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In this article, we outline the concept of knowledge infrastructure and describe how it differs from 
Information Technology (IT) infrastructure, with particular regard to the implications for education theory, 
practice and policy.  We examine the inherent limits to growth for attempts to handle knowledge, as 
opposed to information, via the types of software and hardware likely to be available in the next few 
decades. We show how a simple process model can be used to identify pinch points where knowledge, as 
opposed to information, is a bottleneck. We also show how a simple model of knowledge types and 
knowledge locations can be combined with the process model to remove those bottlenecks via existing 
low-cost technology and a more efficient use of existing human expertise. We conclude that a minimal 
investment in knowledge infrastructure would provide significant human, social and economic benefits, by 
creating major added value from existing digital and organisational infrastructure.  

Keywords: tacit knowledge, semi-tacit knowledge, information, knowledge, sociotechnical. 

1. INTRODUCTION 

In this article, we argue that the very visible 
success of Information Technology has masked an 
underlying lack of progress in handling of 
knowledge, as opposed to handling of information. 
We argue that the implications of this distinction 
have been seriously underestimated. 

We discuss the differences between information 
and knowledge in terms both of the underlying 
computational issues and of the practical 
implications. These issues are well known in 
technology-based communities of discourse and 

practice, but these issues and their implications are 
not widely known in socio-political communities of 
discourse and practice which deal with public 
policy.  

We then use worked examples to illustrate the 
issues involved, and to illustrate how they can be 
handled. 

Finally, we discuss the implications for building a 
knowledge infrastructure to complement the 
existing IT infrastructure. 
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The growth and the limits of Information 
Technology 

An issue which has been treated as central in 
computing for decades is the distinction between 
data, information, and knowledge.  

We argue that this issue now has major 
implications for how society handles the 
infrastructure both for Information Technology, and 
for the topics that Information Technology is unable 
to handle.  

We begin by looking at the historical context of IT 
development. We then look at the nature of data, 
information and of knowledge, via definitions from 
computing and knowledge representation which 
provide an operationalised foundation for the 
subsequent discussion. 

Although IT in general and the Internet in particular 
are often portrayed as a single revolutionary and 
recent innovation, there is a strong case for viewing 
them instead as a scaling up of numerous 
technologies, many of which, such as 
telecommunications networks, date back to the 
early twentieth century or the mid nineteenth 
century (Standage 1998). There is also a strong 
case for arguing that radical innovation in most of 
those technologies ended decades ago, and that 
those technologies have now peaked qualitatively, 
in a phase of improvement more by quantitative 
incremental refinements than by major qualitative 
breakthroughs.  

An article in the Harvard Business Review provides 
an example (Davenport and Fitts, 2021). The 
authors give a good overview of the potential for 
business development via cutting edge 
technologies from Artificial Intelligence (AI). Within 
AI, however, all of the main approaches used today 
were well established fields of research by the mid 
1980s, and have been routinely described for 
decades as promising technologies on the verge of 
transforming the world.  

The MYCIN system, widely viewed as the first 
expert system, was developed in the early 1970s 
(Shortliffe and Buchanan, 1975). Genetic 
Algorithms (GAs) were well established by the mid 
1980s (e.g. Forsyth, 1981) as was Machine 
Learning (e.g. Quinlan, 1986). Artificial Neural 
Networks (ANNs) were also an established 
technology by that time (e.g. Werbos, 1982). The 
same is true of the standard current types of 
application software, such as word processing, 
spreadsheets, and databases, together with 
browsers, search engines, Graphical User 
Interfaces (GUIs) and email.  

The successes of these innovations are well 
recognised. What has received less widespread 
attention, however, is that the inherent limitations of 
current IT approaches were identified decades ago, 

but have been largely masked by the very visible 
successes of these approaches.  

For example, autonomous cars, in the sense of 
cars driven by computers, are near to passing 
regulatory hurdles at the time of writing (2022). 
However, this visible progress is based on software 
and hardware that use very different mechanisms 
from those used by humans, because those human 
mechanisms (e.g. identification of objects from 
visual input) are still beyond the reach of current 
computing, even after more than half a century of 
research. Software systems can perform well in 
identifying a limited, closed, set of objects in tasks 
such as industrial inspection (e.g. Steger et al, 
2018) but do not perform so well when identifying 
objects in unconstrained environments; an example 
of the latter is autonomous cars mistaking the 
moon for an amber traffic light. 

