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Abstract. The paper is dedicated to the study of the problem of continuous
dependence of compact global attractors on parameters of non-autonomous
dynamical systems and infinite iterated function systems (IIFS). We prove that
if a family of non-autonomous dynamical systems 〈(X, T1, πλ), (Y, T2, σ), h〉
depending on parameter λ ∈ Λ is uniformly contracting (in the generalized
sense), then each system of this family admits a compact global attractor Jλ

and the mapping λ → Jλ is continuous with respect to the Hausdorff metric.
As an application we give a generalization of well known Theorem of Bransley
concerning the continuous dependence of fractals on parameters.

1. Introduction. The aim of this paper is the study of the problem of existence
of compact global attractors of non-autonomous dynamical systems and their con-
tinuous dependence on parameters. The problem of the upper semi-continuous
dependence on parameters of global attractors of dynamical systems is well stud-
ied (both autonomous and non-autonomous, see for example Caraballo, Langa and
Robinson [3], Caraballo and Langa [4], Cheban [6, 7] Hale and Raugel [15],Hale [16]
and also see the bibliography therein). The problem of the lower semi-coninuous
dependence on parameters of global attractors is less extensively studied. Note, for
example, the works of Dupaix, Hilhorst and Kostin [11], Elliott and Kostin [13],
Hale [16], Hale and Raugel [17], Kapitanskii and Kostin [20], Kostin [21], Li and
Kloeden [22], Stuart and Humphries [28] and the bibliography therein.

The paper is dedicated to the study of the problem of continuous dependence
of compact global attractors on parameters of non-autonomous dynamical systems
and infinite iterated function systems (IIFS). We prove that if a family of non-
autonomous dynamical systems 〈(X,T1, πλ), (Y,T2, σ), h〉 depending on parameter
λ ∈ Λ is uniformly contracting (in the generalized sense), then each system of this
family admits a compact global attractor Jλ and the mapping λ→ Jλ is continuous
with respect to the Hausdorff metric. As an application we give a generalization of
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well known Theorem of Bransley concerning the continuous dependence of fractals
on parameters.

This paper is organized as follows.
In Section 2 we give some notions and facts from the theory of set-valued dy-

namical systems which we use in our paper.
Section 3 is dedicated to the study of upper semi-continuous (generally speaking

set-valued) invariant sections of non-autonomous dynamical systems. They play
a very important role in the study of non-autonomous dynamical systems. We
give the sufficient conditions which guarantee the existence of a unique globally
exponentially stable invariant section. The main result of this paper is Theorem 3.

We give in section 4 a new approach to the study of discrete inclusions (DI)
which is based on non-autonomous dynamical systems (See also our previous works
[8, 9, 10], where we study the IFSs (both linear [8, 9] and nonlinear [10] cases) in the
framework of non-autonomous dynamical systems (cocycles).). We show that every
DI in a natural way generates some non-autonomous dynamical system (cocycle),
which plays an important role in its study (see Sections 7 and 8).

In section 5 we study some properties of Lipschitz maps. We introduce the notion
of spectral radius for Lipschitzian maps and we give the necessary and sufficient
conditions that a Lipschitzian mapping is contracting in the generalized sense in
the term of its spectral radius (Lemma 3).

In Section 6 we study the relation between a compact global attractor of cocycle
and the skew-product dynamical system (respectively, set-valued dynamical system)
associated by the given cocycle.

Section 7 is dedicated to the study of the problem of continuous dependence of
attractors of infinite iterated function systems. We give a generalization of well
known Theorem of Bransley concerning the continuous dependence of fractals on
parameters (Theorem 10).

2. Set-Valued dynamical systems and their compact global attractors.

Let (X, ρ) be a complete metric space, S be a group of real (R) or integer (Z)
numbers, T (S+ ⊆ T) be a subsemi-group of S. If A ⊆ X and x ∈ X , then we denote
by ρ(x,A) the distance from the point x to the set A, i.e. ρ(x,A) = inf{ρ(x, a) :
a ∈ A}. We denote by B(A, ε) an ε-neighborhood of the set A, i.e. B(A, ε) = {x ∈
X : ρ(x,A) < ε}, by K(X) we denote the family of all non-empty compact subsets
of X . For every point x ∈ X and number t ∈ T we put in correspondence a closed
compact subset π(t, x) ∈ K(X). So, if π(P,A) =

⋃

{π(t, x) : t ∈ P, x ∈ A}(P ⊆ T),
then

(i) π(0, x) = x for all x ∈ X ;
(ii) π(t2, π(t1, x)) = π(t1 + t2, x) for all x ∈ X and t1, t2 ∈ T;
(iii) lim

x→x0,t→t0
β(π(t, x), π(t0, x0)) = 0 for all x0 ∈ X and t0 ∈ T, where β(A,B) =

sup{ρ(a,B) : a ∈ A} is a semi-deviation of the set A ⊆ X from the set B ⊆ X.

In this case it is said (see, for example, [27] and [23] and the bibliography therein)
that there is defined a set-valued semi-group dynamical system.

Let T = S and be fulfilled the next condition:

(i) if p ∈ π(t, x), then x ∈ π(−t, p) for all x, p ∈ X and t ∈ T.

Then it is said that there is defined a set-valued group dynamical system (X,T, π)
or a bilateral (two-sided) dynamical system.
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Definition 1. Let T′ ⊂ S (T ⊂ T′). A continuous mapping γx : T → X is called a
motion of the set-valued dynamical system (X,T, π) issuing from the point x ∈ X

at the initial moment t = 0 and defined on T′, if

a. γx(0) = x;
b. γx(t2) ∈ π(t2 − t1, γx(t1)) for all t1, t2 ∈ T′ (t2 > t1).

The set of all motions of (X,T, π), passing through the point x at the initial
moment t = 0 is denoted by Fx(π) and we define F(π) :=

⋃

{Fx(π) | x ∈ X} (or
simply F).

Definition 2. Any trajectory γ ∈ F(π) defined on S is called a full (entire) trajec-
tory of the dynamical system (X,T, π).

Denote by Φ(π) the set of all full trajectories of the dynamical system (X,T, π)
and Φx(π) := Fx(π)

⋂

Φ(π).

Theorem 1. [27] Let (X,T, π) be a semi-group dynamical system and X be a
compact and invariant set (i.e. πtX = X for all t ∈ T, where πt := π(t, ·)). Then

(i) F(π) = Φ(π), i.e. every motion γ ∈ Fx(π) can be extended on S (this means
that there exists γ̃ ∈ Φx(π) such that γ̃(t) = γ(t) for all t ∈ T);

(ii) there exists a group (generally speaking set-valued) dynamical system (X, S, π̃)
such that π̃|T×X = π.

Definition 3. A system (X,T, π) is called [5, 7] compactly dissipative, if there
exists a nonempty compact K ⊆ X such that

lim
t→+∞

β(πtM,K) = 0;

for all M ∈ K(X), where πtM := π(t,M).

