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Simple Summary: ScRNA-seq is a powerful tool for investigating the cancer microenvironment,
but the cost of analysing every scientific scenario is prohibitive. Fortunately, deconvolution of bulk
RNA-seq data with scRNA-seq cell atlas reference datasets provides a cheaper strategy. In this
study, we validated the feasibility of deciphering the microenvironment of liver cancer through the
estimation of cell fractions with Cibersortx and scRNA-seq atlas reference datasets. Five cell types are
associated with patient outcomes, showing that deconvolution is a useful method for characterising
the tumour microenvironment.

Abstract: Liver cancers give rise to a heavy burden on healthcare worldwide. Understanding
the tumour microenvironment (TME) underpins the development of precision therapy. Single-
cell RNA sequencing (scRNA-seq) technology has generated high-quality cell atlases of the TME,
but its wider application faces enormous costs for various clinical circumstances. Fortunately, a
variety of deconvolution algorithms can instead repurpose bulk RNA-seq data, alleviating the
need for generating scRNA-seq datasets. In this study, we reviewed major public omics databases
for relevance in this study and utilised eight RNA-seqs and one microarray dataset from clinical
studies. To decipher the TME of liver cancer, we estimated the fractions of liver cell components
by deconvoluting the samples with Cibersortx using three reference scRNA-seq atlases. We also
confirmed that Cibersortx can accurately deconvolute cell types/subtypes of interest. Compared
with non-tumorous liver, liver cancers showed multiple decreased cell types forming normal liver
microarchitecture, as well as elevated cell types involved in fibrogenesis, abnormal angiogenesis, and
disturbed immune responses. Survival analysis shows that the fractions of five cell types/subtypes
significantly correlated with patient outcomes, indicating potential therapeutic targets. Therefore,
deconvolution of bulk RNA-seq data with scRNA-seq atlas references can be a useful tool to help
understand the TME.

Keywords: liver cancer; tumour microenvironment; deconvolution

1. Introduction

Liver cancer is one of the leading causes of cancer-related mortality worldwide, making
up 4.7% of newly diagnosed cases but 8.2% of deaths [1]. Hepatocellular carcinoma (HCC)
and cholangiocarcinoma (CCA), which are frequently tallied together, constitute the major
burden of liver cancer [2]. With a 5-year survival of 18%, liver cancer ranks as the second-
most lethal cancer [3]. The poor prognosis of liver cancer is partially due to the insufficiency
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of effective therapies. Surgical interventions yield the best outcomes but are limited by
high recurrence rates or easy loss of operative windows. Liver transplantation achieves
better long-term survival but is hampered by an inadequate supply of donor organs [4,5].
Systematic non-specific chemotherapy resulted in disappointing results for both HCC and
CCA [5,6]. Innovative agents targeting angiogenesis [7,8], fibrogenesis [9], and regulation of
immune responses [10,11] have shown the potential to improve outcomes. Such advances
suggest that a shift from a cancer-centric to a tumour microenvironment (TME)-centric
perspective is required in the future development of precision therapy [12,13].

Single-cell sequencing (scRNA-seq) technology delivers in-depth interrogation of the
TME. The analysis of complex cancer tissues at the single-cell level through scRNA-seq has
brought insights into the heterogeneity and progression of cancer, as well as escape from
immune surveillance, drug resistance, and intercellular communication [14]. However,
scRNA-seq technology is expensive, requires specific tissue collection methods, and can
be difficult to implement. The cheaper and more common bulk RNA-seq studies make up
the largest body of work in this area, filling public repositories, including flagship projects
such as The Cancer Genome Atlas (TCGA) and its resulting resource the Pan-Cancer
Atlas [15]. To make the most out of these available datasets, numerous algorithms have been
proposed that enhance the informativeness of bulk transcriptome analysis using reference
scRNA-seq data. Machine learning is the major approach of such methodologies. For
example, stemness indices within the Pan-Cancer Atlas were estimated with the Progenitor
Cell Biology Consortium datasets and one-class logistic regression [16]. Support vector
regression was also used to estimate the abundance of a specific component in bulk RNA-
seq samples [17,18]. Another group of deconvolution algorithms, such as MuSiC [19] and
Cibersortx [20], focus on profiling cell fractions of the bulk transcriptomic data. Meanwhile,
emerging scRNA-seq atlases (e.g., Human Cell Atlas) provide high-quality references,
allowing accurate deconvolution of bulk RNA-seq data in increasingly wider contexts (e.g.,
profiling of TME for head and neck cancers [21]).