This combination of inherent limitations masked by 
visible successes brings risks. Some of these risks 
involve being increasingly constrained over time by 
initial decisions that become increasingly costly to 
change, as in the classic case of the QWERTY 
keyboard (e.g. Norman, 2013). Another set of risks 
involves missed opportunities. These are much 
harder to spot, but can be more costly than visible 
constraints. 

We will revisit these issues at the end of this article. 
First, though, we will examine the underpinning 
concepts of information technology, and the 
inherent limitations of those concepts, with regard 
to knowledge infrastructure as opposed to 
information infrastructure. 

2. INFORMATION VERSUS KNOWLEDGE: THE 
ISSUES 

In traditional philosophy, definitions of “knowledge” 
have usually focused on the justification and the 
truth of a proposition. In education theory, there is a 
long-established distinction between the abstract 
knowledge learned in establishments such as 
grammar schools and universities, and the specific 
information taught in e.g. technical schools and 
traditional polytechnics. In computing, the term 
“knowledge” tends to be used with a more formal 
definition, as the top tier of a three layer 
classification (e.g. Stair and Reynolds, 1998). 

If we look at the successes of current digital 
technology, they are predominantly in the areas of 
data processing and information processing. The 
knowledge level has proved much harder to handle 
via digital technology. 
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Table 1: Knowledge, information and data 

Level Description, and 
implications 

Knowledge Information about information, 
e.g. “British houses quite 
often have names rather than 
numbers” 

Information Structured data, e.g. “House 
number = 8” or “Postcode 
area = TF1” 

Data Raw numbers and 
alphanumeric values, e.g. “8” 
or “TF1”. 

 

The history of digital technology can be broadly 
described in terms of two large waves of successful 
innovation relating to data and information, and a 
smaller wave of partially successful innovation 
relating to knowledge. 

The First Wave: Automating existing processes 

Many real-world problems in an industrialised 
society involve data and information, and are highly 
amenable to computerisation; for example, payrolls 
and commercial transactions. Scaling up regular, 
predictable record keeping and transaction 
recording was hugely successful, and became a 
textbook example of information systems success 
(e.g. Avison and Fitzgerald, 2003). 

This could be called the First Wave of IT 
innovation; using computers to perform already-
existing processes. 

The Second Wave: Information-level innovation 

The Second Wave is qualitatively different from the 
first wave. It involves the introduction of new types 
of information-level hardware and software that 
change the processes in use, whether by 
introducing new processes, or making earlier 
processes obsolete, or by altering earlier 
processes. Examples include e-commerce, email, 
and mobile phones, all of which have transformed 
business and social processes via types of 
information technology that were invented decades 
ago.  

All these examples involve information-level 
technologies; for instance, mobile phones per se 
are simply a way of transferring digital information. 
Although the mobility of mobile phones has had far-
reaching social implications, the technology itself is 
still information-level, rather than knowledge-level. 

Wave 2.2: Tackling knowledge problems via 
information-level technology 

This wave is also qualitatively different from the first 
wave. It involves using information-level technology 

to tackle problems that are difficult for humans, 
often by using different methods from the ones that 
humans would use. The results have been mixed, 
in various ways.  

One example is chess. Chess had long been 
viewed as a complex game that required 
intelligence and the ability to plan multiple steps 
ahead, in ways that would be extremely difficult to 
automate. When the 18th century chess player 
Philidor played three simultaneous blindfold games, 
this was viewed at the time as an astonishing 
intellectual feat. However, empirical investigation of 
skilled chess players found instead that a key part 
of their expertise consisted of knowing huge 
numbers of configurations each involving only a 
small subset of pieces (de Groot, 1965). Now, 
within a few decades of those early systems, the 
top chess rankings in the world are held by 
software systems (French, 2012; Hassabis, 2017). 

Similarly, early medical expert systems such as 
MYCIN performed better than human experts in the 
relevant domain. However, medical expert systems 
have not been widely adopted. Fault diagnosis 
systems of similar complexity, in contrast, have 
been widely adopted, usually as embedded 
software within devices such as engines (Lo Bello 
et al, 2019). 

An important feature of successful expert systems 
and of successful fault diagnosis systems is that 
they used alphanumeric input, either from a human 
intermediary in the case of expert systems, or via a 
human intermediary and/or sensor readings in the 
case of fault diagnosis systems. Attempts to move 
beyond these input methods soon encountered 
serious problems from two sources. One was 
object identification; the other was real world 
knowledge. In this article, we focus on the latter 
and its implications. 

