with respect to cocycle $\varphi_{\lambda} := \varphi(\lambda, \cdot, \cdot, \cdot)$, i.e. $\varphi_{\lambda}(t, I_{\omega}^{\lambda}, \omega) = I_{\sigma(t,\omega)}^{\lambda}$ for all $t \in \mathbb{Z}_+$ and $\omega \in \Omega$;
- (v) $I_{\omega}^{\lambda} = pr_1(J_{\omega}^{\lambda})$ for all $\lambda \in \Lambda$ and $\omega \in \Omega$, where J^{λ} is the Levinson center of dynamical system $(X, \mathbb{Z}_+, \pi_{\lambda})$;
- (vi) for each $\lambda \in \Lambda$ the set $\mathbb{I}^{\lambda} := \bigcup \{I_{\omega}^{\lambda} \mid \omega \in \Omega\} = pr_1(J^{\lambda})$ and, consequently, it is compact;
- (vii)

$$\lim_{\lambda \to \lambda_0} \sup_{\omega \in \Omega} \alpha(I_{\omega}^{\lambda}, I_{\omega}^{\lambda_0}) = 0$$
(31)

and, consequently, we have also

$$\lim_{\lambda \to \lambda_0} \alpha(\mathbb{I}^{\lambda}, \mathbb{I}^{\lambda_0}) = 0.$$
(32)

Proof. Let φ_{λ} be the cocycle generated by equation (29). Denote by $(X, \mathbb{Z}_{+}, \pi_{\lambda})$ the skew-product dynamical system generated by cocycle φ_{λ} (i.e. $X := W \times \Omega$ and $\pi_{\lambda} :=$ $(\varphi_{\lambda}, \sigma)$). Let $\langle (X, \mathbb{Z}_{+}, \pi_{\lambda}), (\Omega, \mathbb{Z}_{+}, \sigma), h \rangle$ be the non-autonomous dynamical system associated by cocycle φ_{λ} , where $h := pr_{2} : X \mapsto \Omega$. Under the conditions of Theorem the family of non-autonomous dynamical systems $\langle (X, \mathbb{Z}_{+}, \pi_{\lambda}), (\Omega, \mathbb{Z}_{+}, \sigma), h \rangle$ satisfies the inequality (30) because $\pi_{\lambda}(n, x) = (\varphi_{\lambda}(n, u, \omega), \sigma(n, \omega))$ $(x := (u, \omega))$ and $\varphi_{\lambda}(n, u, \omega) = \omega(\lambda, n) \circ \ldots \circ \omega(\lambda, 1)u$. By Theorem 3 for each $\lambda \in \Lambda$ dynamical system $(X, \mathbb{Z}_{+}, \pi_{\lambda})$ admits a compact global attractor J^{λ} and there exists the unique invariant section $\gamma_{\lambda} \in \Gamma(\Omega, X)$ such that:

(i) the mapping $\lambda \mapsto \gamma_{\lambda}$ is continuous, i.e.

$$\lim_{\lambda \to \lambda_0} \sup_{\omega \in \Omega} \alpha(\gamma_{\lambda}(\omega), \gamma_{\lambda_0}(\omega)) = 0;$$
(33)

(ii) $J_{\omega}^{\lambda} = \gamma_{\lambda}(\omega)$ for all $\omega \in \Omega$ and, consequently, $J^{\lambda} = \gamma_{\lambda}(\Omega)$, where $J_{\omega}^{\lambda} := X_{\omega} \cap J^{\lambda}$ and $X_{\omega} := h^{-1}(\omega)$.

Since $(X, \mathbb{Z}_+, \pi_\lambda)$ is a skew-product dynamical system and $X = W \times \Omega$, then γ_λ has the form $(\phi_\lambda, Id_\Omega)$, where $\phi_\lambda \in C(\Omega, W)$. Note that $I_\omega^\lambda = pr_1(J_\omega^\lambda)$ and, consequently, it is non-empty and compact. On the other hand $\pi_\lambda(n, J_\omega^\lambda) = J_{\sigma(n,\omega)}^\lambda$ for all $\lambda \in \Lambda$, $n \in \mathbb{Z}_+$ and $\omega \in \Omega$ because Ω is invariant (i.e. $\sigma(n, \Omega) = \Omega$ for all $n \in \mathbb{Z}_+$) and, consequently, $\varphi_\lambda(n, I_\omega^\lambda, \omega) = \phi_\lambda(\pi_\lambda(n, J^\lambda) = \phi_\lambda(J_{\sigma(n,\omega)}^\lambda) = I_{\sigma(n,\omega)}^\lambda$.

From the equalities (33) and $\gamma_{\lambda} = (\phi_{\lambda}, Id_{\Omega})$ follow the equalities (31) and (32).

Remark 7. If $\mathcal{M} \subseteq C(\Lambda \times W, W)$ is a finite set, i.e. $\mathcal{M} = \{f_1, \ldots, f_m\}$, then the equality (32) coincides with Bransley's theorem of continuous dependence of fractals on parameters [2, Th.1,Ch.III] (see also [18]).

Acknowledgments. The authors would like to thank the anonymous referees for their comments and suggestions on a preliminary version of this article.

