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Abstract 

Deformation and fracture in aluminum with a bi-layer composite coating are studied numerically. Dynamic boundary-value 
problems in the plane-stress formulation are solved by the finite element method, using ABAQUS/Explicit. Isotropic elastoplastic 
and elastic-brittle constitutive models are used to simulate the mechanical response of the aluminum matrix and carbide ceramic 
particles, respectively. Microstructure of the composite coatings takes into account the complex shape of particles explicitly. To 
investigate the crack initiation and propagation in ceramic particles, a Huber type fracture criterion was chosen that takes into 
account the type of local stress state: bulk tension or compression. The influence of the arrangement of the coating layers on the 
fracture of ceramic particles and on the macroscopic strength of the coated materials is studied. Plastic strain localization, crack 
patterns and residual stress formation are numerically investigated during cooling followed by tension of the coated material. 
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1. Introduction 

Metal-matrix composites and coatings possessing high strength-to-weight ratio, wear resistance and durability are 
widely used in various industries (Zimmermann and Wang (2020); Arunachalam et al. (2018)). Because of a 
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complex hierarchically-organized microstructure of the composite and coated materials, their deformation behaviour 
is failed to be predicted within the traditional approaches used for conventional materials treated as quasi-
homogeneous. Stress concentration arising in the region of inhomogeneities such as interfaces between the substrate 
and coating and matrix and particle induces plastic strain localization in the base material and surface layers. 
Physical mesomechanics deals with the investigation of deformation and fracture of composite materials and 
coatings (Panin et al. (1998)). The mechanical behaviour of the composites and coatings at various spatial scales 
with taking into account explicitly of internal boundaries should be considered to sufficiently study properties of 
composites. 

There are different techniques to manufacture composite materials and coatings: stir casting (Panwar et al. 
(2020)), solid-state sintering (Furushima and Hyuga (2019)), cold spray deposition (Peat et. al (2017)), selective 
laser melting (Muvvala et al. (2017); Meng et al. (2006)) and others. It is also essential to apply proper machining 
conditions because they can affect the surface integrity (Liao et al. (2019)). One of the promising technologies for 
manufacturing and machining the composite coatings is laser deposition, which is used for improving the strength, 
corrosion resistance and microhardness of modified surface layers (Zhao et al. (2020); Fomin et al. 2020)). Residual 
stresses form during fabrication and deposition of coatings due to mismatch in thermal properties of the ceramics 
and metals (Faksa et al. (2019)). Problems concerned with the influence of residual stresses on the mechanical 
properties of composite materials are not completely solved yet. Different metal alloys and ceramic reinforcements 
are used as matrix and particle materials, respectively. The method of active screen plasma nitriding makes it 
possible to form a two-layer composite coating consisting of a part of the surface with particles of iron nitride and a 
lower part with particles of iron and aluminum nitrides (Taherkhani and Soltanieh (2020)). Multilayer coatings 
significantly improve the wear resistance of aluminum alloys (Zhang et al. (2020)) and exhibit excellent 
tribocorrosion resistance of the coated materials (Zhao et al. (2020)). 

There are both experimental and numerical methods for examining the composites (Muvvala et al. (2018); 
Kadolkar et al. (2007); Balokhonov et al. (2021)). Experiments are rather expensive and time-consuming while 
computer-aided design of materials makes it possible to carry out scientific research calculations with high accuracy 
in describing microstructure of materials under study. Deformation behaviour of particle-reinforced metal matrix 
composites with the actual microstructure is analyzed by the finite element software (Chawla et al. (2006); Peng et 
al. (2020)). Numerical simulation is used to study the influence of properties of the compound materials, volume 
fraction of reinforcements in the coating on the deformation and fracture of the composites. An advantage of the 
numerical simulation is the possibility of varying one parameter, with the others being the same, which is difficultly 
realized during an experiment. 

The influence of cooling-induced residual stresses on the fracture in composites was studied in (Balokhonov et al. 
(2021)), where the deformation of aluminum microvolume containing single ceramic particle was simulated. Single 
layer composite coating preliminary subjected to the stress relieving was considered in (Balokhonov et al. (2019); 
Balokhonov et al. (2020)). The novelty of the present study is to analyze the influence of the bi-layer coating 
reinforced by different ceramic particles on the deformation and fracture of the coated material, with the cooling-
induced residual stresses being taken into account. 