Real world knowledge is a long-standing problem 
for AI. The classic attempt to handle real world 
knowledge in software, the CYC project, dates from 
the 1980s (e.g. Lenat et al, 1986), and brought 
home a realisation of how huge the body of facts is 
within a typical human brain. After thirty years of 
development, CYC contained over 1.5 million 
pieces of information, but was still only effective 
within tightly bounded domains (Knight, 2016). The 
human brain, in comparison, contains tens of 
billions of neurons, each with about a thousand 
connections to other neurons (French, 2012). The 
massively connectionist nature of the human brain 
makes it possible to learn huge volumes of real 
world knowledge with only limited instruction, 
though it typically takes about twenty years before 
a human learns enough to be accepted as a full 
member of society. 

Recent advances in IT have been achieved by 
working round this problem, rather than solving it. 
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In this article, we describe a way of partitioning 
tasks between humans and software so that both 
can play to their strengths, rather than trying to 
solve problems via IT alone. 

3. WORKED EXAMPLES 

We use two worked examples. The first describes a 
small scale problem that illustrates some key 
issues. The second describes a larger scale 
framework that uses a process model to partition 
tasks within a given process between humans 
alone, IT alone, and a combination of humans and 
IT. 

3.1. EXAMPLE 1: SEMI-TACIT KNOWLEDGE 

Our first worked example involves support in writing 
commercial business cases. This is a non trivial 
problem that is difficult because of the nature of 
human real world knowledge. 

A core problem in this and related tasks involves 
eliciting a person’s goals and values and other 
semi-tacit knowledge. This is a difficult problem that 
has been handled within requirements engineering 
and market research by laddering (Hinkle, 1965; 
Reynolds and Gutman, 1988; Rugg and McGeorge, 
1995). Laddering is an elicitation method that uses 
a deliberately small set of verbal probes to elicit 
goals and values in a structured way, whether as a 
hierarchy or as a network in terms of graph theory. 

The typical form of laddering used in this context 
involves presenting the participant with two options, 
then asking which option the participant would 
prefer and why. 

Laddering can be automated to at least some 
extent, though it is difficult to automate well, 
because the process is highly interactive and 
depends on rapid judgments by the elicitor that 
depend on real world knowledge (Rugg & 
McGeorge, 1995). 

Another possible way of eliciting goals and values 
that has better chances of working via software is 
chatbots. These are software systems that can 
conduct natural language conversations, often via 
Artificial Intelligence (Eeuwen, 2017; Griol et al., 
2013; Shawar and Atwell, 2007). The underlying 
concept traces back to the ELIZA program 
(Weizenbaum, 1976) which mimicked interaction 
types such as Rogerian non-directive therapy. A 
significant advantage of this underlying framework 
from a knowledge infrastructure viewpoint is that it 
does not depend on as rigorous a representational 
infrastructure as laddering, so the software can 
more easily sidestep potentially problematic issues. 

The screenshot and dialogue sample below show 
an example of such a system, developed as part of 
a student project by one of the authors (Guo, 
2019).   

The system was designed to help business start-
ups work through their business plan. Business 
plans are required by most funding and start-up 
support organisations (Anon, 2021). Most start-ups 
find it difficult to write a good business plan, 
particularly with regard to articulating clearly the 
key features of what they are selling. 

The system shown here used the AIML Extensible 
Markup Language on the pandorabots open source 
platform. It asked a limited set of open-ended 
questions that were triggered by keywords in text 
from the user. 

Figure 1 shows the appearance of the interface. A 
sample section of interaction between the system 
and a user is shown below. The system’s language 
is designed to mimic human language, following 
widely used methods such as minor punctuation 
errors (e.g. French, 2012). 

 

 

Figure 1: The chatbot interface 
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Sample dialogue 

SYSTEM: Right, what type of individuals and 
businesses are your target audience 

USER: people who like to go to the cinema so a 
range of people eg 16 to 50 

SYSTEM: Tell me more about the characteristics of 
this audience 

USER: outgoing and young 

SYSTEM: What will you do to make sure that you 
meet the people who like to go to the cinema so a 
range of people eg 16 to 50's needs? 