In this study, we reviewed major omics databases and selected ten studies that com-
pared transcriptomes between HCC/CCA and normal liver. The cell fractions of tumour
and non-tumour tissues were estimated with Cibersortx and three scRNA-seq reference
atlases. The included studies contain two cohort studies of HCC, allowing us to investigate
the clinical implications of TME abnormalities through survival analysis and gene set en-
richment analysis (GSEA) [22]. We determined that the TMEs of liver cancer lack multiple
cell types (e.g., hepatocytes) that form normal liver microarchitectures, and instead are
enriched with components involved in fibrogenesis, abnormal angiogenesis, and irregu-
lar immune activities. Among all the cell types/subtypes in the HCC TME, hepatocytes
and mature B cells are positively correlated with patient outcomes, while cholangiocytes,
bi-potent stem cells, plasma B cells, and regulatory T (Treg) cells correlate with negative
outcomes.

2. Materials and Methods
2.1. Data Obtainment

We searched three public omics databases—the Gene Expression Omnibus (GEO),
The Cancer Genome Atlas (TCGA), and the International Cancer Genome Consortium
(ICGC)—for studies engaging liver cancers. Inclusion criteria were: (1) histologically
identified sample series from human tissues in clinical studies (including cohort studies
and case review series); (2) whole transcriptomes by microarray or RNA-seq; (3) with
non-tumorous or normal liver tissues as controls (for comparison) or follow-up information
(for interrogation of clinical outcomes); (4) studies covering two major liver cancers (HCC
and CCA) were included and all other studies were excluded, i.e., metastatic liver cancers
and non-malignant hyperplasia (e.g., hemangioma). Finally, nine curated datasets (eight
RNA-seq and one microarray) were selected for this study (Table S1).



Cancers 2023, 15, 153 3 of 20

2.2. Pre-Processing of Microarray Data

Microarray studies with raw data (CEL files) from the GEO database were obtained
via R package SCAN.UPC [23], which provides one-step pre-processing through empirical
correction of major bias (GC content-related). This normalisation method for microarray
datasets proves reliable for downstream analysis [24]. All gene names were translated into
HGNC symbol with R package BioMart [25]. Duplication of features in expression matrices
were collapsed by MaxMean strategy [26].

2.3. Pre-Processing of RNA-Seq Data

TCGA-LIHC was obtained via UCSCXenaTools [27] and datasets in ICGC were ob-
tained via the official web portal [28]. Expression matrices of other studies from the GEO
database were retrieved according to the authors’ instructions. All datasets recruited in
this study have been listed in Supporting Information. All gene names were translated to
HGNC symbols with R package BioMart [25]. Feature duplications in expression matrices
were removed with the summation method [26].

2.4. Deconvolution of Cell Types with Cibersortx and Three Atlases

Three single-cell RNA-seq datasets were used in this study: (1) GSE115469 (Normal
Liver), (2) GSE146409 (TME-Stroma), and (3) GSE156337 (TME-Immune). GSE115469 is a
liver subset of the Human Cell Atlas [28]. GSE146409 contains the TME of liver cancer (HCC
and CCA), including malignant cells [29]. GSE156337 contains the HCC microenvironment,
without malignant cells [30]. This dataset identified high-quality immune cells.

All expression matrices were normalised to 10,000 counts/cell and packed into an
H5AD file with authors’ annotation as metadata for subsequent estimations. Both the
signature matrix of scRNA-seq datasets and the expression matrix of bulk RNA-seq datasets
were transformed into tab-delimited tables. The signature matrices of reference scRNA-
seq were built with the Cibersortx protocol for “scRNA-seq” (“S”). Deconvolution was
performed with the “Impute Cell Fractions” module. In validation experiments, batch
correction was disabled in within-study validation and activated in “S” mode (with single-
cell expression matrix as reference) in cross-study validation (two groups of validation
experiments will be described below). In the estimation of real clinical data, batch correction
was enabled in “S” mode for RNA-seq datasets and “B” mode (with single-cell expression
matrix collapsed into bulk matrix before used as reference) for microarray datasets. All
other Cibersortx parameters were the default configurations [20].

Cibersortx fails when the cell type tree of the reference atlas is complicated (e.g.,
>10 cell types). In this situation, collapsing some branches of the cell type tree would
complete the calculation [20]. In our study, for example, when we used the Normal Liver
atlas, the cell type tree was divided into two groups (immune and non-immune groups).
Similarly, the TME-Stroma atlas was divided into three groups (mesenchymal, vasculature
and immune groups), and the TME-Immune atlas was divided into two groups (immune
and non-immune groups) (All cell type trees are shown in File S2). To evaluate the influence
of adjusting cell type tree, we performed a group of validation experiments in which cell
subtypes in the Normal Liver atlas were collapsed (for example, let macrophage = inflam-
matory macrophage + non-inflammatory macrophage, T cell = alpha-beta T cell + gamma-
delta T cell, B cell = mature B cell + plasma B cell, and LSEC = periportal LSEC + central
venous LSEC). To increase the matching in cross-study experiments (described below),
the cell-type trees of the other two atlases were also adjusted (for TME-Stroma atlas, let
macrophage = scar-associated macrophage + Kupffer cell + tissue macrophage, and for
TME-Immune atlas, let T cell = CD4+ T cell + CD8+ T cell + Treg cell).

