# **Research Article**

# Damage and yield loss estimate in maize varieties owing to stem borer (*Chilo partellus* Swinhoe) infestation and insecticidal control

Saraswati Neupane<sup>1\*</sup>, Subash Subedi<sup>2</sup>, Ramesh Kumar Shrestha<sup>1</sup> and Sunita Pandey<sup>3</sup>

 <sup>1</sup>Nepal Agricultural Research Council, National Maize Research Program, Rampur, Chitwan, Nepal
 <sup>2</sup>Nepal Agricultural Research Council, Oilseed Research Program, Nawalpur, Sarlahi, Nepal
 <sup>3</sup>Prime Minister Agriculture Modernization Project (PMAMP), Project Management Unit (PMU), Khumaltar, Lalitpur, Nepal
 \*Correspondence: sarusanu2017@gmail.com
 \*ORCID: https://orcid.org/0000-0003-3033-5840

Received: June 01, 2022; Revised: October 30, 2022; Accepted: November 15, 2022; Available online: December 25, 2022

© Copyright: Neupane et al. (2022).

This work is licensed under a <u>Creative Commons Attribution-NonCommercial 4.0</u> International License.

# ABSTRACT

Stem borer (Chilo partellus Swinhoe) is one of the most damaging and yield reducing pest in maize. Field experiments were organized to assess the extent of damage and yield loss due to the infestation of stem borer in maize following two factors randomized complete block design with three replications at National Maize Research Program, Rampur, Chitwan, Nepal, during two consecutive spring seasons of 2020 and 2021. Maize varieties; Rampur Hybrid (RH)-8, RH-10, RH-12 (CAH-1715), RH-14 (RML-86/RML-96), RH-16 (RML-95/RML-96), TX-369, Arun-2, ZM-401, ZM-627 and Rampur Composite were used as a test variety (First factor) whereas pest control conditions (spray and non-spray) was considered as the second factor in the experiments. Thesprayed plots (protected plots) were kept completely free from stem borer infestation by using three application of standard dose of insecticide (spinosad 45% EC @ 0.3 mL/L) at 10 days interval and non spray (unprotected plots) were selected for natural infestation of stem borers. Standard agronomical practices such as time of planting, row spacing, seed rate, irrigation, weeding and fertilizer application and doses were adopted to raise the crop. Among tested varieties Arun-2 was found most susceptible to stem borer attack in both experimental years resulted in higher % dead hearts (6.04%), higher no of exit hole (4.72), higher % foliage damage at before tasseling stage (12.17%) and higher tunnel length (4.62 cm). Quantitative yield loss increased with the increase of the borer's infestation. The yield loss was ranged from 25 to 45% in different maize varieties due to the attack of stem borer. Highest yield loss was quantified for the open pollinated varieties, ZM-401(44.61%) followed by Rampur Composite (41.39%) and Arun-2 (41.22%). Spraying of insecticide enabled the recently introduced maizehybrid RH-14 to produce more yield and to be less vulnerable to stem borer damage.

Keywords: Damage, yield loss, maize, stem borer, infestation

**Correct citation:** Neupane, S., Subedi, S., Shrestha, R., & Pandey, S. (2022). Damage and yield loss estimate in maize varieties owing to stem borer (*Chilo partellus* Swinhoe) infestation and insecticidal control. *Journal of Agriculture and Natural Resources*, 5(1), 1-11. DOI: https://doi.org/10.3126/janr.v5i1.50343

# **INTRODUCTION**

Maize, Zea mays (Linnaeus) (Poaceae) is one of the most prominent cereal crop produced worldwide. It is used as human food, animal feed, fodder, for production of starch, oil, liquor,

dextrose and dyes etc (Khera & Dhillon, 1982). In Nepal, Maize was cultivated on an area of 979,776 hectares with a production and productivity of 2,997,733 tonnes and 3.06 metric tonnes per hectare, respectively during 2020-21 (MoALD, 2022). New agricultural technology has enabled Nepal to raise its production of maize by 37.55%, from 2,179,414 mt in 2011-12 to 2,997,733 mt at present. However, Nepal's average maize crop yield, 3.06 mt/ha per hectare, is extremely low when compared to the global average of 5.8 t/ha per hectare in 2021 (FAO, 2021). Being a C4 plant, maize has a higher yield potential than other cereals. However, the onslaught of biotic stresses like disease and insect pests infesting this crop at various crop growth stages, from sowing to maturity, seriously limits the full manifestation of maize's yield potential over different seasons (Subedi, 2015). Sarup et al. (1987) listed 130 insect species attacking maize crop at its different growth stages. However, according to Mathur (1992) there are more than 250 numbers of insect and mite pestsinfesting maize crop. Further, Siddiqui & Marwaha (1994) reported that only a dozen pests, which cause harm to maize crops in varied degrees from sowing to harvest, are very destructive and call for control efforts. Amongst the pest complex of maize, Chilo partellus (Swinhoe), is major importance during different seasons in Nepal (Neupane et al., 2016). C. partellus is the most abundant and has been identified as the world's most devastating pest of maize at its early growth stage (Sharma & Sharma, 1987; Polaszek & Khan, 1998; Duale & Nwanze, 1999). The maize crop is most susceptible to the infestation of the maize stem borer when it is 10 to 12 days old and has no antibiosis (Sekhon & Sajjan, 1985). The adult females of C. partellus lay eggs in batches parallel to the long axis of the underside of leaves. The first 2 three larval instars feed initially by scrapping in the leaf whorls of growing plants, producing characteristic 'window-paning' and 'pin-holes' like symptoms. The period from egg hatching to the completion of third instar larval stage of C. partellus i.e. the time when the larva feed externally, lasts for about 10 days and chemical control is effective when restricted in this period (Reyes, 1987). Afterwards, the grown up larvae bore inside the central shoot resulting in production of 'deadhearts' under severe infestation conditions and causes complete loss of the plant. The strategies for management of C. partellus include chemical, biological, cultural and transgenic maize. However, the insecticides, being an easy, quick and reliable method of control, are widely used for the management of this insect. Several insecticides and chemicals have been identified to provide successful control of this pest. However, the damage assessment studies do not support the preventive spraying against this insect as this may result in unnecessary applications of insecticides which are ecologically and economically unacceptable (Berg et al., 1990). It has been reported by different workers that C. partellus caused 4-97% maize yield losses in different countries all over the world (Reddy & Walker, 1990). The losses caused by C. partellus in maize were reported to be 25 to 40 per cent in yield in different agro climatic zones of Nepal (NMRP, 2016). Sharma & Gautam (2010) have reported 27 to 30 % maize grain yield losses due to C. partellus in Nepal. However, the information on the losses caused by C. partellus in maizehas not been updated since last decade especially after the recommendation of hybrid maize varieties for cultivation in Nepal. These hybrids are moderately susceptible to the damage of C. partellus (NMRP, 2019). In addition, it has been noted that despite commendable control efforts, crop losses due to insect pests remain extremely high. This is likely due to the lack of accurate data on crop losses and accepted methods for assessing crop loss. In light of the aforementioned information, an evaluation of the degree of yield loss and damage resulting from the stem borer infestation in maize was undertaken.