Let (X,T, π) be compactly dissipative and K be a compact set attracting every
compact subset of X . Let us set

J := ω(K) :=
⋂

t≥0

⋃

τ≥t

πτK. (1)

It can be shown [5, 7] that the set J defined by equality (1) does not depends
on the choice of the attractor K, but is characterized only by the properties of the
dynamical system (X,T, π) itself. The set J is called a center of Levinson of the
compact dissipative system (X,T, π).

Theorem 2. [5, 7] If (X,T, π) is a compactly dissipative dynamical system and J
is its center of Levinson, then :

(i) J is invariant, i.e. πtJ = J for all t ∈ T;
(ii) J is orbitally stable, i.e. for any ε > 0 there exists δ(ε) > 0 such that ρ(x, J) <

δ implies β(π(t, x), J) < ε for all t ≥ 0 ;
(iii) J is an attractor of the family of all compact subsets of X;
(iv) J is the maximal compact invariant set of (X,T, π).

3. Upper semi-continuous invariant sections of non-autonomous dynam-

ical systems and their continuous dependence on parameters. In this sec-
tion we study the upper semi-continuous (generally speaking set-valued) invariant
sections of non-autonomous dynamical systems. They play a very important role in
the study of non-autonomous dynamical systems. We give the sufficient conditions
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which guarantee the existence of a unique globally exponentially stable invariant
section and their continuous dependence on parameters.

Lemma 1. Let X and Λ be complete metric spaces. Let (X,T, πλ) (λ ∈ Λ) be a
family of dynamical systems satisfying the following conditions:

(i) the family of dynamical systems (X,T, πλ) (λ ∈ Λ) is uniformly contracting,
i.e. there exist two positive numbers N and ν such that ρ(πλ(t, x1), πλ(t,
x2))≤ N e−νtρ(x1, x2) for all λ ∈ Λ, t ∈ T and x1, x2 ∈ X;

(ii) for each t ∈ T the mapping (λ, x) 7→ πλ(t, x) is continuous.

Then for each λ ∈ Λ the dynamical system (X,T, πλ) admits a unique stationary
point pλ and the mapping λ 7→ pλ is continuous.

Proof. Let Λ
′

be a compact subset of Λ. Denote by C(Λ
′

, X) the space of all

continuous functions ϕ : Λ
′

7→ X with distance r(ϕ1, ϕ2) := max{ρ(ϕ1(λ), ϕ2(λ)) :

λ ∈ Λ
′

}. (C(Λ
′

, X), r) is a complete metric space. Note that under the conditions

of the lemma if ϕ ∈ C(Λ
′

, X) then also ψt ∈ C(Λ
′

, X), where ψt(λ) := πλ(t, ϕ(λ))

for all λ ∈ Λ
′

, where t ∈ T. Denote by St
Λ′ the mapping from C(Λ

′

, X) into itself

defined by equality (St
Λ′ϕ)(λ) := πλ(t, ϕ(λ)) for all t ∈ T and λ ∈ Λ

′

. It is easy

to check that {St
Λ′ }t∈T is a commutative semi-group (with respect to composition)

and r(St
Λ′ϕ1, S

t
Λ′ϕ2) ≤ N e−νtr(ϕ1, ϕ2) for all t ∈ T and ϕ1, ϕ2 ∈ C(Λ

′

, X). Hence

there exists a unique common fix point ϕΛ′ ∈ C(Λ
′

, X) of semi-group {St
Λ′ }t∈T. In

particularly πλ(t, ϕΛ′ (λ)) = ϕΛ′ (λ) for all λ ∈ Λ
′

, i.e. pλ := ϕΛ′ (λ) is a unique

stationary point of dynamical system (X,T, πλ) and the mapping λ 7→ pλ from Λ
′

into X is continuous.
Thus we have a family of commutative semi-groups {St

Λ′}t∈T depending on pa-

rameter Λ
′

∈ K(Λ). It is easy to check that the following statements are true:

a. for each Λ
′

∈ K(Λ) the commutative semi-group {St
Λ′ }t∈T admits a unique

stationary point ϕΛ′ ∈ C(Λ
′

, X);

b. if Λ
′

⊆ Λ′′ then ϕ̃Λ′′ = ϕΛ′ , where ϕ̃Λ′′ is the restriction on Λ
′

of function
ϕΛ′′ ;

c. ϕΛ′ (λ) = ϕΛ′′ (λ) for all λ ∈ Λ
′

∩ Λ
′′

and Λ
′

,Λ
′′

∈ K(Λ).

Denote by C(Λ, X) the space of all continuous functions ϕ : Λ 7→ X equipped
with compact-open topology (the topology of convergence uniform on every compact

subset Λ
′

⊆ Λ). Let St be the mapping from C(Λ, X) into itself defined by equality
(Stϕ)(λ) := πλ(t, ϕ(λ)) for all t ∈ T and λ ∈ Λ. It is easy to check that {St}t∈T

is a commutative semi-group (with respect to composition). We define now the
mapping ϕ : Λ 7→ X as follow:

ϕ(λ) := ϕΛ′ (λ), (2)

where Λ
′

∈ K(Λ) is an arbitrary compact subset of Λ containing λ. According to
properties a.-c. by equality (2) a function ϕ ∈ C(Λ, X) is correctly defined and it
is a unique stationary point of the semi-group {St}t∈T. This means that Stϕ = ϕ

for all t ∈ T or equivalently πλ(t, ϕ(λ)) = ϕ(λ) for all λ ∈ Λ and t ∈ T, i.e. the
point pλ := ϕ(λ) is a unique stationary point of dynamical system (X,T, πλ) and
the mapping λ 7→ pλ is continuous.

Remark 1. Lemma 1 is also true if
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(i) we replace the condition of uniform contraction by the following weaker condi-

tion: for each compact subset Λ
′

⊆ Λ there are two positive numbers NΛ′ and

νΛ′ such that ρ(πλ(t, x1), πλ(t, x2)) ≤ NΛ′ e−ν
Λ
′ tρ(x1, x2) for all λ ∈ Λ

′

, t ∈ T

and x1, x2 ∈ X ;
(ii) we consider in place of family of dynamical systems (X,T, πλ)λ∈Λ an arbitrary

family of commutative semi-groups {πt
λ}t∈T (λ ∈ Λ) with conditions:

(a) for each t ∈ T the mapping (λ, x) 7→ πt
λx is continuous;

(b) there are two positive numbers N and ν such that ρ(πλ(t, x1), πλ(t,
x2))≤ N e−νtρ(x1, x2) for all λ ∈ Λ, t ∈ T and x1, x2 ∈ X .

Definition 4. LetX be a metric space and Y be a topological space. The set-valued
mapping γ : Y → K(X) is said to be upper semi-continuous (or β-continuous), if
lim

y→y0

β(γ(y), γ(y0)) = 0 for all y0 ∈ Y.