2.5. Accuracy and Robustness of Cell Fraction Estimation

The accuracy and robustness of deconvolution with Cibersortx were tested in two
groups of experiments: intra-study validation and cross-study validation. In intra-study
validation experiments, the signature matrix of scRNA-seq and the pseudo-bulk for testing
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were generated from the same scRNA-seq atlas. The advantage of this method is full
coverage of all cell types/subtypes. In cross-study validation experiments, the signature
matrix of scRNA-seq and the pseudo-bulk dataset were generated from different atlases.

Pseudo-bulk datasets were generated using the random module of NumPy in the
following procedure: the expression of the scRNA-seq atlas was separated into two groups,
cell type of interest and all the remaining cell type/subtypes collapsed into a single group
labelled as “others”; 10% of cells in each group were selected using Choice function of
NumPy, then two representative expression vectors (V) were generated by calculating
the mean value of each gene; a random number f (between 0 and 100) was generated by
Uniform function of NumPy; finally, the expression vector of the pseudo-bulk sample was
generated by Vcelltype × f + Vothers × (100− f ). f was used as benchmarking target.

Two parameters were used to evaluate the accuracy of the Cibersortx estimation: (1)
Pearson correlation coefficient (PCC) between predefined proportions ( f ) and estimated
fractions ( f ′); (2) mean absolute error (MAE = 1/n ∑n

i=1| f ′ i − fi|, i = 1, ..., n) and direction
(overestimation or underestimation).

2.6. Survival analysis, Statistics, and Data Visualisation

To demonstrate the added value of our deconvolution analysis, we investigated the
survival impact of estimated cell fractions on two HCC cohorts (TCGA-LIHC, GSE14520).
The patient cohort was first ordered based on descending order of estimated cell fractions
and then separated into high- and low-level groups. All separation possibilities (from 1:n-1
to n-1:1) were tested with log-rank tests. The one with the lowest P-value in log-rank tests
was selected as the optimised separation. If all the P-values were above 0.05, the cohort
was equally separated into two groups (median-point separation).

Survival lengths were transformed into months and observed events (labelled as
“1”) were transformed into “True” (Boolean value, according to the requirement of Scikit-
Survival [31]). Kaplan–Meier (K-M) curves were then fitted with Scikit-Survival [31]
and plotted with the Step function of Matplotlib. The log-rank test was calculated with
Lifelines [32]. All boxplots of this study were generated with MatPlotLib.

Pathway activities were estimated by PROGENy [33]. GSEA was performed with
GSEApy. The input gene list for GSEA was the marker genes selected by Cibersortx for
the cell types. Our study shows a demonstration with “WikiPathway 2021—Human” as
the reference. GSEApy allows dozens of different libraries, and we provide scripts in our
GitHub repository.

For better reproducibility, all the analysis scripts including pre-processing have been
shared with GitHub (https://github.com/ErasmusMC-Bioinformatics/OIO_Shaoshi, ac-
cessed date 27 December 2022). The supplements and pre-processed datasets were shared
with Zenodo (https://doi.org/10.5281/zenodo.7467268, accessed date 27 December 2022).

3. Results
3.1. Cibersortx Estimation of Cell Fraction

In this study, we aim to decipher the TME of liver cancer by estimating the cell fractions
in transcriptomes. This requires an accurate and robust model with well-annotated single-
cell atlases. We adopted a state-of-the-art deconvolution algorithm (Cibersortx) and three
scRNA-seq atlases (Normal Liver, TME-Stroma, and TME-Immune). These atlases describe
more than 20 cell types or subtypes. Figure 1A outlines the workflow of this study, and the
cell-type trees of the three atlases are outlined in File S2.

https://github.com/ErasmusMC-Bioinformatics/OIO_Shaoshi
https://doi.org/10.5281/zenodo.7467268
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Figure 1. Study workflow and in silico validation of Cibersortx. (A) A general workflow of deci-
phering tumour microenvironment. Cibersortx estimates the cell fraction with scRNA-seq atlas and 
bulk RNA-seq/microarray data. Three expression matrices of scRNA-seq study were used as refer-
ence atlases. Through estimation of the fractions of more 20 cell types/subtypes, biological events 
could be inferred. (B–D) Performances of Cibersortx deconvolution in intra-study validation exper-
iments. (E) Performances of Cibersortx deconvolution in cross-study validation experiments. The 
title of each panel indicates which reference atlas was used in the deconvolution, two ticks on the 
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We first performed intra-study validation experiments to test whether all identified 
cell types from each atlas could be accurately deconvoluted with Cibersortx. In this group 