# MATERIALS AND METHODS

Field experiments were carried out following two factors randomized complete block design with three replications at National Maize Research Program, Rampur, Chitwan, Nepal, during two consecutive spring seasons of 2020 and 2021. The geographical location of NMRP, Rampur, Chitwan is in 27 40' N latitude,  $84^{\circ}$  9' E longitude at an altitude of 228 meter above sea level. It has humid and subtropical climate with cool winter and hot summer. The soil is generally acidic (pH 4.6-5.7), light textured and sandy loam. The average total annual rainfall was 2215.30 mm with a distinct monsoon period (>75% of annual rainfall) from mid June to mid-September. Maize varieties; Rampur Hybrid (RH)-8, RH-10, RH-12 (CAH-1715), RH-14 (RML-86/RML-96), RH-16 (RML-95/RML-96), TX-369, Arun-2, ZM-401, ZM-627 and Rampur Composite was used as a test variety (First factor) whereas different pest control conditions (spray and non-spray) was considered as the second factor in the experiments. The sprayed plots (protected plots) were kept completely free from stem borer infestation by using three application of standard dose of insecticide (spinosad 45% EC@0.3 mL/L) at 10 days interval and non spray (unprotected plots) were selected for natural infestation of stem borers. The plot size was four rows of five meter long with the spacing of 60 cm for row to row 60 and 20 cm for plant to plant. The source of all released and promising maizegenotypes were maize breeding program of NMRP, Rampur. The recommended dose of fertilizer for full season open pollinated maize was 120:60:40 and for hybrid maize 180:60:40 N:P2O5:K2O kg/ha with farm yard manure 10 t/ha and seed rate 20 kg/ha. Other standard agronomical practices were adopted as recommended to raise the crop. Observation were taken on foliage damaged percent at before tasseling stage, tunnel length per plant (cm), dead heart (%), grain yield (kg/ha) and thousand grain weight (g). The meteorological data was recorded from the weather station reside at National Maize Research Program, Rampur, Chitwan. The maize grain yield was recorded from the inner 4 rows in each treatment plot and it was adjusted at 15% moisture level and then converted to kilogram per hectare. The percent decreased over unprotected plots form insect damage parameters were calculated. The losses in maize grain yield during both the years were determined by following formula given below:

Loss in maize grain yield (%)  

$$= \frac{\text{Grain yield in protected plots} - \text{Grain yield in unprotected plots}}{\text{Grain yield in protected plots}} \times 100$$

All data were analyzed statistically using Microsoft Excel 2014 and GENSTAT-18<sup>th</sup> edition computer package program.

#### **RESULTS AND DISCUSSION**

During spring season of 2020, the mean foliage damaged percentage before tasseling stage, exit hole, tunnel length (cm), dead heart (%), grain yield (kg/ha) and thousand grain weight (g) were differed significantly with maize varieties (Table 1). The higher mean foliage damaged percentage before tasseling stage (6.10%), higher numbers of exit hole (5.75), higher tunnel length (5.38 cm), higher dead heart (5.27%) with lower grain yield (3312 kg/ha) and lower thousand grain weight (335 g) was recorded in full season variety Arun-2. Recently released

hybrid Rampur Hybrid-14 (RML-86/RML-96) was found resistant with stem borer infestation with lower mean foliage damaged percentage before tasseling stage (3.66%), lower numbers of exit hole (2.75), lower tunnel length (2.85 cm), lower dead heart (2.03%) with higher grain yield (9452 kg/ha) and higher thousand grain weight (417 g) than other tested varieties (Table 1).