Definition 5. Let (X,h, Y ) be a fiber space, i.e. h : X 7→ Y is a continuous
mapping from X onto Y . The mapping γ : Y → K(X) is called a section (selector)
of the fiber space (X,h, Y ), if h(γ(y)) = y for all y ∈ Y.

Remark 2. Let X := W × Y . Then γ : Y → X is a section of the fiber space
(X,h, Y ) (h := pr2 : X → Y ), if and only if γ = (ψ, IdY ) where ψ : W → K(W ).

Definition 6. Let (X,T1, π) and (Y,T2, σ) (S+ ⊆ T1 ⊆ T2 ⊆ S) be two dynamical
systems. The mapping h : X → Y is called a homomorphism (respectively isomor-
phism) of the dynamical system (X,T1, π) on (Y,T2, σ), if the mapping h is con-
tinuous (respectively homeomorphic) and h(π(x, t)) = σ(h(x), t) ( t ∈ T1, x ∈ X).

Remark 3. In this work we show that every IFS generates some non-autonomous
dynamical system (see Section 4 and also [10]). Many examples of non-autonomous
dynamical systems, generated by non-autonomous differential/difference equations
(ODEs, PDEs and functional-differential equations) can be found by the reader, for
example, in the books [7] and [24].

Definition 7. A triplet 〈(X,T1, π), (Y,T2, σ), h〉, where h is a homomorphism of
(X,T1, π) on (Y,T2, σ) and (X,h, Y ) is a fiber space, is called a non-autonomous
dynamical system.

Definition 8. A mapping γ : Y → X is called an invariant section of the non-
autonomous dynamical system 〈(X,T1, π), (Y,T2, σ), h〉, if it is a section of the fiber
space (X,h, Y ) and γ(Y ) is an invariant subset of the dynamical system (X,T, π)
(or, equivalently, πtγ(y) = γ(σty) for all t ∈ T and y ∈ Y ).

Denote by α : K(X) ×K(X) → R+ the Hausdorff distance on K(X), i.e.

α(A,B) := max(β(A,B), β(B,A)).

Theorem 3. Let Λ be a metric space, 〈(X,T1, πλ), (Y,T2, σ), h〉 (λ ∈ Λ) be a
family of non-autonomous dynamical system and suppose the following conditions
are fulfilled:

(i) the space Y is compact;
(ii) Y is invariant, i.e. σtY = Y for all t ∈ T2;
(iii) the non-autonomous dynamical systems 〈(X,T1, πλ), (Y,T2, σ), h〉 are equicon-

tracting in the extended sense, i.e. there exist positive numbers N and ν such
that

ρ(πλ(t, x1), πλ(t, x2)) ≤ Ne−νtρ(x1, x2) (3)

for all λ ∈ Λ, x1, x2 ∈ X (h(x1) = h(x2)) and t ∈ T1;
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(iv) for each t ∈ T1 the mapping (λ, x) → πλ(t, x) from Λ×X into X is continuous;
(v) Γ(Y,X) = {γ | γ : Y → K(X) is a set-valued β–continuous mapping and

h(γ(y)) = y for all y ∈ Y } 6= ∅.

Then

(i) for each λ ∈ Λ there exists a unique invariant section γλ ∈ Γ(Y,X) of the
non-autonomous dynamical system 〈(X,T1, πλ), (Y,T2, σ), h〉;

(ii) the non-autonomous dynamical system 〈(X,T1, πλ), (Y,T2, σ), h〉 is compactly
dissipative (i.e. (X,T1, πλ) is compactly dissipative) and its Levinson’s center
Jλ = γλ(Y );

(iii) πt
λJ

λ
y = Jλ

σ(t,y) for all t ∈ T1 and y ∈ Y ;

(iv) the mapping λ→ γλ is continuous, i.e.

lim
λ→λ0

sup
y∈Y

α(γλ(y), γλ0
(y)) = 0;

(v) if (Y,T2, σ) is a group-dynamical system (i.e. T2 = S), then the unique invari-
ant section γλ of the non-autonomous dynamical system 〈(X,T1, πλ), (Y,T2,

σ), h〉 is one-valued (i.e. γλ(y) consists a single point for any y ∈ Y ) and

ρ(πλ(t, x), πλ(t, γλ(h(x)))) ≤ Ne−νtρ(x, γλ(h(x))) (4)

for all x ∈ X and t ∈ T.

Proof. Since the space Y is compact and invariant, then according to Theorem 1
the semi-group dynamical system (Y,T, σ) can be prolonged to a group set-valued
dynamical system (Y, S, σ̃) (this means that σ̃(s, y) = σ(s, y) for all (s, y) ∈ T×Y ).

Let α : K(X) × K(X) → R+ be the Hausdorff’s distance on K(X) and d :
Γ(Y,X) × Γ(Y,X) → R+ be the function defined by the equality

d(γ1, γ2) := sup
y∈Y

α(γ1(y), γ2(y)). (5)

Note that (5) defines a complete distance on Γ(Y,X) (see [10]).
For t ∈ T1 and λ ∈ Λ, by St

λ we denote the mapping of Γ(Y,X) into itself defined
by the equality (St

λγ)(y) = πλ(t, γ((σt)−1y)) for all t ∈ T1, y ∈ Y and γ ∈ Γ(Y,X).
It is easy to see that St

λγ ∈ Γ(Y,X), St
λS

τ
λ = St+τ

λ for all t, τ ∈ T1 and γ ∈ Γ(Y,X)
and, hence, {St

λ}t∈T1
forms a commutative semi-group. We will show that

d(St
λγ1, S

t
λγ2) ≤ N e−νtd(γ1, γ2) (6)

for all t ∈ T1 and γi ∈ Γ(Y,X) (i = 1, 2). In fact. To prove the inequality (6) it is
sufficient to show that

α(πt
λγ1(σ

−ty), πt
λγ2(σ

−ty) ≤ N e−νtd(γ1, γ2) (7)

for all y ∈ Y, where σ−ty := {q ∈ Y | σ(t, q) = y}.
Let v ∈ πt

λγ2(σ
−ty) be an arbitrary element, then there is q ∈ σ−ty and x2(y) ∈

γ2(q) so that v = πt
λx2(y). We choose x1(y) ∈ γ1(q) such that

ρ(x1(y), x2(y)) ≤ α(γ1(q), γ2(q)) ≤ d(γ1, γ2) (8)

(by compactness of γi(q) (i = 1, 2) obviously such an x1(y) exists there and addi-
tionally h(x1(y)) = h(x2(y)) = q). Then we have

ρ(πt
λx1(y), π

t
λx2(y)) ≤ N e−νtρ(x1(y), x2(y)) ≤ N e−νtd(γ1, γ2),

i.e. for all v ∈ πt
λγ2(σ

−ty) there exists u := πtx1(y) ∈ πt
λγ1(σ

−ty) so that ρ(u, v) ≤
N e−νtd(γ1, γ2). This means that β(πt

λγ1(σ
−ty), πt

λγ2(σ
−ty)) ≤ N e−νtd(γ1, γ2).