Figure 1. Study workflow and in silico validation of Cibersortx. (A) A general workflow of decipher-
ing tumour microenvironment. Cibersortx estimates the cell fraction with scRNA-seq atlas and bulk
RNA-seq/microarray data. Three expression matrices of scRNA-seq study were used as reference
atlases. Through estimation of the fractions of more 20 cell types/subtypes, biological events could
be inferred. (B–D) Performances of Cibersortx deconvolution in intra-study validation experiments.
(E) Performances of Cibersortx deconvolution in cross-study validation experiments. The title of each
panel indicates which reference atlas was used in the deconvolution, two ticks on the bottom indicate
which dataset was used to generate the pseudo-bulk samples.
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We first performed intra-study validation experiments to test whether all identified
cell types from each atlas could be accurately deconvoluted with Cibersortx. In this group
of experiments, pseudo-bulk datasets were generated by the same atlas (Figure 1). In
this validation mode, most cells achieved ideal PCCs (File S4). The PCCs compare the
relationship between predefined cell fractions in generated pseudo-bulk samples and
estimated values by Cibersortx. However, MAEs vary between different cell types (File S4).
To evaluate the effect of merging some cell types, we did a group of tests by combining the
major subtypes in the Normal Liver atlas (File S4). Both panels in Figure 1B show the result
of intra-study validation with the Normal Liver atlas. Although both experiments show
high levels of PCCs, subtle differences in accuracy exist. For example, after merging eight
cell subtypes into four major cell types, the PCC of hepatocyte increases (0.979 vs. 0.992,
File S4, the same the following), cholangiocyte decreases (0.9915 vs. 0.9844), and hepatic
stellate cell (HSC) decreases (0.9901 vs. 0.986).

Although Cibersortx allows “partial deconvolution”, in which the samples may con-
tain cell type/subtypes not present in the reference atlas, we performed a group of cross-
study validation experiments to assess this impact. The results of these experiments
demonstrate that the PCC between the presets and prediction remain high (Figure 1E,
File S4, Page 19) whilst the MAEs vary significantly between cell types (File S4, Page 19).
Our study suggests that Cibersortx normally guarantees high levels of PCCs but MAEs vary
when using partial deconvolution method. Thus, we adopted a protocol in all subsequent
analyses such that if a cell type (e.g., hepatocytes) was present in multiple atlases, the one
with the best performances in both intra-study and cross-study validation experiments was
chosen as the reference for clinical data.

3.2. Difference of Cell Fraction between Tumour and Non-Tumour Liver Tissue

To determine the difference in cell fraction between tumour and non-tumour tis-
sues, we compared seven RNA-seq datasets which provide paired tissues collected from
HCC/CCA cohort studies or case review studies. LIRI-JP is an RNA-seq study that in-
cludes primary liver cancers, and secondary liver cancers from stomach, colon, prostate,
etc., with adjacent non-tumorous liver tissues as controls. GSE119336 is an RNA-seq study
comparing CCA and non-tumour liver. The other five RNA-seq studies compare HCC and
non-tumour liver tissues. Three of these studies included cases with HBV infection as the
risk factor.

The three atlases provide more than 20 cell types, allowing a panoramic view of TMEs.
All of these cell types can be largely divided into three groups: (1) cell types underpinning
the fundamental physiology of livers, e.g., hepatocytes, cholangiocytes; (2) cell types
participating in the pathological evolution of cancer formation, e.g., HSCs, LVECts; (3)
immune cells. Results of related cell types are described in the following groups.

3.2.1. Hepatocytes and Cholangiocytes

These two cell types constitute the major functional units of livers—liver lobule and
bile ducts [28]. As both the Normal Liver and TME-Immune atlases have hepatocytes,
we made a comparison of results by deconvolution with two different atlases for the
same dataset. Figure 2A,B show the results of deconvolution for the same datasets with
different atlases. Compared with the results determined with the TME-immune atlas,
deconvolution with the normal atlas returned higher levels of hepatocytes for some datasets
(such as GSE119336) and lower levels for others (such as GSE94660). However, both
experiments arrived at the same result whereby the decrease of hepatocytes and elevation
of cholangiocytes are common in liver cancer. Similarly, File S3, pages 1–3 generated by
deconvolution with TME-Stroma resulted in the same conclusion. Compared with HCC,
the decrease of hepatocytes in CCA is more significant (Figure 2A,B).
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Figure 2. Deconvolution output—hepatocytes, cholangiocytes, and fibrogenesis. (A,B) A compari-
son of hepatocytes estimation by Cibersortx with two different atlases. Subtle differences of cell 
fractions can be seen between two experiments, but they arrived at the same conclusion, namely 
that hepatocytes decrease in cancerous tissue. In CCAs, this phenomenon is more prominent. (C) 
Estimation of cholangiocytes. Elevation of cholangiocytes can be widely seen in cancerous tissues. 
(D–F) Estimation of hepatic stellate cells (HSCs), pericytes and cancer-associated fibroblasts (CAFs). 