USER: give a range of services like food and drinks 
as well as a variety of films to watch 

In knowledge infrastructure terms, software 
methods such as the chatbot above can be used 
for an initial pass, helping of users to do a first 
iteration to help them clarify and articulate their 
semi-tacit goals and aims. Using software enables 
the first iteration to handle large numbers of users 
simultaneously at low cost. 

For many users, the first pass will be enough. For 
others, a second pass will be involved. This is the 
point where human experts can be brought in. The 
number of users in the second pass will be lower, 
making it possible for the human experts to spend 
more time with each user, and to use that time 
more efficiently, since the users at this point will 
have a better idea of what they want. 

This example appears simple, but it skirts round the 
edges of problems that IT is unable to handle 
properly. For example, if the user wanted an in-
depth explanation of why the chatbot was asking a 
particular question, a proper response would 
involve levels of natural language processing and 
real world knowledge that are far beyond the ability 
of any current technology. As part of a bigger 
process, this approach could work for a specified 
task, but only within the limitations of what IT can 
currently achieve. In the next section, we look at 
how to structure a bigger process systematically. 

3.2. WORKED EXAMPLE 2: A PROCESS MODEL 

Our second worked example involves choices 
during an undergraduate degree. We begin with 
choice of modules within the course, and then 
consider the broader question of choice of career 
after the degree.  

At first sight, choice of modules looks like a 
straightforward IT problem, involving putting the 
relevant information, including help files, online, 
having human advisors available, and then letting 
students select modules online. 

In reality, the problem is deeper, and not properly 
solvable via IT alone, for reasons identified by 
Maiden & Rugg (1996). In brief, these involve 

various types of tacit and semi-tacit knowledge, 
which the individual cannot access via 
introspection, but which can to some extent be 
accessed via appropriate choice of elicitation 
methods. The issues are summarised in Table 2. 

The Maiden & Rugg framework maps each of these 
types of knowledge onto appropriate elicitation 
methods. For example, the contents of Short Term 
Memory can be accessed via concurrent think-
aloud; Taken For Granted knowledge can be 
accessed via direct observation or via downward 
laddering; back versions can be accessed via 
indirect observation or projective methods.  

Table 2: Types of knowledge 

Category Description, and implications 

Future 
systems 
knowledge 

Knowledge about a product or 
system that has not yet been 
developed. Since it has not yet been 
developed, the “knowledge” here is 
prediction rather than knowledge, 
and may be faulty. 

Explicit 
knowledge 

Knowledge that the individual can 
access directly and at will (e.g. 
naming the capital of France) 

Semi-tacit 
knowledge 

Knowledge that the individual can 
access only in some circumstances, 
such as recognising the names of 
French towns that they could not 
consciously recall otherwise 

Strictly tacit 
knowledge 

Knowledge that the individual can 
use, but that they cannot 
consciously access, such as “gut 
feel” knowledge, or “muscle 
memory” skills. 

 

With this framework of knowledge types, it is 
possible to identify types of knowledge involved in 
choice of module, and then partition them between 
humans and technologies, as shown in Table 3. 

For brevity, we have shown how this can be done 
for three types of semi-tacit knowledge, to illustrate 
the principle. Other types of semi-tacit and tacit 
knowledge can also be handled in the same way. 

A key point is that the relevant knowledge can often 
be handled with very little effort or cost. For 
example, an image on promotional material or a 
wall poster can show a lot of taken for granted or 
not worth mentioning knowledge that the student 
can assimilate via incidental learning, without 
necessarily being consciously aware that they are 
doing so.  
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Table 3: Implications of knowledge types 

Semi-tacit 
knowledge 
type 

Implications for module choice 

Taken for 
granted 
knowledge:  

The official description of the module 
may take for granted and therefore 
not mention factors that are 
important to a student (e.g. The field 
trips on this module involve air travel 
to other countries).  

Not worth 
mentioning 
knowledge:  

The official description of the module 
may view some knowledge as too 
trivial to be worth mentioning (e.g. 
This module will involve giving a 
short presentation to other students). 

Front and 
back 
versions:  

Student choice of modules may be 
swayed by e.g. the personality of the 
staff member delivering the module, 
or the module’s reputation for being 
well delivered. Such factors would 
only appear as back versions in off 
the record conversations; they would 
not appear in the online module 
information. 