Analogously, the inequality β(πt
λγ2(σ

−ty), πt
λγ1(σ

−ty)) ≤ N e−νt d(γ1, γ2) can be
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established and, consequently, α(πt
λγ1(σ

−ty), πt
λγ2(σ

−ty)) ≤ N e−νtd(γ1, γ2) for all
y ∈ Y and t ∈ T1. Thus the inequality (7) is established.

We will show now that for each t0 ∈ T1 the mapping (λ, γ) → St0
λ γ from Λ ×

Γ(Y,X) into Γ(Y,X) is continuous. In fact. Let λk → λ0 and γk → γ0. We shall
prove that St0

λk
γk → St0

λ0
γ0 in the space Γ. Denote by

m(λ) := sup
x∈γ0(Y )

ρ(πt0
λ x, π

t0
λ0
x) (9)

and note that m(λ) → 0 as λ → λ0. If we suppose that it is not true, then there
are ε0 > 0, λk → λ0 and xk → x0 (xk ∈ γ0(Y )) such that

ρ(πt0
λk
xk, π

t0
λ0
xk) ≥ ε0. (10)

Passing to the limit in (10) as k → +∞ we obtain ε0 ≤ 0. The obtained contradiction
shows that m(λ) → 0 as λ→ λ0.

Let y ∈ Y and v ∈ πt0
λ0
γ0(σ

−t0y), then there are q ∈ σ−t0y and x ∈ γ0(q) such

that v = πt0
λ0
x. Denote by u := πt0

λ x, then we have

ρ(u, v) = ρ(πt0
λ x, π

t0
λ0
x) ≤ sup

x∈γ0(Y )

ρ(πt0
λ x, π

t0
λ0
x) = m(λ). (11)

From the inequality (11) it follows β(πt0
λ γ0(σ

−t0y), πt0
λ0
γ0(σ

−t0y)) ≤ m(λ). Analo-

gously one can establish the inequality β(πt0
λ0
γ0(σ

−t0y), πt0
λ0
γ0(σ

−t0y)) ≤ m(λ) and,
consequently,

α(πt0
λ γ0(σ

−t0y), πt0
λ0
γ0(σ

−t0y)) ≤ m(λ) (12)

for all y ∈ Y and λ ∈ Λ. From (12) it follows that

d(St0
λ γ0, S

t0
λ0
γ0) ≤ m(λ) → 0 (13)

as λ→ λ0 and, consequently,

d(St0
λk
γk, S

t0
λ0
γ0) ≤ d(St0

λk
γk, S

t0
λk
γ0) + d(St0

λk
γ0, S

t0
λ0
γ0) ≤

N e−νt0d(γk, γ0) +m(λk) → 0

as λk → λ0. By Lemma 1 (see also Remark 1) for each λ ∈ Λ the semi-group
{St

λ}t∈T admits a unique stationary point γλ ∈ Γ(Y,X) and the mapping λ → γλ

is continuous.
Let us write by Kλ := γλ(Y ), then Kλ is a nonempty compact and invariant set

of the dynamical system (X,T1, πλ). From the inequality (3) it follows that

lim
t→+∞

ρ(πt
λM,K) = 0

for all M ∈ K(X) and, consequently, the dynamical system (X,T1, πλ) is compactly
dissipative and its Levinson center Jλ ⊆ Kλ. On the other hand, Kλ ⊆ Jλ, because
the set Kλ = γλ(Y ) is compact and invariant, but Jλ is the maximal compact
invariant set of (X,T1, πλ). Thus we have Jλ = γλ(Y ).

Now let T2 = S. Then we will show that the set γλ(y) contains a single point
for any y ∈ Y . If we suppose that it is not true, then there are y0 ∈ Y and
x1, x2 ∈ γλ(y0) (x1 6= x2). Let φi ∈ Φxi

(i = 1, 2) be such that φi(S) ⊆ Jλ. Then
we have

πt
λ(φi(−t)) = xi (i = 1, 2) (14)

for all t ∈ T1. Note that from inequality (3) and equality (14) it follows that

ρ(x1, x2) = ρ(πt
λ(φ1(−t)), πt

λ(φ2(−t))) ≤

Ne−νtρ(φ1(−t), φ2(−t)) ≤ Ne−νtC (15)
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for all t ∈ T, where C := sup{ρ(φ1(s), φ2(s)) : s ∈ S}. Passing to the limit in (15)
as t→ +∞ we obtain x1 = x2. The obtained contradiction proves our statement.

Thus, if T2 = S, the unique fix point γλ ∈ Γ(Y,X) of the semi-group of operators
{St

λ}t∈T1
is a single-valued function and, consequently, it is continuous. Finally,

inequality (4) follows from (3), because h(γλ(h(x))) = (h ◦ γλ)(h(x)) = h(x) for all
x ∈ X.

Remark 4. If (Y,T2, σ) is a semi-group dynamical system (i.e. T2 = R+ or Z+),
then the unique invariant section γλ of the non-autonomous dynamical system
〈(X,T1, πλ), (Y,T2, σ), h〉 is multi-valued (i.e. γλ(y) contains, generally speak-
ing, more than one point). This fact is confirmed by the below example, which is a
slight modification of example from [25, Ch1,p.42-43].

Example 1. Let Y := [−1, 1] and (Y,Z+, σ) be a cascade generated by positive
powers of the odd function g, defined on [0, 1] in the following way:

g(y) =

{

−2y , 0 ≤ y ≤ 1
2

2(y − 1) , 1
2 < y ≤ 1.

It is easy to check that g(Y ) = Y . Let us put X := R×Y and denote by (X,Z+, π)
a cascade generated by the positive powers of the mapping P : X → X

P

(

u

y

)

=

(

f(u, y)
g(y)

)

, (16)

where f(u, y) := 1
10u + 1

2y. Finally, let h = pr2 : X → Y . From (16), it fol-
lows that h is a homomorphism of (X,Z+, π) onto (Y,Z+, σ) and, consequently,
〈(X,Z+, π), (Y,Z+, σ), h〉 is a non-autonomous dynamical system. Note that

|(u1, y) − (u2, y)| = |u1 − u2| = 10|P (u1, y) − P (u2, y)|. (17)

From (17), it follows that

|Pn(u1, y) − Pn(u2, y)| ≤ N e−νn|〈u1, y〉 − 〈u2, y〉| (18)

for all n ∈ Z+, where N = 1 and ν = ln 10. By Theorem 3 there exists a unique
β-continuous invariant section γ ∈ Γ(Y,X) of non-autonomous dynamical system
〈(X,Z+, π), (Y,Z+, σ), h〉. According to [25, p.43] γ(y) is homeomorphic to the
Cantor set for all y ∈ [−1, 1].