Figure 2. Deconvolution output—hepatocytes, cholangiocytes, and fibrogenesis. (A,B) A comparison
of hepatocytes estimation by Cibersortx with two different atlases. Subtle differences of cell fractions
can be seen between two experiments, but they arrived at the same conclusion, namely that hepato-
cytes decrease in cancerous tissue. In CCAs, this phenomenon is more prominent. (C) Estimation of
cholangiocytes. Elevation of cholangiocytes can be widely seen in cancerous tissues. (D–F) Estimation
of hepatic stellate cells (HSCs), pericytes and cancer-associated fibroblasts (CAFs). These three cell
types are key components participating the fibrogenesis of liver cancer. HSCs are liver-specific
pericytes, and often activated in liver cancer. Pericytes (broad sense) can be hardly detected in normal
liver but are widely present in liver cancer. CAFs are uniquely characterised fibroblasts in cancer.
They can hardly be detected in normal liver but are common in cancerous tissues.
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3.2.2. Fibrogenesis

HSCs are tissue-specific equivalents of pericytes, and pericytes can be rarely detected
in normal livers [29,34]. Fibroblasts proliferate following the activation of HSCs. Compared
with non-tumorous tissues, a decrease in HSCs and the elevation of pericytes can be seen
in liver cancers. CAFs are rarely detected in normal liver and are more often seen in
liver cancers. The opposite alterations between HSCs and pericytes/CAFs suggest active
fibrogenesis in tumours (Figure 2D–F).

3.2.3. Vasculature

Liver sinusoidal endothelial cells (LSECs) form the wall of hepatic sinusoids and
participate in immune responses. Vascular smooth muscle cells (vSMCs) are also key
components of blood vessels. Tumour liver vascular endothelial cells (LVECts) are variants
of normal LVECs [29]. Decreased LSECs, vSMCs, and LVECs can be seen in cancerous
tissues, while the elevation of LVECt can be observed in liver cancers (Figure 3A–D). These
results suggest the emergence of abnormal angiogenesis.
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Figure 3. Deconvolution output—vasculature. (A–D) Estimation of liver sinusoidal endothelial
cells (LSECs), vascular smooth muscle cells (vSMCs), liver vascular endothelial cells (LVECs), and
tumour LVECs (LVECts). These four cell types/subtypes are key components of blood vessels in both
normal and cancerous livers. Decreases of normal structural blocks (LSECs, vSMCs) and abnormal
angiogenesis (LVECts) can be seen in liver cancers. Not all the differences are statistically significant.
Pairs with p < 0.05 have been labelled.

3.2.4. Immune Cells

T cells: In the three atlases, five subsets of T cells were identified: T cells with alpha–
beta (αβ) TCR chains or gamma–delta (γδ) chains (Normal Liver atlas) [28]; CD4+ (helper),
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CD8+ (cytotoxic) T cells, and Treg cells (TME-Immune atlas) [30]. We observed obvious
elevations of αβ T cells but no clear alterations of γδ T cells in liver cancers. CD4+ T cells
rise sharply in CCA while CD8+ T cells elevate moderately in HCC. Finally, Treg cells are
rarely detected in normal livers whereas elevations are common in liver cancers. Treg cells
have been recognised as a suppressor of tumour immune responses. Liver cancers also
show high levels of overall T cells (CD4++CD8++Treg cells). (Figure 4A–F).
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Figure 4. Deconvolution output—T cells. (A–E) Estimation of T cells. Alpha–beta (αβ) T cells and
gamma–delta (γδ) T cells are from the Normal Liver atlas. CD4+/CD8+ T cells and regulatory T (Treg)
cells are from the TME-Immune atlas. Overlap of cell type trees may exist between the two atlases.
Obvious elevations of αβ T cells and obscure changes of γδ T cells can be seen in liver cancers. CD4+