 

Figure 2 shows how this approach can be mapped 
onto a process model, kept deliberately simple for 
clarity, and extended to handle career choice. In 
this model, the options are shown in rounded 
rectangles, and the decision points in diamonds. 
For clarity, we have not shown the decision routes 
from points 3 and 4. We will first describe the basic 
process shown in the diagram, and then discuss 
questions arising from attempting to represent this 
model rigorously in a diagram. 

The diagram starts with School. At the end of the 
individual’s school education, they reach Decision 
Point 1. The choice here is between College, 
University and Job. This is a point where 
knowledge needs to be available. The framework 
above is one way of checking that all the relevant 
types of knowledge are provided by one or more 
routes (e.g. human, or human plus software).  

 

Figure 2: Decision points for career choices 

The College and University options both have a 
fixed duration. At the end of that time, the students 
are then faced with the same set of options as 
before, namely College, University or Job. In the 
diagram above, we have shown these options from 
the end of College, in Decision Point 2.  

The table below shows a hypothetical example of 
the table for Decision Point 1. We use “World 3” in 
Popper’s sense of knowledge recorded in text etc 
as opposed to knowledge in the brain (Boyd, 2016). 

 

Table 4: Location of knowledge for Point 1 

 Location of knowledge 

 User Others World 3  

Future 
systems 

Chatbot Careers 
support 

 

Explicit   Online text 

Front/back  Student 
guides 

 

Semi-tacit  Admissions 
tutor 

“Day in life” 
online 

Strictly 
tacit 

  Online 
multimedia 

 

The Future Systems knowledge about the student’s 
goals and aims in this example is handled by a 
combination of chatbot and Careers Support. The 
chatbot is used for a first pass, helping the student 
to clarify their own goals and aims at their own 
pace; the Careers Support staff then provide more 
focused support, using methods specifically chosen 
to handle the semi-tacit and tacit knowledge 
problems involved.  

This arrangement means that a lot of the work is 
being done by chatbot, cheaply and swiftly, but with 
human beings to handle the issues that the chatbot 
cannot handle. A key point is that the humans are 
not only using their real world knowledge; they are 
also using appropriate methods for the various 
knowledge types involved. 

The various types of knowledge in this model are 
handled in several ways. In addition to the Careers 
Support team, there are students acting as guides. 
The student guides provide incidental learning and 
access to back versions via their shared 
experience as fellow students, as well as using 
methods such as laddering to clarify the goals of 
the students choosing modules. There is also an 
admissions tutor trained in the same methods, with 
different experiential knowledge from the student 
guides as a source of insight and support.  

This arrangement provides support in depth, so if 
the Careers Support team provide low quality 
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support, the student has a second strand of support 
via the students acting as guides, and a third strand 
via the Admissions officer. Although support in 
depth has advantages, it also has well known 
disadvantages, such as the risk of contradictory 
advice from the different strands, and the risk of 
key knowledge falling between the cracks because 
each strand thinks that a particular piece of 
knowledge is being handled by another strand. The 
tabular representation helps identify where such 
risks occur, so that the system designers can make 
appropriate provision. 

The act of producing a visible representation of the 
process can itself produce significant insights to the 
system designers. For instance, in the diagram 
above, the decision points are all shown 
immediately to the right of an option, implying that 
they occur after that option finishes. However, other 
designs are possible, such as having the decision 
point occur during the option (e.g. students making 
the decision early in their final semester) or 
overlapping with it. 

Similarly, in this simple model, at the end of the 
College option, Decision Point 2 offers the same 
set of options as Decision Point 1 (College, 
University or Job). One system design choice 
would be to use the same matrix of knowledge 
type/location as at Decision Point 1, since the 
options available from both are the same. This 
would have the advantages of economy and 
consistency, by re-using existing resources. 
However, another possible choice would be to use 
a new matrix for Decision Point 2, since students 
finishing college will be different from students 
finishing school, in age, in real-world experience, 
and in qualifications or significant absence of 
qualifications.  

The representations in these examples do not in 
themselves provide the answers, but they do help 
identify questions that might otherwise easily be 
overlooked, and they do make it easier to plan a 
viable, effective system. 

Our experience with this approach indicates that it 
can make a significant difference at minimal cost.  

An example involves a student clarifying his career 
options with one of the authors (Rugg) via upward 
laddering. The student was trying to decide 
between two management-track jobs that he had 
seen advertised. The first laddering probe, Which 
would you prefer and why? elicited that he would 
prefer one of them because it paid more. Laddering 
up from that value elicited the response that he 
would prefer the job that paid more because it 
would let me travel. At that point the student 
realised that he had been going for well paid jobs 
as a means to an end, and that he could go straight 
to that end by finding a job that involved travel, 
which he would much prefer to a management job. 