2. Methodology 

In order to factor into the microstructure of the bi-layer coated material explicitly, SEM micrograph showing the 
cross section of the «aluminum-titanium carbide» coating produced by laser deposition was chosen (Fig. 1a). To 
construct the FE model the experimental image was simplified to take into account the prominent particles (Fig. 1b). 
The three-color pixel image was transformed to the spatial region of the coated material of the required size and 
discretized by regular rectilinear mesh containing 1300x800 square elements of CPS4R type (Fig. 1c,d). This orphan 
mesh written as an *.inp file was imported into ABAQUS software package. Isotropic elastic-plastic and elastic-
brittle constitutive models describing the mechanical response of the aluminum matrix and ceramic particles, 
respectively, were developed and integrated into the ABAQUS/Explicit packager by the VUMAT user-defined 
subroutine. Plane stress boundary value problems on tension of the microstructure shown in Fig. 1c were solved 
from both initial zero and cooling-induced deformed states. 
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Fig. 1. Experimental image (a) and model structure of the bi-layer coated material (b), finite element discretization (c, d). 

Preliminary cooling is simulated by the linear decrease of the temperature identical in the entire computational 
domain from 350 to 23 °C. Duhamel – Neumann’s relations were used to take into account the thermal deformation 
of the materials: 
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ij kk ij ij kk ij ijK T        = − + − −&& & & &&    (1) 

where ij , ij  and p
ij  are the tensors of stress, strain and plastic strain, ij  means the Kronecker delta, K  and   

are the elastic bulk and shear moduli,   is the thermal expansion coefficient, T  is the temperature, the dot denotes 
time derivative. 

Associated plastic flow rule p
ij ijS = &&  and the yield potential given by ( ) 0p

eq eqf − =  are used for description 
of plastic deformation in the matrix, where p

eq  and p
eq are the equivalent accumulated plastic strain and stress. 

Strain hardening is isotropic and given by the function 

0,2( ) ( ) exp( / )p p p
eq S S eq rf      = − −  −    (2) 

where S  and 0,2  are the ultimate and yield stresses, p
r  determines current value of the strain hardening. 

Huber’s type fracture criterion is sensitive for the sign of the local stress-strain state 
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where tenC , comC are the critical tensile and compressive strength values of ceramics, p  is the pressure. 
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During cooling all B1, B2, B3 and B4 are free surfaces. Tension of the coated material in the X1-direction is 
simulated by kinematic boundary conditions on the B1 and B3 surfaces, while B2 and B4 surfaces are free from loads.  

Coating layers (Fig. 1b) composed of the Al6061T6 aluminum matrix reinforced by boron or tungsten carbide 
particles were arranged in two combinations: B4C top layer – WC bottom layer and, vice versa, WC top layer – B4C 
bottom layer. For the sake of generality, the composite coating, where both layers are reinforced by B4C particles, is 
also included into consideration for comparison. Experimental mechanical properties of the aluminum alloy and 
reinforcing particles are shown in Table 1. 

Table 1. Mechanical properties of the compound materials. 

Material ρ, g/cm3 µ K, GPa σS, MPa σ0,2, MPa α, 10-6 
°C-1 

Cten, 
GPa 

Ccom, 
GPa 

εp
r, % 

Al6061T6 2.7 26 66 332 234 22 - - 9.5 

B4C 2.6 197 235 - - 4.5 0.5 5 - 

WC 15.6 260 370 - - 5 0.37 5 - 

3. Results and discussions 

The results of numerical simulation are presented in Figures 2-4. Figure 2 shows a comparison of the stress states 
with and without preliminary cooling of the bi-layer coated material with «WC top layer - B4C bottom layer» 
arrangement of the coating layers. Figure 3 shows the plastic strains in the matrix and particle cracking for varying 
arrangement of layers, with and without taking into account residual stresses. Figure 4 shows the calculated stress-
strain curves corresponding to these cases. 