REFERENCES

- V. M. Alekseev, "Symbolic Dynamics," Naukova Dumka, Kiev, 1986. The 11th Mathematical School.
- [2] M. F. Barnsley, "Fractals Everywhere," N. Y.: Academic Press, 1988.
- [3] T. Caraballo, J. A. Langa and J. Robinson, Upper Semicontinuity of Attractors for Small Random Perturbations of Dynamical Systems, Comm. in Partial Differential Equations, 23 (1998), 1557-1581.
- [4] T. Caraballo and J. A. Langa, On the upper semicontinuity of cocycle attractors for nonautonomous and random dynamical systems, Dynamics of Continuous, Discrete and Impulsive Systems, 10 (2003), 491-514.
- [5] D. N. Cheban and D. S. Fakeeh, "Global Attractors of Disperse Dynamical Systems," Sigma, Chişinău, 1994.
- [6] D. N. Cheban, Upper Semicontinuity of Attractors of Non-autonomous Dynamical Systems for Small Perturbations, Electron. J. Diff. Eqns., 2002 (2002), 1-21.
- [7] D. N.Cheban, "Global Attractors of Nonautonomous Dissipstive Dynamical Systems," Interdisciplinary Mathematical Sciences 1. River Edge, NJ: World Scientific, 2004, 528pp.
- [8] D. N.Cheban and C. Mammana, Asymptotic stability of autonomous and non-autonomous discrete linear inclusions, Bulletinul Academiei de Stiinte a Republicii Moldova. Matematica, 46 (2004), 41-52.
- [9] D. N. Cheban and C. Mammana, Absolute asymptotic stability of discrete linear inclusions, Bulletinul Academiei de Stiinte a Republicii Moldova. Matematica, 47 (2005), 43-68.
- [10] D. N. Cheban and C. Mammana, Compact global attractors of discrete inclusions, Nonlinear Analyses, 65 (2006), 1669-1687.
- [11] C. Dupaix, D. Hilhorst and I. N. Kostin, The viscous Cahn-Hilliard equation as a limit of the phase field model: lower semicontinuity of the attractor, J. Dynam. Differential Equations, 11 (1999), 333–353.
- [12] P. F. Jr.Duvall, J. W. Emert and L. S. Husch, *Iterated function systems, compact semigroups, and topological contractions*, in "Continuum Theory and Dynamical Systems," 113-155. Lecture Notes in Pure and Appl. Math., **149**, Dekker, New York, 1993.
- [13] C. M. Elliott and I. N. Kostin, Lower semicontinuity of a non-hyperbolic attractor for the viscous Cahn-Hilliard equation, Nonlinearity 9 (1996), 687–702.
- [14] L. Gurvits, Stability of discrete linear inclusion, Linear Algebra Appl., 231 (1995), 47-85.
- [15] J. K. Hale and G. Raugel, Upper semicontinuity for a singulary perturbed hyperbolic equation, Journal of Differential Equations, 73 (1988), 197–214.
- [16] J. K. Hale, "Asymptotic Behaviour of Dissipative Systems," Amer. Math. Soc., Providence, RI, 1988.
- [17] J. K. Hale and G. Raugel, Lower semicontinuity of attractors of gradient systems and applications, Ann. Math. Pura Appl., 154 (1989), 281–326.

- [18] J. Jachymski, Continuous dependence of attractors of iterated functions systems, Journal of Mathematical Analysis and Applications 198 (1996), 221-226.
- [19] T. Kato, "Perturbation Theory of Linear Operators," Springer, 1966.
- [20] L. V. Kapitanskii and I. N. Kostin, Attractors of nonlinear evolution equations and their approximations, Algebra i Analiz 2 (1990), 114–140; translation in Leningrad Math. J., 2 (1991), 97–117
- [21] I. N. Kostin, Lower semicontinuity of a non-hyperbolic attractor, J. London Math. Soc., 52 (1995), 568–582.
- [22] D. Li and P. E. Kloeden, Equi-attraction and the continuous dependence of pullback attractors on parameters, Stochastic and Dynamics, 4 (2004), 373-384.
- [23] V. S. Melnik and J. Valero, On global attractors of nultivalued semiprocess and nonautonomous evolution inclusions, Set-Valued Analysis, 8 (2000), 375-403.
- [24] G. R. Sell, "Topological Dynamics and Ordinary Differential Equations," Van Nostrand-Reinhold, London, 1971.
- [25] A. N. Sharkovsky, Yu. L. Maistrenko and E. Yu. Romanenko, "Difference Equations and Their Applications," Kluwer Academic Publisher. Dordrecht/Boston/London, 1993.
- [26] B. A. Shcherbakov, "Topological Dynamics and Poisson's Stability of Solutions of Differential Equations," Kishinev, Shtiintsa, 1972. (in Russian)
- [27] K. S. Sibirskii and A. S. Shube, "Semidynamical Systems," Stiintsa, Kishinev 1987. (Russian)
- [28] A. Stuart and A. R. Humphries, "Dynamical Systems and Numerical Analysis," CUP, 1966.

Received February 2006; revised July 2006.

E-mail address: cheban@usm.md

E-mail address: cmamman@tin.it