4. Iterated function systems, discrete inclusions and cocycles.

Definition 9. A iterated function system (IFS) consists of a complete metric space
(X, ρ) together with a finite set of mappings fi : X 7→ X (i = 1, . . . ,m) (the notation
{X ; fi, i = 1, . . . ,m}). The IFS {X ; fi, i = 1, . . . ,m} is called hyperbolic if every
function fi (i = 1, . . . ,m) is a contraction.

Let W be a topological space. Denote by C(W ) the space of all continuous
operators f : W → W equipped with the compact-open topology. Consider a
set of operators M ⊆ C(W ) and, respectively, an ensemble (collage) of discrete
dynamical systems (W, f)f∈M ((W, f) is a discrete dynamical system generated by
positive powers of map f).

Definition 10. A discrete inclusion DI(M) is (see, for example, [14]) a set of all
sequences {{xj} | j ≥ 0} ⊂W such that

xj = fij
xj−1
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for some fij
∈ M (trajectory of DI(M)), i.e.

xj = fij
fij−1

...fi1x0 all fik
∈ M.

Definition 11. A bilateral sequence {{xj} | j ∈ Z} ⊂W is called a full trajectory
of DI(M) (entire trajectory or trajectory on Z), if xn+j = fij

xn+j−1 for all n ∈ Z

and j ∈ Z+.

Let us consider the set-valued function F : W → K(W ) defined by the equality
F (x) := {f(x) |f ∈ M}. Note that the set F (x) is compact because M is so. Then
the discrete inclusion DI(M) is equivalent to the difference inclusion

xj ∈ F (xj−1). (19)

Denote by Fx0
the set of all trajectories of discrete inclusion (19) (or DI(M))

issuing from the point x0 ∈ W and F :=
⋃

{Fx0
| x0 ∈ W}.

Below we will give a new approach concerning the study of discrete inclusions
DI(M) (or difference inclusion (19)). Denote by C(Z+,W ) the space of all con-
tinuous mappings f : Z+ → W equipped with the compact-open topology. Let
(C(Z+,W ),Z+, σ) be the dynamical system of translations (shift dynamical system
or dynamical system of Bebutov [24, 26]) on C(Z+,W ), i.e. σ(k, f) := fk and fk is
a k ∈ Z+ shift of f (i.e. fk(n) := f(n+ k) for all n ∈ Z+).

We may now rewrite equation (19) in the following way:

xj+1 = ω(j)xj , (ω ∈ Ω := C(Z+,M)) (20)

where ω ∈ Ω is the operator-function defined by the equality ω(j) := fij+1
for all

j ∈ Z+. We denote by ϕ(n, x0, ω) the solution of equation (20) issuing from the
point x0 ∈ W at the initial moment n = 0. Note that Fx0

= {ϕ(·, x0, ω) | ω ∈ Ω}
and F = {ϕ(·, x0, ω) | x0 ∈ W,ω ∈ Ω}, i.e. DI(M) (or inclusion (19)) is equivalent
to the family of non-autonomous equations (20) (ω ∈ Ω).

From the general properties of difference equations it follows that the mapping
ϕ : Z+ ×W × Ω → W satisfies the following conditions:

(i) ϕ(0, x0, ω) = x0 for all (x0, ω) ∈ W × Ω;
(ii) ϕ(n + τ, x0, ω) = ϕ(n, ϕ(τ, x0, ω), σ(τ, ω)) for all n, τ ∈ Z+ and (x0, ω) ∈

W × Ω;
(iii) the mapping ϕ is continuous;
(iv) for any n, τ ∈ Z+ and ω1, ω2 ∈ Ω there exists ω3 ∈ Ω such that

U(n, ω2)U(τ, ω1) = U(n+ τ, ω3), (21)

where ω ∈ Ω, U(n, ω) := ϕ(n, ·, ω) =
∏n

k=0 ω(k), ω(k) := fik
(k = 0, 1, . . . , n)

and fi0 := IdW .

Let W,Ω be two topological spaces and (Ω,T, σ) be a semi-group dynamical
system on Ω.

Definition 12. Recall [24] that a triplet 〈W,ϕ, (Ω,T, σ)〉 (or briefly ϕ) is called a
cocycle over (Ω,T, σ) with the fiber W , if ϕ is a mapping from T ×W × Ω to W
satisfying the following conditions:

1. ϕ(0, x, ω) = x for all (x, ω) ∈ W × Ω;
2. ϕ(n+ τ, x, ω) = ϕ(n, ϕ(τ, x, ω), σ(τ, ω)) for all n, τ ∈ T and (x, ω) ∈ W × Ω;
3. the mapping ϕ is continuous.

Let X := W × Ω, and define the mapping π : X × T → X by the equality:
π((u, ω), t) := (ϕ(t, u, ω), σ(t, ω)) (i.e. π = (ϕ, σ)). Then it is easy to check that
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(X,T, π) is a dynamical system on X , which is called a skew-product dynamical
system [1], [24]; but h = pr2 : X → Ω is a homomorphism of (X,T, π) onto (Ω,T, σ)
and hence 〈(X,T, π), (Ω,T, σ), h〉 is a non-autonomous dynamical system.

Thus, if we have a cocycle 〈W,ϕ, (Ω,T, σ)〉 over the dynamical system (Ω,T, σ)
with the fiber W , then there can be constructed a non-autonomous dynamical sys-
tem 〈(X,T1, π), (Ω,T, σ), h〉 (X := W×Ω), which we will call a non-autonomous dy-
namical system generated (associated) by the cocycle 〈W,ϕ, (Ω,T, σ)〉 over (Ω,T, σ).

From that which has been presented above, it follows that every DI(M) (respec-
tively, inclusion (19)) in a natural way generates a cocycle 〈W,ϕ, (Ω,Z+, σ)〉, where
Ω = C(Z+,M), (Ω,Z+, σ) is a dynamical system of shifts on Ω and ϕ(n, x, ω) is
the solution of equation (20) issuing from the point x ∈ W at the initial moment
n = 0. Thus, we can study inclusion (19) (respectively, DI(M)) in the framework
of the theory of cocycles with discrete time.

Theorem 4. [10] The following statements hold:

(i) Ω = Per(σ), where Per(σ) is the set of all periodic points of (Ω,Z+, σ) (i.e.
ω ∈ Per(σ), if there exists τ ∈ N such that σ(τ, ω) = ω);

(ii) the set Ω is compact;
(iii) Ω is invariant, i.e. σtΩ = Ω for all t ∈ Z+;
(iv) if M is a compact subset of C(W ) and 〈W,φ, (Ω,Z+, σ)〉 is a cocycle generated

by DI(M), then ϕ satisfies the condition (21).