 

 

Fig. 2. Equivalent stress in bi-layer coated material with WC top – B4C bottom coating layer arrangement under tension (a) and cooling followed 
by tension of the structure shown in Fig. 1b (b). Total strain of the coated material is 0.06%. 

Under cooling of the coated material residual stress concentrations are formed in both the matrix and particles 
(Fig. 2b). It was shown that the regions of residual stresses are rounded regions localized in the matrix near the 
«matrix-particle» interfaces. High stresses concentrate near the interfacial asperities (Fig. 2b, Al6061T6 Matrix). 
Stresses in ceramic particles are higher than in the matrix (300 MPa versus 200 MPa maximum stresses), with the 
highest values being located near the coating-substrate interface (Fig. 2b, Ceramic particles). Fracture of particles 
begins even during cooling, i.e. fractured particles are observed even at a small tensile deformation of 0.06%. 
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Fig. 3. Equivalent plastic strain under tension of the coated material with varying arrangement of the coating layers (a, c, e) and under cooling 
followed by tension (b, d, f). Fracture zones in ceramic particles are marked by red color. Total strain of the coated materials is 0.4%. 

It was found that in the tungsten carbide particles forming the top coating layer cracks originate earlier than in the 
bottom layer boron carbide particles. This is because of the tungsten carbide has large elastic moduli K and µ, as 
well as lower tensile strength, compared to boron carbide. That is why the tensile strength of the tungsten carbide 
particles is reached earlier and they fracture occurs earlier than for the case of boron carbide ones. Residual stress 
concentrations induce plastic strains localized in the matrix around the particles, with the maximum values being 
located near the interfacial asperities and crack tips. The analysis of the plastic strain and crack patterns (Fig. 3) 
demonstrated that in the case of tension followed by cooling of the structure, many partially fractured particles are 
observed throughout the entire volume of the coating, while in the case of tension without preliminary cooling of the 
structure, a small number of particles are completely fractured. Weakly and strongly pronounced localized shear 
bands are formed, originating at the crack tips near the coating-substrate interface and propagating into the 
aluminium substrate at an angle of 45 degrees to the axis of loading. In the case of WC top - B4C bottom coating 
layer arrangement the main crack is formed, which propagates to the free surface of the coating and to the coating-
substrate interface. 
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Fig. 4. Calculated stress-strain curves for varying arrangement of the coating layers, with and without preliminary cooling of the coated materials 
(a) and the scaled-up curves (b). 

The macroscopic stress shown in Figure 4 is the equivalent stress averaged over the whole calculation region 
including substrate, matrix and particle materials, and the strain is the relative elongation of the region in the tension 
direction. For the comparative purpose the stress-strain curve for the case of cooling followed by tension of the 
structure starts from the strain of -0.7 % corresponding to the cooling-induced volumetric compression strain. The 
calculated stress-strain curves show that preliminary cooling increases the macroscopic strength of the coated 
material in all considered cases of the layer arrangement, with this increase being most pronounced in the case of the 
bi-layer coating (Fig. 4). Due to preliminary cooling of the coated material multiple cracking of carbide particles is 
observed, which prevents formation of the main crack (cf. Figs. 3c and d). Bi-layer coated material with B4C top – 
WC bottom coating layer arrangement possesses the highest macroscopic strength because the intermediate layer 
with tungsten carbide particle serves as a damping sublayer reducing dangerous stress concentration in the coating. 

4. Conclusions 

Deformation and fracture in bi-layer metal-matrix composite coatings were numerically studied. The influence of 
the mechanical properties of the carbide particles composing the layers on the strength of the coated material was 
revealed. Analysis of the calculation results allows us to draw the following conclusions: 

i. During cooling of the coated materials due to the difference in the coefficients of thermal expansion between 
the aluminum matrix and ceramic particles, residual stresses in the plastic matrix form concentrated circles, while in 
particles they occur near the interfacial asperities of highest curvature. This induces plastic flow in the aluminum 
matrix around the particles. 

ii. Residual stresses are found to increase the strength of the coated materials in all considered cases of the 
coating layer arrangement. In the case of the bi-layer coating this increase is more pronounced than in the case «B4C 
single layer», and the bi-layer coating with B4C top – WC bottom coating layer arrangement possesses the highest 
macroscopic strength. 
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