All the recorded insect damaged parameters, yield and yield attributing traits were significantly differed with the different pest control conditions i.e. in sprayed and non sprayed condition (Table 1). The higher mean foliage damaged percentage before tasseling stage (7.92%), higher numbers of exit hole (6.33), higher tunnel length (6.81 cm), higher dead heart (5.01%) with lower grain yield (5629 kg/ha) and lower thousand grain weight (356 g) was recorded in non sprayed plots (Table 1). While insecticide sprayed plots had recorded significantly lower mean foliage damaged percentage before tasseling stage (2.25%), lower numbers of exit hole (2.28), lower tunnel length (1.36 cm), lower dead heart (1.74%) with higher grain yield (7407 kg/ha) and higher thousand grain weight (410 g). The overall mean foliage damaged percentage before tasseling stage, exit hole, tunnel length (cm) and thousand grain weight (g) were differed significantly with different tested maize varieties and different pest control conditions, irrespective of each other, during 2020. The overall mean grain yield (kg/ha) and dead heart (%) were found statistically at par. The lower mean foliage damaged percentage before tasseling stage (1.00%), lower numbers of exit hole (1.83) and lower tunnel length (0.52 cm) withhigher thousand grain weight (463 g) was recorded in variety RH-14 with insecticide sprayed plots (Table 1).

| Treatments                  | FDP<br>BTs | Exit<br>hole | TL<br>/PL (cm) | DH<br>% | GY<br>(kg/ha) | TGW<br>(g) |
|-----------------------------|------------|--------------|----------------|---------|---------------|------------|
|                             | (%)        | none         | ()             |         | (8,)          | (8)        |
| Variety (V)                 |            |              |                |         |               |            |
| RH-8                        | 5.36†      | 4.25         | 4.10           | 3.64    | 5992          | 379        |
| RH-10                       | 4.58       | 4.00         | 3.51           | 2.93    | 8342          | 396        |
| RH-12 (CAH-1715)            | 3.96       | 3.25         | 3.43           | 2.54    | 8521          | 411        |
| RH-14 (RML-86/RML-96)       | 3.66       | 2.75         | 2.85           | 2.03    | 9452          | 417        |
| RH-16 (RML-95/RML-96)       | 4.38       | 3.75         | 3.43           | 2.65    | 8406          | 402        |
| TX-369                      | 5.07       | 4.02         | 4.05           | 3.26    | 7399          | 393        |
| Arun-2                      | 6.10       | 5.75         | 5.38           | 5.27    | 3312          | 335        |
| ZM-401                      | 6.06       | 5.39         | 5.03           | 3.98    | 3864          | 353        |
| ZM-627                      | 5.91       | 5.08         | 4.78           | 3.81    | 4859          | 367        |
| Rampur Composite (RC)       | 5.76       | 4.83         | 4.28           | 3.64    | 5030          | 375        |
| P-value                     | 0.05       | <.001        | <.001          | <.001   | <.001         | <.001      |
| LSD (0.05)                  | 1.83       | 0.79         | 0.67           | 1.09    | 568           | 23.75      |
| Pest control condition (PCC | )          |              |                |         |               |            |
| Non spray (NS)              | 7.92       | 6.33         | 6.81           | 5.01    | 5629          | 356        |
| Spray (S)                   | 2.25       | 2.28         | 1.36           | 1.74    | 7407          | 410        |
| P-value                     | <.001      | <.001        | <.001          | <.001   | <.001         | <.001      |
| LSD (0.05)                  | 0.82       | 0.35         | 0.30           | 0.49    | 254.00        | 10.62      |
| <b>V</b> × <b>PCC</b>       |            |              |                |         |               |            |
| RH-8× NS                    | 6.77       | 5.67         | 5.62           | 5.45    | 5038          | 366        |
| RH-8× S                     | 2.40       | 2.33         | 1.25           | 1.83    | 6946          | 391        |
| RH-10× NS                   | 8.13       | 4.33         | 8.52           | 4.51    | 7475          | 352        |
| RH-10× S                    | 2.00       | 2.17         | 1.03           | 1.35    | 9209          | 440        |

Table 1: Effect of insecticidal (spinosad @ 0.3 mL/L of water) spray and non-spray in different maize varieties infested with stem borer (*Chilo partellus* Swinhoe) at NMRP, Rampur during spring 2020

| Journal of Agriculture and Natural Resources (2022) 5(1): 1-11 |
|----------------------------------------------------------------|
| ISSN: 2661-6270 (Print), ISSN: 2661-6289 (Online)              |
| DOI 1.44 //1.1 //10.2126/1 511.502.42                          |

| DOI: https://doi.org/1          |       |       |       |       |        |       |
|---------------------------------|-------|-------|-------|-------|--------|-------|
| $-$ RH-12 $\times$ NS           | 9.60  | 8.67  | 6.32  | 4.13  | 7345   | 377   |
| $RH-12 \times S$                | 1.12  | 2.11  | 0.70  | 1.16  | 9697   | 457   |
| $RH-14 \times NS$               | 11.21 | 3.67  | 5.18  | 4.09  | 8589   | 360   |
| $RH-14 \times S$                | 1.00  | 1.83  | 0.52  | 1.00  | 10315  | 463   |
| $RH-16 \times NS$               | 6.16  | 5.33  | 9.12  | 2.86  | 7327   | 356   |
| $RH-16 \times S$                | 1.16  | 2.17  | 0.95  | 1.19  | 9486   | 448   |
| TX-369× NS                      | 9.99  | 8.00  | 7.38  | 5.00  | 6680   | 382   |
| TX-369× S                       | 2.13  | 2.17  | 1.18  | 1.53  | 8117   | 405   |
| Arun- $2 \times NS$             | 8.45  | 7.00  | 5.55  | 7.79  | 2398   | 314   |
| Arun- $2 \times S$              | 3.36  | 2.67  | 2.55  | 2.74  | 4227   | 355   |
| $ZM-401 \times NS$              | 4.72  | 9.00  | 6.28  | 4.87  | 3061   | 355   |
| $ZM-401 \times S$               | 3.20  | 2.50  | 1.92  | 2.41  | 4666   | 379   |
| ZM-627× NS                      | 8.42  | 6.00  | 5.12  | 5.68  | 4231   | 368   |
| ZM-627× S                       | 3.09  | 2.50  | 1.75  | 2.28  | 5488   | 381   |
| $\mathbf{RC} 	imes \mathbf{NS}$ | 5.73  | 5.67  | 9.05  | 5.76  | 4142   | 317   |
| RC× S                           | 3.02  | 2.37  | 1.72  | 1.86  | 5918   | 389   |
| P-value                         | <.001 | <.001 | <.001 | 0.242 | 0.75   | <.001 |
| LSD (0.05)                      | 2.58  | 1.12  | 0.95  | 1.54  | 803.30 | 33.58 |
| CV,%                            | 30.7  | 15.7  | 14.1  | 27.7  | 7.5    | 5.3   |