5. Some properties of Lipschitzian mappings. Let (W,ρ) be a metric space.

Definition 13. A mapping f : W → W satisfies the Lipschitz condition, if there
exists a constant L > 0 such that ρ(f(x1), f(x2)) ≤ Lρ(x1, x2) for all x1, x2 ∈ W.

The smallest constant with the above mentioned property is called the Lipschitz
constant Lip(f) of the mapping f.

Denote by Lip(W ) := {f : W 7→W | Lip(f) <∞}.

Lemma 2. Let f ∈ Lip(W ), then the following statement hold:

(i) fn ∈ Lip(W ) for all n ∈ N, where fn := fn−1 ◦ f (∀ n ≥ 2);
(ii) Lip(fn) ≤ Lip(f)n (∀ n ∈ N);
(iii) there exists the limit

rf := lim
n→∞

(Lip(fn))
1
n ;

(iv) rf ≤ Lip(f).

Proof. The first, second and fourth statements are obvious. To prove the third
statement we note that the sequence {bn} (bn := ln(Lip(fn))) is sub-additive, i.e.
bn1+n2

≤ bn1
+ bn2

for all n1, n2 ∈ N. Thus there exists the limit lim
n→∞

bn

n
(see, for

example, [19, p.27]) and, consequently, there exists also the limit

lim
n→∞

(Lip(fn))
1
n = e

lim
n→∞

bn
n .

Definition 14. The spectral radius of function f ∈ Lip(W ) is said to be the number

rf := lim
n→∞

(Lip(fn))
1
n .

Definition 15. The function f ∈ Lip(W ) is said to be a generalized contraction
(contracting in the extended sense) if rf < 1.
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Remark 5. 1. If f ∈ Lip(W ) is a contraction (i.e., Lip(f) < 1), then rf < 1
because rf ≤ Lip(f).

2. If f ∈ Lip(W ) and rf < 1 then, generally speaking, f is not a contraction. This
fact is confirmed by the below example. In fact, let W := C[0, 1] and f ∈ Lip(W )
is defined by equality

(fϕ)(t) :=
3

2

∫ t

0

ϕ(s)ds

(t ∈ [0, 1] and ϕ ∈ C[0, 1]). It is easy to verify that Lip(fn) = (3
2 )n 1

n! . In particular,

Lip(f) = 3
2 , Lip(f

2) = 9
8 and Lip(f3) = 27

32 . In addition Lip(fn) ≤ 2(3
4 )n for all

n ∈ N. Thus the mapping f is a generalized contraction, but Lip(f) ≥ 1.

Lemma 3. The function f ∈ Lip(W ) is a generalized contraction if and only if
there exist positive numbers N and ν (0 < ν < 1) such that

Lip(fn) ≤ Nνn (22)

for all n ∈ N .

Proof. It is easy to see that from (22) we have rf ≤ ν < 1.
Let now rf < 1 and ε ∈ (0, 1 − rf ). Then there is a number n0 = n0(ε) ∈ N

such that (Lip(fn))
1
n < rf + ε for all n ∈ N with n ≥ n0. We put ν := rf + ε

and N := max{1, νLip(f), ν2Lip(f2), . . . , νn0Lip(fn0)}, then Lip(fn) ≤ Nνn for
all n ∈ N.

Corollary 1. The mapping f is a generalized contraction if and only if one of its
iterates is contracting.

Definition 16. A subset of operatorsM ⊆ C(W ) is said to be generally contracting
(contracting in the extended sense), if there are positive numbers N and ν < 1 such
that

L(fin
◦ fin−1

◦ . . . ◦ fi1) ≤ Nνn

for all fi1 , fi2 , . . . , fin
∈ M and n ∈ N.

Remark 6. 1. If the subset of operators M ⊆ C(W ) is generally contracting, then

(i) every function f ∈ M is generally contracting;
(ii) every function f := fin

◦ fin−1
◦ . . . ◦ fi1 (fik

∈ M for all k = 1, . . . , n) is a
generalized contraction.

2. If rf < 1 for every function f ∈ M,then the subset of operators M ⊆ C(W ),
generally speaking, is not a generalized contraction. In fact, let W := R2 and
M ⊆ C(W ) consists from two functions {f1, f2}, where f1(x1, x2) := (2x2,

x1

4 ) and

f2(x1, x2) := (5x2,
x1

6 ). Then rf1
=

√
2

2 , rf2
=

√

5
6 and rf1f2

= 5
4 (see [12]) and,

consequently, M := {f1, f2} is not generally contracting.

Lemma 4. Let M = {f1, f2, . . . , fm}, then the following statements hold:

(i) If Lip(fi) < 1 for all 1 ≤ i ≤ m, then the subset of operators M ⊆ C(W ) is
generally contracting;

(ii) Let rfi
< 1 for all 1 ≤ i ≤ m and the mappings f1, . . . , fm are permutable (i.e.

fi◦fj = fj◦fi for all 1 ≤ i, j ≤ m), then the set of operators M = {f1, . . . , fm}
is generally contracting.
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Proof. Let Lip(fi) < 1 for all i = 1, . . . ,m. Then Lip(fin
◦ fin−1

◦ . . . ◦ fi1) ≤
Lip(fin

) . . . Lip(fi1) ≤ νn for all n ∈ N, where ν := max{Lip(fk) | 1 ≤ k ≤ m}.
Let n ∈ N and fik

∈ M := {f1, . . . , fm} (1 ≤ ik ≤ m for all 1 ≤ k ≤ n). Then

fin
◦ fin−1

◦ . . . ◦ fi1 = fk1

1 . . . fkm
m , where ki ∈ Z+ (1 ≤ i ≤ m) with condition

k1 + . . .+ km = n. Thus we have

Lip(fin
◦ fin−1

◦ . . . ◦ fi1) = Lip(fk1

1 ) . . . Lip(fkm

m ). (23)

Since rfi
< 1, then by Lemma 3 there are positive numbers Ni and νi < 1 such

that

Lip(fn
i ) ≤ Niν

n
i (24)

for all n ∈ N.

From the relations (23) and (24), it follows that

Lip(fin
◦ fin−1

◦ . . . ◦ fi1) ≤ Nνn

for all n ∈ N, where N := max{Nk | 1 ≤ k ≤ m} and ν := max{νk | 1 ≤ k ≤ m}.

6. Relation between compact global attractors of skew-product systems,

collages and cocycles.

Theorem 5. [10] Suppose the following conditions are fulfilled:

(i) M := {fi : i ∈ I} is a compact subset from C(W );
(ii) the set M of operators is contracting in the extended sense.

Then the set-valued cascade (W,F ) (discrete dynamical system generated by posi-
tive powers of mapping F ) is compactly dissipative, , where F (x) := {f(x) | f ∈ M}
(∀x ∈ W ).