T cells rise prominently in CCAs and CD8+ T cells moderately in HCCs. (F) Estimation of overall T
cells. Higher activities of T cells can be seen in liver cancers.
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B cells: The Normal Liver atlas identified two subtypes of B cells, mature B cells
(antigen inexperienced) and plasma B cells (antigen secreting) [28]. Variation of mature
B cells do not show a direct association with liver cancers. Plasma B cells were rarely
detected in normal liver but were widely detected in liver cancers (Figure 5A,B).
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(SAMs) and tissue macrophages (TMs, Figure 6E). Overlap of cell type trees may exist between
the two atlases. Increase of inflammatory macrophages can be seen in liver cancers. SAMs are a
pathological variant of macrophages and participate in the process of liver fibrosis. Their elevation
can be seen in liver cancers.
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Figure 6. Deconvolution output—dendritic cells, stem/progenitor cells, and others. (A,B) Estimation
of conventional dendritic cells (cDCs). Elevations of cDC1s can be seen in liver cancers. (C,D) Esti-
mation of two types of proliferative cells. Bi-potent stem cells are a group of late-stage pluripotent
cells with potential to differentiate into hepatocytes and cholangiocytes. The TME-Stroma atlas did
not clarify the exact characteristics of proliferating cells. Its signature genes suggest its pluripotent
origin. Elevations of these two cell types can be seen in liver cancers. (E,F) Estimation of natural
killer (NK) cells and myeloid cells. NK cells belong to innate immune branch and myeloid cells are
the hematopoiesis-originated immune branch. Deconvolution of these two cell types shows altered
activities in liver cancers, but no direct association can be drawn.
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Macrophages: The Normal Liver atlas contained inflammatory and non-inflammatory
macrophages [28]. The TME-Stroma atlas separated Kupffer cells, tissue monocytes (TMs),
and scar-associated macrophages (SAMs) [29]. SAMs are often recruited in the process
of liver fibrosis [29,35]. We observed elevations of inflammatory macrophages and SAMs
in liver cancers. No obvious differences in Kupffer cells, TMs and non-inflammatory
macrophages were seen (Figure 5C–F).

Dendritic cells: As the quintessential antigen-presenting cell, the dendritic cell (DC)
is another hot research interest for the potential of immunotherapy. The TME-Stroma
atlas was used to estimate conventional DC1 and DC2 (cDC1 and cDC2) cell types [29,36].
Deconvolution suggests that cDC1 cells are elevated in liver cancers while cDC2 cells are
not (Figure 6A,B).

In summary, liver cancers show higher levels of overall immune cells, involving both
the innate (monocyte–macrophages) and adaptive branches (T, B cells), as well as auxiliary
components (dendritic cells). Meanwhile, suppressive components such as Treg cells can
also be observed, suggesting the disordered responses in tumours.

3.2.5. Bi-Potent Stem Cells and Proliferative Cells

This group involves two cell types that can proliferate and differentiate. Bi-potent
stem cells (from TME-Immune atlas) were named for their potential to differentiate into
both hepatocytes and cholangiocytes [30]. Proliferating cells were identified in the TME-
Stroma atlas and elevation of these two cell types (HCC and CCA) was common in
tumours [28]. Bi-potent cells were rare in normal livers and their elevation in CCA is
prominent (Figure 6C,D).

3.2.6. Other Cell Types

These three atlases also identified some immune cell types which exist in the liver
with a relatively low abundance. TME-Immune identified a cluster of natural killer (NK)
cells (a key component of the innate immune branch) and a cluster of myeloid cells (the
liver-resident precursors of monocytes–macrophages) [30]. The Normal Liver atlas isolated
a cluster of NK-like cells, which may be an ambiguous mixture of natural killer T (NKT)
cells and NK cells [28]. Different atlases may have some cell types/subtypes with the same
labels. However, calculated signature matrices suggest that they have different scopes,
e.g., HSCs in the Normal Liver atlas, Figure 2D, vs. HSCs in the TME-Stroma atlas, File S3,
Page 1).

3.3. Cell Fraction of HCC TME Correlates with Clinical Outcome

Finally, we investigated whether cellular alteration affects clinical outcome of HCC
through survival analysis. In public repositories, TCGA-LIHC is the highest-cited cohort of
a liver cancer study, with well-annotated follow-up information and substantial sample
size (370 HCC patients). TCGA-LIHC is a pooled study of five cohorts with mixed risk
factors. Available survival analyses include overall survival (OS) and disease-free survival
(DFS) [37].

The distributions of estimated cell fractions show two typical shapes, “Sigmoid” or
“Exponential” (File S5). Using an optimisation strategy (lowest log-rank test p-value), the
patient cohort was typically separated at inflection points, although this separation may
fail in cases of negative results or meaningless grouping (e.g., separating one case into a
group). In these circumstances, we used the median-point strategy to finish complete KM
curves (Figure 7, Files S5 and S6).
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level hepatocytes show both longer OS and DFS lengths. (D–E) Impact of bi-potent cell fraction.
High-level bi-potent cells show lower OS and DFS lengths. (C,F) Impact of serum AFP at patient
admission.
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Among all the estimated cell types, hepatocytes and bi-potent cells show substantial
impacts on patients’ outcomes. The estimated fractions of hepatocytes show a sigmoid-
shaped distribution. The optimisation strategy (lowest log-rank test p-value) separates
the cohort at a close-to-median point in OS analysis, and at an inflection point for DFS
analysis (Figure 7C). High fractions of hepatocytes are associated with longer OS and DFS
(Figure 7A,B). Estimated fractions of bi-potent cells show exponential distribution. The
optimisation strategy isolated a subset with the cell fractions close to zero (Figure 7F). Those
with high fractions of bi-potent cells show lower OS and DFS (Figure 7D,E). TCGA also
included serum alpha–fetoprotein (AFP) at patient admission. Although the differences
of OS and DFS between patients with high- or low-level AFP reach statistical significance,
crossings of KM curves exist. In contrast, deconvoluted hepatocytes and bi-potent cells
show better discrimination (Figure 7).