<sup>†</sup>means of three replications, FDPBTs-foliage damaged percent at before tasseling stage, TL/PL tunnel length per plant, DH%-dead heart percentage, GY-grain yield, TGW-thousand grain weight, kg/ha-kilogram perhectare, ggram, cm-centimeter

Similar trend was recorded in the experiment conducted during subsequent year. During spring season of 2021, maize varieties differed significantly with the mean foliage damaged percentage before tasseling stage, exit hole, dead heart(%), grain yield (kg/ha) and thousand grain weight (g) (Table 2). The tunnel length (cm) was found statistically at par. The higher mean foliage damaged percentage before tasseling stage (18.23%), higher numbers of exit hole (3.68), higher dead heart (6.80%) with lower grain yield (2750 kg/ha) and lower thousand grain weight (345 g) was recorded in full season variety Arun-2. The lower mean foliage damaged percentage before tasseling stage (8.41%), lower numbers of exit hole (2.68), lower tunnel length (2.21cm), lower dead heart (4.35%) with higher grain yield (7739 kg/ha) and higher thousand grain weight (393g) was recorded in RH-14 (Table 2).

Different pest control conditions (spray and no-spray) had found significant effect on insect damaged parameters, yield and yield attributing traits during 2021 (Table 2). The higher mean foliage damaged percentage before tasseling stage (21.13%), higher numbers of exit hole (4.33), higher tunnel length (5.47 cm), higher dead heart (7.76%) with lower grain yield (3906 kg/ha) and lower thousand grain weight (353 g) was recorded in non sprayed plots (Table 2). While insecticide sprayed plots had recorded significantly lower mean foliage damaged percentage before tasseling stage (7.37%), lower numbers of exit hole (1.86), lower tunnel length (0.72 cm), lower dead heart (2.95%) with higher grain yield (6392 kg/ha) and higher thousand grain weight (387 g).

The interaction effect of different pest control conditions in tested maize varieties was differed significantly with insect damaged parameters foliage damaged percentage before tasseling stage, exit hole and dead heart % only, irrespective of each other, during 2021. The tunnel length (cm), grain yield (kg/ha) and thousand grain weight (g) were insignificant. The lower mean foliage damaged percentage before tasseling stage (3.17%), lower numbers of exit hole (1.37) and lower dead heart (1.50%) was recorded in variety RH-14 with insecticide sprayed plots (Table 2).

| Table 2: Effect of pest control | ontrol condition in | different maize | varieties | infested | with stem |
|---------------------------------|---------------------|-----------------|-----------|----------|-----------|
| borer (Chilo partellus Swi      | inhoe) at NMRP, Rai | mpur during spr | ing 2021  |          |           |