Theorem 6. [10] Let 〈W,ϕ, (Ω,T, σ〉 be a cocycle, Ω be a compact space and f :
T ×W :→ K(W ) be a mapping defined by the equality

f(t, u) = ϕ(t, u,Ω) (25)

for all u ∈W and t ∈ T.

Then the mapping f possesses the following properties:

a. f(0, u) = u for all u ∈ W ;
b. f(t, f(τ, u)) ⊆ f(t+ τ, u) for all t, τ ∈ T and u ∈W ;
c. f : T ×W → K(W ) is upper semi-continuous, i.e.

lim
t→t0,u→u0

β(f(t, u), f(t0, u0)) = 0 ∀(t0, u0) ∈ T ×W ;

d. if the cocycle 〈W,ϕ, (Ω,T, σ)〉 satisfies the following condition:

∀t, τ ∈ T, u1, u2 ∈W ∃u3 such that ϕ(t, ϕ(τ, x, u1), u2) = ϕ(t+ τ, x, u3), (26)

then

f(t, f(τ, u)) = f(t+ τ, u)

for all t, τ ∈ T and u ∈W .

Corollary 2. Every cocycle 〈W,ϕ, (Ω,T, σ〉 with the compact Ω and satisfying the
condition (26) generates a set-valued dynamical system (W,T, f), where f : T×W →
K(W ) is defined by equality (25).



CONTINUOUS DEPENDENCE OF ATTRACTORS . . . 511

Definition 17. A cocycle ϕ over (Ω,T, σ) with the fiberW is said to be a compactly
dissipative one, if there is a nonempty compact K ⊆W such that

lim
t→+∞

sup{β(U(t, ω)M,K) | ω ∈ Ω} = 0 (27)

for any M ∈ K(W ), where U(t, ω) := ϕ(t, ·, ω).

Definition 18. [7, Ch.II] A metric space X possesses the property (S), if for every
compact subset K ⊆ X there exists a connected compact subset L ⊆ X such that
K ⊆ L.

Theorem 7. [7, Ch.II] Let Y be compact, 〈W,ϕ, (Y, S, σ)〉 be compactly dissipative
and K be the nonempty compact subset of W appearing in the equality (27). Then
the following statements hold:

(i) w ∈ Iy (y ∈ Y ) if and only if there exits a complete trajectory ν : S → W

of the cocycle ϕ, satisfying the following conditions: ν(0) = w and ν(S) is
relatively compact;

(ii) Iy (y ∈ Y ) is connected, if the space W possesses the property (S).

Definition 19. The smallest compact set I ⊆ W with property (27) is said to be
a Levinson center of cocycle ϕ.

Theorem 8. [10]

(i) Let 〈W,ϕ, (Ω,T, σ)〉 be a cocycle with the compact Ω and satisfying the condi-
tion (26). Then the following statements are equivalent:
(a) the cocycle ϕ is compactly dissipative;
(b) the skew-product dynamical system (X,T, π) generated by the cocycle ϕ is

compactly dissipative;
(c) the set-valued dynamical system (W,T, f) generated by the cocycle ϕ is

compactly dissipative.
(ii) Let 〈W,ϕ, (Ω,T, σ)〉 be a compact dissipative cocycle and the following condi-

tions be fulfilled:
(a) Ω is compact and invariant (σtΩ = Ω for all t ∈ T);
(b) the cocycle ϕ satisfies condition (26).

Then I = pr1(J), where J is the Levinson’s center of the skew-product
dynamical system (X,T, π) (generated by the cocycle ϕ) and I is the Levinson
center of the set-valued dynamical system (W,T, f) (generated by the cocycle
ϕ).

Denote by Φ(ϕ) the set of all full trajectories of the cocycle ϕ.

Corollary 3. Let 〈W,ϕ, (Ω,T, σ)〉 be a compactly dissipative cocycle and the fol-
lowing conditions be fulfilled:

(i) Ω is compact and invariant;
(ii) the cocycle ϕ satisfies condition (26).

Then I = {u ∈W : ∃η ∈ Φ(ϕ), η(0) = u and η(S) is relatively compact}.

7. Continuous dependence of attractors of IFS.

Theorem 9. [10] Suppose that the following conditions are fulfilled:

(i) M is a compact subset of C(W );
(ii) M is contracting in the extended sense.

Then
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(i) Iω := {u ∈ W : a solution ϕ(n, u, ω) of equation (20) is defined on Z and
ϕ(Z, u, ω) is relatively compact} 6= ∅ for all ω ∈ Ω, i.e. every equation (20)
admits at least one solution defined on Z with relatively compact range of
values;

(ii) the sets Iω (ω ∈ Ω) and I :=
⋃

{Iω : ω ∈ Ω} are compact;
(iii) the set-valued map ω → Iω is upper semi-continuous;
(iv) the family of compact sets {Iω : ω ∈ Ω} is invariant with respect to the

cocycle ϕ, i.e. ϕ(n, Iω , ω) = Iσnω for all n ∈ Z+ and ω ∈ Ω;
(v) ρ(ϕ(n, u1, ω), ϕ(n, u2, ω)) ≤ N e−νnρ(u1, u2) for all n ∈ Z+ and ω ∈ Ω and

u1, u2 ∈ W, where N and ν are positive numbers from the definition of the
contractivity of M in the extended sense;

(vi) if every map f ∈ M is invertible, then
(a) Iω consists of a single point uω;
(b) the map ω → uω is continuous;
(c) ϕ(n, uω, ω) = uσ(n,ω) for all n ∈ Z+ and ω ∈ Ω;

(d) ρ(ϕ(n, u, ω), ϕ(n, uω, ω)) ≤ N e−νnρ(u, uω) for all n ∈ Z+ and ω ∈ Ω.

Let Λ be a compact metric space. Denote by C(Λ × W,W ) the space of all
continuous functions f : Λ×W 7→W equipped with compact-open topology. If f ∈
C(Λ ×W,W ) then we denote by fλ := f(λ, ·) ∈ C(W ) and Mλ := {fλ | f ∈ M}.

Consider a set of operators M ⊆ C(Λ ×W,W ) and, respectively, an ensemble
(collage) of discrete dynamical systems (W, fλ)fλ∈Mλ

((W, fλ) is a discrete dynam-
ical system generated by positive powers of map fλ).

We consider the equation

xj+1 = ω(·, j)xj , (ω ∈ Ω := C(Λ × Z+,M)) (28)

or

xj+1 = ω(λ, j)xj , (λ ∈ Λ, ω(λ, ·) ∈ Ωλ := C(Z+,M)), (29)

where ω ∈ Ω is the operator-function defined by the equality ω(·, j) := fij+1
∈

C(Λ ×W,W ) (or ω(λ, j) := fλ
ij+1

∈ C(W,W ) for all λ ∈ Λ) for all j ∈ Z+, i.e.