This type of response is common in the laddering 
literature, and in our experience. It means that a 
very swift, minimal-cost intervention can 
significantly improve a person’s  career choice 
process by clarifying key issues that were lurking in 
semi-tacit knowledge. 

4. IMPLICATIONS 

The framework above provides a practical, low-cost 
way of handling knowledge-level problems via a 
systematic use of existing technology and human 
expertise combined with appropriate choice of 
methods for eliciting and representing knowledge. 
A key feature of this framework is its grounding in 
the research literature about human knowledge, 
and the implications for eliciting knowledge from 
humans.  

Although  the worked example above may look 
superficially the same as what is currently done in 
many institutions (e.g. “We already have someone 
whose role is to help students decide on their 
options”) a key, major difference is that this 
framework explicitly provides ways of accessing 
key semi-tacit and tacit knowledge that would 
otherwise be missed. 

This framework also provides an understanding of 
the underlying problems that limit the growth of 
information-level technologies. Those limits to 
growth are already becoming apparent, and need 
to be tackled soon, for several reasons. 

One reason involves the risk of becoming locked in 
to a solution which works well at the time of 
adoption, but whose limitations become more 
costly with time, as in the case of the QWERTY 
keyboard, which was a reasonable choice in the 
days of manual typewriters, but which is less 
efficient than several other layouts in the days of 
electronic keyboards (Norman, 2013). A current 
example is the trend towards using Internet plus 
mobile phone as the default way of handling 
information-level problems, which is efficient for 
most users, but which can easily marginalise or 
exclude entire communities (e.g. Ramsetty and 
Adams, 2020). 

A related risk involves logical incrementalism, 
where a series of decisions occur over time, each 
of which is sensible in terms of immediate context, 
but where the cumulative result is far from optimal, 
such as the layout of many old European towns. It 
is easy to identify examples from early digital 
technology, such as old ways of tackling the 
explosive growth of telegraph and telephone. It is 
less easy to identify this in present-day technology, 
because we can’t know what we don’t know; there 
is often no way of knowing for certain whether a 
given situation is the best outcome that could have 
been achieved given the complexities of real world 
systems. However, it is possible to make 
predictions based on best evidence, and to make 
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provision for reviewing evidence after time and to 
build in points where decisions can be changed 
before the process has gone too far. 

A third and particularly interesting risk involves 
missed opportunities. Again, it is easy to identify 
historical examples; for instance, if a viable system 
of patent law had been invented earlier, it would 
almost certainly have increased the speed of 
technological innovation. Again, it is less easy to 
identify present-day examples. However, the 
framework described here provides a tool for 
identifying opportunities for making significant 
improvements to knowledge infrastructure swiftly 
and easily. 

A fourth risk relates to the nature of education. 
Information Technology is well suited to making 
information available online. The temptation is to 
treat education as information, and to follow the 
easy and obvious route of packaging education into 
online multimedia modules using the same 
business model as in online entertainment. 
Education, however, is not solely about information; 
it is also about knowledge, and the nature of 
knowledge means that specific types of teaching 
and learning are required for different types and 
different components of knowledge. For handling 
knowledge, information-based approaches are 
simply not enough; a systematic suite of other 
approaches need to be used to complement the IT. 

5. CONCLUSION 

Information Technology has transformed the world, 
but has inherent limitations. This article describes 
issues involved in handling knowledge as opposed 
to information. These issues can be handled 
efficiently, simply, and at low cost via a systematic 
combination of humans and technology, guided by 
a knowledge infrastructure framework such as the 
one above.  

We plan to apply this approach in a range of case 
studies. One involves guidance on choice of 
career, helping people to clarify their semi-tacit 
goals and aspirations via methods such as card 
sorts and upward laddering, so that they can make 
better use of existing career guidance facilities.  

Another involves development of improved 
communication between medical professionals and 
the public, including patients, via representations 
that reduce common sources of misunderstanding 
and error. This builds on work by one of the authors 
(Skillen 2017, Skillen 2019) that extends previous 
work by e.g. Kahneman et al (1982) and by 
Gigerenzer (2008) by drawing on a wider range of 
elicitation and representation types to clarify key 
points.  
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