| Treatments             | FDP        | Exit  | TL       | DH    | GY      | TGW        |
|------------------------|------------|-------|----------|-------|---------|------------|
|                        | BTs<br>(%) | hole  | /PL (cm) | %     | (kg/ha) | <b>(g)</b> |
| Variety (V)            | (70)       |       |          |       |         |            |
| RH-8                   | 15.00      | 3.07  | 3.37     | 5.05  | 3964    | 363        |
| RH-10                  | 13.28      | 2.9   | 2.73     | 4.92  | 6695    | 376        |
| RH-12 (CAH-1715)       | 9.81       | 2.83  | 2.42     | 4.6   | 7563    | 393        |
| RH-14 (RML-86/RML-96)  | 8.41       | 2.68  | 2.21     | 4.35  | 7739    | 393        |
| RH-16 (RML-95/RML-96)  | 11.37      | 2.87  | 2.49     | 4.88  | 6712    | 381        |
| TX-369                 | 13.83      | 3.05  | 3.12     | 5.02  | 5842    | 373        |
| Arun-2                 | 18.23      | 3.68  | 3.86     | 6.8   | 2750    | 345        |
| ZM-401                 | 18.2       | 3.41  | 3.65     | 6.77  | 3017    | 351        |
| ZM-627                 | 17.94      | 3.18  | 3.6      | 5.58  | 3573    | 360        |
| Rampur Composite (RC)  | 16.42      | 3.27  | 3.5      | 5.57  | 3630    | 362        |
| P-value                | <.001      | 0.04  | 0.7      | <.001 | <.001   | 0.01       |
| LSD (0.05)             | 2.76       | 0.58  | 2        | 0.54  | 837.8   | 27.18      |
| Pest control condition | -          | -     |          |       | -       |            |
| (PCC)                  |            |       |          |       |         |            |
| Non spray (NS)         | 21.13      | 4.33  | 5.47     | 7.76  | 3906    | 353        |
| Spray (S)              | 7.37       | 1.86  | 0.72     | 2.95  | 6392    | 387        |
| P-value                | <.001      | <.001 | <.001    | <.001 | <.001   | <.001      |
| LSD (0.05)             | 1.23       | 0.26  | 2.83     | 0.24  | 374.7   | 12.15      |
| V×PCC                  |            |       |          |       |         |            |
| RH-8× NS               | 11.35      | 4.67  | 6.27     | 5.43  | 2855    | 364        |
| RH-8× S                | 8.28       | 1.87  | 0.72     | 3.27  | 5073    | 381        |
| RH-10× NS              | 10.7       | 3.87  | 3.72     | 8.7   | 5294    | 365        |
| RH-10 $\times$ S       | 6.13       | 1.8   | 0.7      | 2.47  | 8095    | 387        |
| $RH-12 \times NS$      | 31.49      | 3.77  | 4.31     | 9.17  | 6204    | 382        |
| $RH-12 \times S$       | 4.92       | 1.6   | 0.67     | 1.97  | 8922    | 405        |
| $RH-14 \times NS$      | 24.5       | 5.0   | 4.25     | 8.33  | 6020    | 371        |
| $RH-14 \times S$       | 3.17       | 1.37  | 0.58     | 1.5   | 9458    | 416        |
| $RH-16 \times NS$      | 20.66      | 4.0   | 6.61     | 7.7   | 5069    | 364        |
| $RH-16 \times S$       | 5.9        | 1.8   | 0.69     | 2.33  | 8355    | 399        |
| TX-369× NS             | 26.3       | 3.87  | 7.02     | 7.33  | 4640    | 303        |
| TX-369× S              | 6.54       | 1.87  | 0.7      | 2.77  | 7045    | 387        |
| Arun- $2 \times NS$    | 25.15      | 3.93  | 5.41     | 5.4   | 2091    | 352        |
| Arun- $2 \times S$     | 11.3       | 2.2   | 0.83     | 4.37  | 3410    | 369        |
| $ZM-401 \times NS$     | 19.28      | 5.27  | 4.67     | 9.57  | 1844    | 349        |
| $ZM-401 \times S$      | 10.73      | 2.1   | 0.78     | 3.97  | 4190    | 374        |
| $ZM-627 \times NS$     | 14.27      | 4.07  | 6.42     | 10.1  | 2824    | 327        |
|                        |            |       |          |       |         |            |
| $ZM-627 \times S$      | 8.46       | 2.03  | 0.77     | 3.5   | 4437    | 375        |
| $RC \times NS$         | 27.57      | 4.87  | 6.01     | 5.83  | 2216    | 349        |
| $RC \times S$          | 8.3        | 1.95  | 0.74     | 3.37  | 4930    | 376        |
| P-value                | <.001      | 0.03  | 0.73     | <.001 | 0.28    | 0.33       |
| LSD (0.05)             | 3.9        | 0.81  | 0.9      | 0.76  | 1184.   | 38.44      |
| CV,%                   | 16.6       | 15.9  | 55.3     | 8.6   | 13.9    | 6.3        |

<sup>†</sup>means of three replications, FDPBTs- foliage damaged percent at before tasseling stage, TL/PL tunnel length per plant, DH%-dead heart percentage, GY-grain yield, TGW-thousand grain weight, kg/ha-kilogram perhectare, ggram, cm-centimeter

The two years combined mean performance of different tested maize varieties with respect to insect damage parameters, grain yield and percentage yield loss due to stem borer infestation showed that the foliage damaged percentage before tasseling stage was ranged from (6.04-12.17%) with the mean average of 9.67%, exit hole (2.72-4.72) with the average of 3.70, tunnel length (2.53-4.62 cm) with the average of 3.59cm, dead heart (3.19-6.04%) with the average of 4.37%, grain yield in protected plots (3819-9887 kg/ha) with the average of 6899.50 kg/ha, grain yield in un-protected plots (2245-7305 kg/ha) with the average of 4767.50 kg/ha and yield loss (25.34 to 44.61%) with the average of 32.59% (Table 3). The lower mean foliage damaged percentage before tasseling stage (6.04%), lower numbers of exit hole (2.72), lower tunnel length (2.53 cm), lower dead heart (3.19%) with higher grain yield (9887 kg/ha) in protected plots and 7305 kg/ha in unprotected plots with the yield loss of 26.12% were recorded in hybrid variety RH-14. Full season open pollinated variety Arun-2 was found relatively more susceptible with stem borer infestation with higher mean foliage damaged percentage before tasseling stage (12.17%), higher numbers of exit hole (4.72), higher tunnel length (4.62 cm), higher dead heart (6.04%) with lower grain yield (3819 kg/ha) in protected plots and 2245 kg/ha in unprotected plots with the yield loss of 41.22% (Table 3). The higher yield loss (44.61%) was recorded in full season OP variety ZM-401 while lower yield loss (25.34%) was recorded in commercial maize hybrid TX-369 (Table 3).