ω(j) is a continuous function depending on two variables λ ∈ Λ and x ∈ W . We
denote by ϕ(·, n, x0, ω) the solution of equation (28) (respectively, by ϕ(λ, n, x0, ω)
the solution of equation (29)) issuing from the point x0 ∈W at the initial moment
n = 0.

From the general properties of difference equations it follows that the mapping
ϕ : Λ × Z+ ×W × Ω →W satisfies the following conditions:

(i) ϕ(λ, 0, x0, ω) = x0 for all (λ, x0, ω) ∈ Λ ×W × Ω;
(ii) ϕ(λ, n+τ, x0, ω) = ϕ(λ, n, ϕ(λ, τ, x0, ω), σ(τ, ω)) for all n, τ ∈ Z+ and (λ, x0, ω) ∈

Λ ×W × Ω;
(iii) the mapping ϕ is continuous;
(iv) for any n, τ ∈ Z+ and ω1, ω2 ∈ Ω there exists ω3 ∈ Ω such that

U(λ, n, ω2)U(λ, τ, ω1) = U(λ, n+ τ, ω3),

where ω ∈ Ω, U(λ, n, ω) := ϕ(λ, n, ·, ω) =
∏n

k=0 ω(λ, k), ω(λ, k) := fλ
ik

(k =

0, 1, . . . , n) and fλ
i0

:= IdW .

Let X := W × Ω, and define the mapping πλ : X × T → X by the equal-
ity: πλ((u, ω), t) := (ϕ(λ, t, u, ω), σ(t, ω)) (i.e. πλ = (ϕλ, σ)). Then it is easy
to check that for each λ ∈ Λ the triplet (X,T, πλ) is a dynamical system on X ,
but h = pr2 : X → Ω is a homomorphism of (X,T, πλ) onto (Ω,T, σ) and hence
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〈(X,T, πλ), (Ω,T, σ), h〉 is a family of non-autonomous dynamical systems depend-
ing on parameter λ ∈ Λ. Applying Theorem 3 to the family of dynamical systems
〈(X,T, πλ), (Ω,T, σ), h〉 we will receive the following result.

Theorem 10. Suppose that the following conditions hold:

(i) Λ be a compact metric space;
(ii) M be a nonempty compact subset of C(Λ ×W,W ), where W is a complete

metric space;
(iii) the subset M ⊆ C(Λ ×W,W ) is generalized contracting, i.e. there are two

positive numbers N and ν < 1 such that Lip(fλ
in

◦ . . . ◦ fλ
i1

) ≤ Nνn for all

λ ∈ Λ, n ∈ N and i1, . . . , in ∈ N where fλ
k := fk(λ, ·) and fk ∈ M.

Then the following statements hold:

(i) for each λ ∈ Λ the non-autonomous dynamical system 〈(X,Z+, πλ), (Ω, Z+,

σ), h〉 is compactly dissipative;
(ii)

ρ(πλ(n, x1), πλ(n, x2)) ≤ Nνnρ(x1, x2) (30)

for all n ∈ Z+ and x,x2 ∈ X (h(x1) = h(x2)), i.e. the family of non-
autonomous dynamical systems 〈(X,Z+, πλ), (Ω,Z+, σ), h〉 is generalized con-
tracting;

(iii) for each (λ, ω) ∈ Λ × Ω the set Iλ
ω := {u ∈ W | the solution ϕ(λ, n, u, ω)

of equation (29) defined on Z with relatively compact range of values
ϕ(λ, Z, u, ω)} is nonempty and compact;

(iv) for each λ ∈ Λ the family of subsets Iλ := {Iλ
ω | ω ∈ Ω} is invariant with

respect to cocycle ϕλ := ϕ(λ, ·, ·, ·), i.e. ϕλ(t, Iλ
ω , ω) = Iλ

σ(t,ω) for all t ∈ Z+

and ω ∈ Ω;
(v) Iλ

ω = pr1(J
λ
ω ) for all λ ∈ Λ and ω ∈ Ω, where Jλ is the Levinson center of

dynamical system (X,Z+, πλ);
(vi) for each λ ∈ Λ the set Iλ := ∪{Iλ

ω | ω ∈ Ω} = pr1(J
λ) and, consequently, it is

compact;
(vii)

lim
λ→λ0

sup
ω∈Ω

α(Iλ
ω , I

λ0

ω ) = 0 (31)

and, consequently, we have also

lim
λ→λ0

α(Iλ, Iλ0) = 0. (32)

Proof. Let ϕλ be the cocycle generated by equation (29). Denote by (X,Z+, πλ) the
skew-product dynamical system generated by cocycle ϕλ (i.e. X := W×Ω and πλ :=
(ϕλ, σ)). Let 〈(X,Z+, πλ), (Ω,Z+, σ), h〉 be the non-autonomous dynamical system
associated by cocycle ϕλ, where h := pr2 : X 7→ Ω. Under the conditions of The-
orem the family of non-autonomous dynamical systems 〈(X,Z+, πλ), (Ω,Z+, σ), h〉
satisfies the inequality (30) because πλ(n, x) = (ϕλ(n, u, ω), σ(n, ω)) (x := (u, ω))
and ϕλ(n, u, ω) = ω(λ, n) ◦ . . . ◦ ω(λ, 1)u. By Theorem 3 for each λ ∈ Λ dynami-
cal system (X,Z+, πλ) admits a compact global attractor Jλ and there exists the
unique invariant section γλ ∈ Γ(Ω, X) such that:

(i) the mapping λ 7→ γλ is continuous, i.e.

lim
λ→λ0

sup
ω∈Ω

α(γλ(ω), γλ0
(ω)) = 0; (33)



514 DAVID CHEBAN AND CRISTIANA MAMMANA

(ii) Jλ
ω = γλ(ω) for all ω ∈ Ω and, consequently, Jλ = γλ(Ω),where Jλ

ω := Xω ∩Jλ

and Xω := h−1(ω).

Since (X,Z+, πλ) is a skew-product dynamical system and X = W × Ω, then
γλ has the form (φλ, IdΩ), where φλ ∈ C(Ω,W ). Note that Iλ

ω = pr1(J
λ
ω) and,

consequently, it is non-empty and compact. On the other hand πλ(n, Jλ
ω) = Jλ

σ(n,ω)

for all λ ∈ Λ, n ∈ Z+ and ω ∈ Ω because Ω is invariant (i.e. σ(n,Ω) = Ω for all
n ∈ Z+) and, consequently, ϕλ(n, Iλ

ω , ω) = φλ(πλ(n, Jλ) = φλ(Jλ
σ(n,ω)) = Iλ

σ(n,ω).

From the equalities (33) and γλ = (φλ, IdΩ) follow the equalities (31) and (32).

Remark 7. If M ⊆ C(Λ × W,W ) is a finite set, i.e. M = {f1, . . . , fm}, then
the equality (32) coincides with Bransley’s theorem of continuous dependence of
fractals on parameters [2, Th.1,Ch.III] (see also [18]).
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