GSE14520 is a study that recruited more than 200 HBV-related HCC cases and provides
both OS and DFS information [38,39]. Its transcriptomic tests are based on microarray
platforms, which may provide less accuracy than RNA-seq. In our study, rare cell types
were not often detected in the deconvolution of microarray data. However, given the subtle
difference of study protocol, it still provided alternative evidence about the impact of cell
fractions on patients’ outcomes. A compilation of the survival analyses for GSE14520 is
available in File S6, with a summary in Table S2. Consistent and significant results for both
OS and DFS in the two cohorts include: hepatocyte (positive), cholangiocyte (negative),
bi-potent stem cell (negative), mature B cell (positive), plasma B cell (negative), and Treg
cell (negative).

Pathway analysis provides useful information for the identification of therapeutic
targets. Figure 8 shows the estimation of pathway activities by PROGENy [33]. Only
a small cell population show high activities of specific pathways. For example, LVECt,
proliferating cells, bi-potent cells, and mast cells are EGFR active. GSEA is another useful
method. File S7 shows the examples using the signatures from the three atlases generated
by Cibersortx with the library “WikiPathway 2021—Human” as the source of pathway
definitions.

3.4. Cell Abundance Estimation by Support Vector Regression

We also conducted a parallel series of analyses by support vector regression. Sup-
porting Information describes the detailed methodology. Both methods achieved the same
conclusions for most cell types. Of note, a subtle difference exists between the prediction
by SVR and Cibersortx deconvolution. SVR estimates abundance between samples while
the summation of deconvoluted fractions is equal to one. A substantial alteration of mass
cell types (most often hepatocytes in liver) may significantly impact trace components in
deconvolution.

All Signature matrices and scripts have been shared online (see GitHub/Zenodo
address).
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Figure 8. Pathway activities of cell types in the three atlases (estimated by PROGENy). (A–C) EGFR
activities. Central venous LSECs, inflammatory macrophages, LVECt, bi-potent cells, mast cells, etc.,
are EGFR active, suggesting the involvement in angiogenesis, immune responses, and proliferation.
(D–F) WNT activities. Periportal LSECs, inflammatory and non-inflammatory macrophages, gamma-
delta T cells, hepatocytes (TME-Strom), carcinoma cells (TME-Stroma), myeloid cells, etc., are WNT
active, suggesting the involvement in immune activities.
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4. Discussion

Deconvolution algorithms draw high interest in estimating cell fractions with scRNA-
seq atlases. Cibersortx and MuSiC are two state-of-the-art algorithms in benchmarking
studies [40,41]. We adopted Cibersortx for better reproducibility while implementation
with MuSiC involves R scripting and manual selection of markers. In our study, in silico
experiments determined that Cibersortx can accurately predict the fractions of cell types.
We also performed a parallel series of analyses with SVR to reassure the conclusions by
Cibersortx.

Cibersortx estimates cell fractions by quantifying the abundance of signature genes,
which warrants careful consideration when interpreting the results. Cell fractions can be
defined in diverse ways. In conventional histological studies, cell proportion calculates by
volume, cell number, mass, etc., [42]. The prediction of Cibersortx seems to be close to the
definition of “fraction by cell number”. However, the expression of signature genes varies
between cells, tissues, individuals, and the different disease states, leading to an ambiguity
in the concept of “fraction”. This gap becomes prominent when the biomedical conditions
of the reference scRNA-seq atlases and the bulk RNA-seq samples differ (necessitating
“partial deconvolution”). In addition, cell clusters between atlases with the same label
may not be identical. In our study, we preserved all the signature matrices generated by
Cibersortx for better comparison. Therefore, we recommend taking into account all of these
factors when interpreting the biomedical implications of the deconvoluted results [20].

Three scRNA-seq atlases help portray biological events in liver cancers, including
angiogenesis, fibrogenesis, immunity, and stem cell transformation. Agents targeting
angiogenesis made the first breakthrough in liver cancer chemotherapy [43]. Cancer
growth signifies abnormal blood supply in the TME, with simultaneous pseudo-hypoxia
and neo-vasculature. The TME-Stroma atlas demonstrated the involvement of pericytes and
LVECt in tumour angiogenesis [29]. As vessel components and immune barriers, LSECs
lose their position in tumour tissues. The retreat of LSECs gives way to metastasis [44]. Our
study shows that these alterations are common in liver cancers.