| Table 3: Combined mean performance of different tested maize varieties with respect to |  |  |  |  |  |  |  |  |  |  |
|----------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|--|
| insect damage parameters, grain yield and percentage yield loss due to stem borer      |  |  |  |  |  |  |  |  |  |  |
| infestation during spring season of 2020 and 2021                                      |  |  |  |  |  |  |  |  |  |  |

| Varieties  | FDP   | Exit | kit TL/PL DH Pr |      | Protected  | Unprotected | Yield loss |
|------------|-------|------|-----------------|------|------------|-------------|------------|
|            | BTS%  | hole | ( <b>cm</b> )   | %    | GY (kg/ha) | GY (kg/ha)  | %          |
| RH-8       | 10.18 | 3.66 | 3.74            | 4.35 | 6010       | 3947        | 34.33      |
| RH-10      | 8.93  | 3.45 | 3.12            | 3.93 | 8652       | 6385        | 26.21      |
| RH-12      | 6.89  | 3.04 | 2.93            | 3.57 | 9310       | 6775        | 27.23      |
| RH-14      | 6.04  | 2.72 | 2.53            | 3.19 | 9887       | 7305        | 26.12      |
| RH-16      | 7.88  | 3.31 | 2.96            | 3.77 | 8921       | 6198        | 30.52      |
| TX-369     | 9.45  | 3.54 | 3.59            | 4.14 | 7581       | 5660        | 25.34      |
| Arun-2     | 12.17 | 4.72 | 4.62            | 6.04 | 3819       | 2245        | 41.22      |
| ZM-401     | 12.13 | 4.4  | 4.34            | 5.38 | 4428       | 2453        | 44.61      |
| ZM-627     | 11.93 | 4.13 | 4.19            | 4.7  | 4963       | 3528        | 28.92      |
| RC         | 11.09 | 4.05 | 3.89            | 4.61 | 5424       | 3179        | 41.39      |
| Grand mean | 9.67  | 3.70 | 3.59            | 4.37 | 6899.50    | 4767.50     | 32.59      |
| Min        | 6.04  | 2.72 | 2.53            | 3.19 | 3819       | 2245        | 25.34      |
| Max        | 12.17 | 4.72 | 4.62            | 6.04 | 9887       | 7305        | 44.61      |

FDPBTs- foliage damaged percent at before tasseling stage, TL/PL tunnel length per plant, DH%-dead heart percentage, GY-grain yield, TGW-thousand grain weight, kg/ha-kilogram per hectare, g-gram, cm-centimeter

The combined mean of two years (2020 and 2021) showed that the higher percent decreased over unprotected plots with respect to foliage damaged percentage before tasseling stage (88.30 %), exit hole (70.59 %), tunnel length (89.60%) and dead heart (79.87 %) was recorded in recently released maize hybrid RH-14 (Table 4).

 Table 4: Combined mean of extent of damage due to stem borer infestation on maize

 varieties in protected and unprotected plots during spring season of 2020 and 2021

| Varieties | Prote | ected I | Plot (Spra | ayed) | Unprotected Plot (Non-Sprayed) |      |       |      | % decreased over<br>unprotected plot |       |       |       |
|-----------|-------|---------|------------|-------|--------------------------------|------|-------|------|--------------------------------------|-------|-------|-------|
|           | FDP   | Exit    | TL/PL      | DH    | FDP BTs                        | Exit | TL/PL | DH   | FDP                                  | Exit  | TL/   | DH    |
|           | BTs   | hole    | (cm)       | %     | (%)                            | hole | (cm)  | %    | BTs                                  | hole  | PL    | %     |
|           | (%)   |         |            |       |                                |      |       |      | (%)                                  |       | (cm)  |       |
| RH-8      | 5.34  | 2.10    | 0.99       | 2.55  | 9.06                           | 5.17 | 5.95  | 5.44 | 41.06                                | 59.38 | 83.36 | 53.13 |
| RH-10     | 4.07  | 1.99    | 0.87       | 1.91  | 9.42                           | 4.10 | 6.12  | 6.61 | 56.79                                | 51.46 | 85.78 | 71.10 |
| RH-12     | 3.02  | 1.86    | 0.69       | 1.57  | 20.55                          | 6.22 | 5.32  | 6.65 | 85.30                                | 70.10 | 87.03 | 76.39 |
| RH-14     | 2.09  | 1.60    | 0.55       | 1.25  | 17.86                          | 5.44 | 5.29  | 6.21 | 88.30                                | 70.59 | 89.60 | 79.87 |
| RH-16     | 3.53  | 1.99    | 0.82       | 1.76  | 13.41                          | 4.67 | 7.87  | 5.28 | 73.68                                | 57.39 | 89.58 | 66.67 |
| TX-369    | 4.34  | 2.02    | 0.94       | 2.15  | 18.15                          | 5.94 | 7.20  | 6.17 | 76.09                                | 65.99 | 86.94 | 65.15 |
| Arun-2    | 7.33  | 2.44    | 1.69       | 3.56  | 16.80                          | 5.47 | 5.48  | 6.60 | 56.37                                | 55.39 | 69.16 | 46.06 |
| ZM-401    | 6.97  | 2.30    | 1.35       | 3.19  | 12.00                          | 7.14 | 5.48  | 7.22 | 41.92                                | 67.79 | 75.36 | 55.82 |
| ZM-627    | 5.78  | 2.27    | 1.26       | 2.89  | 11.35                          | 5.04 | 5.77  | 7.89 | 49.07                                | 54.96 | 78.16 | 63.37 |
| RC        | 5.66  | 2.16    | 1.23       | 2.62  | 16.65                          | 5.27 | 7.53  | 5.80 | 66.01                                | 59.01 | 83.67 | 54.83 |

FDPBTs- foliage damaged percent at before tasseling stage, TL/PL tunnel length per plant, DH%-dead heart percentage, GY-grain yield, TGW-thousand grain weight, kg/ha-kilogram per hectare, g-gram, cm-centimeter

#### Weather data

During the experimental period of 2020, the maximum temperature ranged from 31.82 to 36.31°C with the average of 33.23 °C, minimum temperature (15.13-23.45 °C) with the average of 19.83 °C, total rainfall during crop period (1585.3 mm) and relative humidity (75- 87.9%) with the average of 82.82%. Similar weather trend was observed during the experimental period of 2021. The maximum temperature ranged from 31.59 to 35.42 °C with the average of 32.97 °C, minimum temperature (14.12-25.16 °C) with the average of 20.43°C, total rainfall during crop period (2002.2 mm) and relative humidity (77-89%) with the average of 84% was recorded in 2021 (Figure 1).

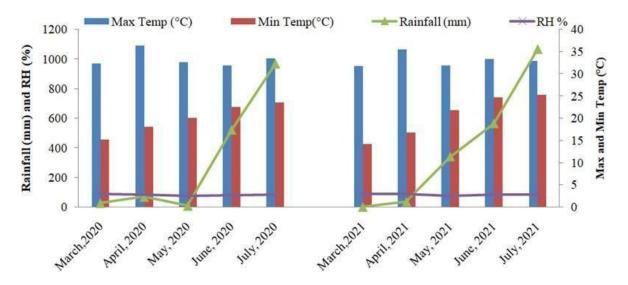



Figure 1: Meteorological data during experimental period (2020-2021) at Rampur, Chitwan, Nepal

The potential yield of any crop variety is affected by biotic (diseases, insects, and weeds) and abiotic (temperature, moisture, wind, etc.) restrictions when cultivated in the field, which affects the quantity and/or quality of the produce and causes crop losses. The measurement of a pest's influence on crop yield is known as crop loss assessment. The prevalence of the pest population and its feeding habits are known to be the main contributing factors to crop losses. Plants can sustain different types of damage from insect activity, which may or may not diminish their output. However, yield loss is more of an economic notion based on the advantages of adopting plant protection over neglecting the crop. For IPM practitioners and policy makers on a wider scale, a crop loss assessment approach is essential to offer this crucial input at the farm level. The present study revealed that quantitative yield loss increased with the increase of the stem borer's infestation in maize varieties. The yield loss was ranged from 25 to 45% with the mean average of 33% in different maize varieties. The highest yield loss was quantified for the open pollinated varieties while spraying of insecticide enabled the recently introduced maize hybrids to produce more yield and to be lessvulnerable to stem borer damage. The finding is in line with the Reddy & Walker (1990) whoreported that the maize stem borer, C. partellus caused 4-97% yield losses on different cultivars of maize in different countries all over the world. Sharma & Gautam (2010) reported that C. partellus caused 28% yield losses in unprotected maize crop as compared to protected one in Nepal. Chatterji et al. (1969) reported that the yield losses caused by C. partellus on different cultivars were found to range from 24.30 to 36.30% in chemically unprotected Kharif maize in different agro climatic regions of India. Singh et al. (1971) reported that C. partellus caused 11.38 and 14.73% maize grain yield losses in early and late sown unprotected crop of maize in New Delhi, respectively. Sarup et al. (1977) reported that maize yield losses ranged from 57.36-95.04 per cent due to artificial infestation of maize plants at its 7 different ages (10, 13, 15, 17, 20, 25 and 30 day old) with variable number of C. partellus eggs (5, 10, 15, 20 and 25 eggs per plant). Further, Singh (1977) reported that yield losses due to different injury grades of C. partellus ranged from 6.56-95.59 and 4.45- 96.64 % on CM 202 × CM 111 variety and Vijay composite of maize, respectively in Punjab. Ganguli et al. (1997) reported that the avoidable losses caused by C. partellus were 0.00 and 81.20 % on chemically protected and unprotected crop of Kharif maize, respectively in West Bengal. The differences in reported estimated losses caused by C. partellus by different workers might be due to different crop varieties, pest infestation levels, localities and prevailing weather conditions. The one factor impacting borer damage that has the greatest influence on grain yield is controversial. Grain yield reduction in maize, caused by C.partellus has been reported to be due to a number of factors, such as leaf damage, dead heart, stunting of growth, stem tunnelling and stalk breakage (Neupane et al., 2016). The difference in grain yield between entries with C. partellus infestations and their uninfested and unprotected counterparts served as the benchmark for the yield loss reported here.

# CONCLUSION

The quantitative yield loss increased with the increase of the stem borer's infestation in maize varieties. The yield loss was ranged from 25 to 45% with the mean average of 33% in different maize varieties. The highest yield loss was quantified for the open pollinated varieties while spraying of insecticide enabled the recently introduced maize hybrids to producemore yield and to be less vulnerable to stem borer damage. So to minimize the losses caused by *C. partellus* to maize, it is proposed that the recently released hybrid maize Rampur Hybrid- 14 (RML-86/RML-96) should be promoted in farmers' field with timely pest control measuresagainst this pest.

#### ACKNOWLEDGMENT

The fund for this research was received from Nepal Agricultural Research Council. The authors express their sincere gratitude and warmest appreciation towards the staffs of National Maize Research Program, Rampur, Chitwan, Nepal for experiment conduction and observations recording.

## **Authors' Contributions**

S. Neupane designed and performed the experiment, recorded and analyzed data and wrote the manuscript. S. Subedi edited the manuscript. R. Shrestha helped in overall management in field level while S. Pandey helped for making final shape of the manuscript.

#### **Conflict of Interest**

The authors declare that there is no conflict of interest regarding the publication of this manuscript.