Liver carcinogenesis has close ties to chronic inflammations, either viral hepatitis or
steatohepatitis. A normal liver resides liver-specific pericytes (also termed hepatic stellate
cells), which can be inflammation-activated. Protracted inflammation leads to stellate cell
transformation and fibroblast proliferation [45]. The latter interacts with malignant cells
and helps a tumour-favourable microenvironment. Cancer-associated fibroblasts (CAFs)
provide an immune-evading and chemotherapy-resistant barrier. They also secret multi-
ple cytokines promoting tumour growth and angiogenesis [46]. Experimental evidence
shows that CAF remodelling of extracellular matrix (ECM) helps the metastasis-promoting
TME [47,48]. Thus, therapeutic strategies targeting CAFs are in development, such as
nanocarriers [9]. Our study shows the universal attendance of CAFs in liver cancers,
indicating the potential of CAF-targeting therapies.

Liver cancer evolves with the cross-talk between malignant cells and the immune
system. In the early phase of cancer initiation, immune cells actively move towards and
fight against transformed cells. Long-term engagement finally resulted in the exhaustion of
anti-tumour immunity. Some of the immune cells serve the malignant transformation. Such
components include well-established tumour-associated macrophages [49,50], exhaustive
and immunosuppressive T cells [51,52], and gradually recognised tumour-infiltrating B
cells [53]. Our study provides a helicopter view of the broad attendance of immune cells in
tumour tissues and the appearance of unfavourable components such as Treg cells. Treg
cells function through the PD-1/PD-L1 pathway, leading to tumour tolerance. A blockade
of this communication results in the resurrection of immune responses in a minor group of
patients. Further studies show that the therapeutic efficiency of a PD1 inhibitor depends on
the interaction between the TME and other immune components (e.g., CD8+ T cells) [10,54].

The cancer stem cell (CSC) hypothesis proposed that a small cell population harbour-
ing embryonic characteristics fuel tumour growth. It is difficult to identify CSCs except
by tracing their descendants bearing specific features. Reported biomarkers of liver CSCs
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include CD133, CD90, epithelial cell adhesion molecule (EpCAM), etc., [55]. EpCAM+

cells were proposed as a tumour-initiating component in HCC development [56]. EpCAM
expresses in foetal livers, hepatic progenitor cells, carcinoma cells, etc., but not in mature
hepatocytes [57]. In our study, EpCAM was selected by Cibersortx as a signature gene for
cholangiocytes (Normal Liver atlas), proliferating cells (TME-Stroma), and bi-potent stem
cells (TME-Immune), indicating the close relationship between these cell components and
liver CSCs. Wnt–beta-catenin signalling activates EpCAM expression, which is associated
with AFP elevation and foreshadows negative outcomes [58,59]. Pathway analysis by PR-
GOGENy suggests that hepatocytes and carcinoma cells are WNT active in the TME-Stroma
atlas. PROGENy suggests high EGFR activities of bi-potent stem cells (TME-Immune) and
proliferating cells (TME-Stroma). EGFR is responsible for the maintenance of multiple
CSC phenotypes [60]. Survival analysis suggests the negative impacts of bi-potent stem
cells on patient outcomes, providing alternative clinical evidence for the tumour-initiating
hypothesis of EpCAM+ cells. Although the interpretation of these findings warrants careful
consideration, our study demonstrates that deconvolution can also help understand the
mechanism of cancer formation.

5. Conclusions

In this study, we deciphered the TME of liver cancer by estimating the cell fractions of
a sample given a transcriptome. By estimating more than 20 cell types/subtypes within
bulk RNA-seq data using three atlases and Cibersortx, we found disruptions of normal
liver architecture, abnormal fibrogenesis and angiogenesis, as well as disturbed immune
responses in HCC and CCA. Survival analysis demonstrated that five cell types/subtypes
highly correlated with patient outcomes.

Deconvolution algorithm and emerging scRNA-seq atlases allow the decomposition
of bulk RNA-seq data into cell-type fractions. By linking the cell fractions of samples and
clinical follow-up information, we provide an innovative approach for the discovery of
potential therapeutic targets. In the future, with the advent of more high-quality scRNA-seq
atlases, deconvolution could be a powerful data mining tool for uncovering the intricate
nature of the TME of liver cancer and revealing valuable information in the vast amount of
available transcriptomic data.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers15010153/s1, File S1—Estimation by Support Vector
Regression. File S2—Cell Type Hierarchy. File S3—Estimation by Cibersortx and Support Vec-
tor Regression—Other Cell Types. File S4—In Silico Validation of Cibersortx and Support Vector
Regression. File S5—Survival Impacts of Cell Fractions Estimated by Cibersortx—TCGA-LIHC.
File S6—Survival Impacts of Cell Fractions Estimated by Cibersortx—GSE14520. File S7—Pathway
Analysis. Table S1—Summary of the Datasets Used in This Study. Table S2—Summary of Survival
Impact. Refs. [41,61,62] cite in the Supporting Information file.
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