## REFERENCES

- Berg, J.V.D, Rensburg, J.B.J.V., & Pringle, K.L. (1990). Damage caused by *Chilo partellus* (Swinhoe) (Lepidoptera: Pyralidae) to various cultivars of grain sorghum, Sorghum bicolor (L.) Moench. *South Afr J Pl Soil*, 7 (3), 192-96.
- Chatterji, S.M., Young, W.R., Sharma, G.C., Sayi, I.V., Chahal, B.S., Khare, B.P., Rathore, Y.S., Panwar, V.P.S., & Siddiqui, K.H. (1969). Estimation of loss in yield of maize due to insect pests with special reference to borers. *Indian Journal of Entomology*, 31,109-115.
- Duale, H., & Nwanze, K.F. (1999). Incidence and distribution in sorghum of the spotted stem borer Chilo partellus and associated natural enemies in farmers' fields in Andhra Pradesh and Maharashtra states. *Int J Pest Mgmt*, 45, 3-7.
- FAO. (2021). World Food and Agriculture Statistical Yearbook 2021. Rome. https://doi.org/10.4060/cb4477en
- Ganguly, R.N., Chaudhary, R.N., & Jayalaxmi, G. (1997). Effect of time of application of chemicals on management of maize stem borer, *Chilo partellus* (Swinhoe). *International Journal of Pest Management*, 43(4), 253-259.

Khera, A.S., & Dhillon, B.S. (1982). A Hand Book on Maize for Extension Workers.

Bhagotra Printers. 90, Sukhdev Market, Kailash Chowk, Ludhiana.pp.1-6.

- Mathur, L.M.L. (1992). Changing complex of maize pests in India. Proceedings national seminar on Changing Scenario in Pest Complex, January 31- February 1, 1992, Hyderabad.
- MOALD. (2022). Statistical Information on Nepalese Agriculture 2078/79(2021/22). Government of Nepal, Ministry of agriculture and livestock development, Planning and development cooperation coordination division, Statistics and analysis section, Singhdurbar, Kathmandu, Nepal.
- Neupane, S., Bhandari, G., Sharma, S., Yadav, S., & Subedi, S. (2016). Management of stem borer (*Chilo partellus* Swinhoe) in maize using conventional pesticides. *Journal of Maize Research and Development*, 2(1), 13-19. DOI: http://dx.doi.org/10.3126/jmrd.v2i1.16211
- NMRP. (2016). Annual Report 2072/73 (2015/16). National Maize Research Program, NARC, Rampur, Chitwan, Nepal.
- NMRP. (2019). Annual Report 2075/76 (2018/19). National Maize Research Program, NARC, Rampur, Chitwan, Nepal.

### Journal of Agriculture and Natural Resources (2022) 5(1): 1-11 ISSN: 2661-6270 (Print), ISSN: 2661-6289 (Online)

DOI: https://doi.org/10.3126/janr.v5i1.50343

- Polaszek, A., & Khan, Z.R. (1998). Host plants. In Polaszek (Ed.), African Cereal Stem Borers. Economic Importance, Taxonomy, Natural Enemies and Control. CAB International, Wallingford, UK. Pp.3-10
- Reddy, K.V.S., & Walker, P.T. (1990). A review of the yield losses in graminaceous crops caused by Chilo spp. *Insect Sci Applic*, *11*, 563-69.
- Reyes, R. (1987). Sorghum stem borer in central and South Africa. Proc International Workshop on sorghum stem borer. Nov 17-20. ICRISAT Centre, Patancheru, A. P. India. pp 49-58.
- Sarup, P., Sharma, V.K., Panwar, V.P.S., Siddiqui, K.H., Marwaha, K.K., & Agarwal, K.N. (1977). Economic threshold of *Chilo partellus* (Swinhoe) infesting maize crop. *J ent Res*, 1, 92-99.
- Sarup, P., Siddiqui, K.H., & Marwaha, K.K. (1987) Trends in maize pest managementresearch in India together with bibliography. *J ent Res*, 11, 19-68.
- Sekhon, S.S., & Sajjan, S.S. (1985) Antixenosis (non-preference) mechanisms of resistance in maize against oviposition be maize borer, *C. partellus. Indian J Ent*, 47, 427-32.
  Sharma, A.N., & Sharma, V.K. (1987) Studies in the economic injury level in maize, *Zea*

mays

L. to stem borer *Chilo partellus* (Swinhoe) (Lepidoptera: Pyralidae). *Trop Pest Mgmt*, 33, 44-51.

- Sharma, P.N., & Gautam, P. (2010) Assessment of yield loss in maize due to attack by the maize borer, Chilo partellus (Swinhoe). *Nepal J Sci Tech*, *11*, 25-30.
- Siddiqui, K.H., & Marwaha, K.K. (1994). The Vistas of Maize Entomology in India. Kalyani Publishers, Ludhiana, India. 136p
- Singh, D., Tyagi, B.N., Khosla, R.K., & Avastny, K.P. 1971. Estimates of the incidence of pests and diseases and consequent field losses in the yield of maize (*Zea mays* L.). *Indian Journal of Agricultural Sciences*, *41*, 1094-1097.
- Singh, G. (1977). Further studies on the field behaviour of maize borer, Chilo partellus (Swinhoe) (Pyralidae: Lepidoptera). Ph. D. dissertation, Punjab Agricultural University, Ludhiana.
- Subedi S. (2015). A review on important maize diseases and their management in Nepal. *Journal* of Maize Research and Development, 1(1), 28-52. DOI: https://doi.org/10.3126/jmrd. v1i1.14242.