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Introduction 

Nowadays information technologies gain more and more place in economics of all the 

countries. With the growing up of the percentage of digitalization of the almost all human 

activities in example education, banking system, energy providing, healthcare, national secu-

rity and more, the need to ensure a high level of security and reliance also increases. The main 

way to reach that goal is to effectively monitor the network traffic. This work brings a brief 

overview of state-of-art methods and algorithms allowing to monitor, classify and also identi-

fy the harmfulness in network flow. In this sense, we explore the probabilistic data structures 

and string/pattern matching algorithms, that is widely use in monitoring of open networks. 

Analysis of encrypted traffic requires clairly another approach based on statistical processing 

of the network flow. We then expose the statistic-based method of representation the network 

in time series and the spectral methods associated to their analysis. 

1. Probabilistic data structure 

In order to save time searching for signatures and above all to minimize the volume of 

memory consumed, the use of probabilistic data structures has become widespread in the field 

of network traffic analysis. However, this expansion was subordinated to the phenomenon of 

false positives that we will elucidate in this section. 

a. Bloom Filter 

The Bloom Filter (BF) is a probabilistic data structure based on hash functions and a bit 

array initialized to 0. It was proposed by Burton Howard Bloom in 1970 in [1]. This filter is 

very efficient in terms of the amount of memory it occupies and is focused on the search of 

the occurrence of an element in a certain set. The absence of an element in the set is given 

unambiguously, while the occurrence of an element in the set is established with some proba-

bility. In this regard, a false-positive operation of the bloom filter is possible. False-negative 

operation is completely excluded. BF supports only two actions – insert and search. 

Let m – the size of the bit array, k – the number of hash functions. Each hash function 

( )ih x  generates a unique identifier in the interval  1,m . ( )ih x  has a uniform distribution, 

which means  
1

( )i iP h x p
m

  , 1,i m . The probability that after adding an element x 

some p-th cell of the bit array will remain equal to 0, taking into account the independence of 

random variables ( )ih x  
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A false positive is that after adding n elements, while searching for an element that is not 

included in the set of these elements, all positions 
1 2( ), ( ),..., ( )kh y h y h y  in the bit array are set 

to 1. The probability of this event can be calculated by the following formula: 

  1
1 1 1

k
kn kkn

mP e
m

  
         

. 

Having determined the desired probability of a false positive, we can calculate the opti-

mal size of the bit array as 
 

2

ln

ln 2

n P
m   , and the optimal number of hash functions that min-

imize P can be calculated by the formula ln 2
m

k
n

 . 

The Counting Bloom Filter (CBF) is a generalized version of the BF proposed in [2]. 

CBF is based on an array of counters. Each counter consists of groups of bits, which allows 

this data structure to support a delete operation in addition to insertion and search operations. 

When adding an element, the corresponding counters are incremented by one, and when re-

moving, they are decremented by one. Repeating the same reasoning as in the previous case, 

we can derive the probability b that some arbitrary counter CBF had values l like 

1 1 1
, , 1

l kn l
kn

b l kn
lm m m


      

       
      

. If you use CBF to determine the minimum number θ of 

occurrences of an element in a set, then you can consider the probability that a certain counter 

has a value l    as a sum 
1

, ,b l kn
m

 
 
 

, 0, 1l   . Then the false positive probability formu-

la for CBF can be calculated as follows  fp

1
, , , 1 , ,

k

l

p k n m b l kn
m

  
     

  
 . The analysis of 

the probabilistic formula for false positive CBF carried out in the work [Analysis of CBF 

Used ....] and allowed us to derive the tabulated values of the optimal parameters, as well as 

their formula. Thus, for 30  it is possible to calculate the optimal number of hash func-

tions 
opt (0.2037 0.9176)

m
k

n
  . 

Since the introduction of the ability to remove elements from the counting bloom filter, 

the probability of a false negative increases as one removes from the set of false positive ele-

ments. This probability was estimated in [3]. The authors of this paper also proposed a variant 

of the CBF, called the MCBF multiselect bloom filter with a counter, which reduces the like-

lihood of false negatives of the CBF. The main idea is to use c groups of hash functions, each 

of which consists of k hash functions. When adding a new element x to the set X, first c 

groups of counter indices are calculated, from which only one group of indices will be select-

ed to increment the corresponding counters. The final choice of an index group is based on 

minimizing the number of remaining bits in the c groups. This greedy approach was first pro-

posed in [4] and [5]. 

b. Cuckoo Filter 
The Cuckoo filter, like the Bloom filter, is a probabilistic data structure that allows you 

to check whether some element x is in the set X. In this case, the answer to this question is 

expressed in the format "possibly included / no, not included". This means there are a possi-

bility of false positives. Cuckoo filter is based on a hash table using the Cuckoo hash function. 

Each element of the set has two potential indices i and j in CF. You can calculate these indices 

using the following formulas: 1( ) hash( )i h x x  , 2 1( ) ( ) hash(fingerpr int( ))j h x h x x   . 

This method is also called partial key hashing. To optimize the amount of memory occupied 
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in practice, the fingerprint function is often used. It allows to replace x by the element that is 

significantly less in terms of the memory space occupancy. 

Adding an element to the filter begins with calculating its signature using 

fingerprint( )f x , then the index i is calculated using the formula hash( )i x . The value f is 

added in the cell. If the cell i previously contained some value ' fingerprint( )f y  of the ele-

ment y, then it is relocated to its alternative cell, the index of which is calculated by 

' hash( ')j i f  . The value of cell 'j , if exists, is also relocated to an alternative cell, and so 

on until it is found free cell or the maximum allowed number of relocations is not reached, in 

which case the insertion algorithm fails. According to the above description, you will notice a 

decrease of insertion speed as the load coefficient filter is growing. 

Searching and deleting algorithm is done in a simple way. Values f, i and j are calculated 

for the element x. If in any of the cells ;i j  there is a signature value equal to f, then the search 

is completed successfully and, if necessary, this element can be deleted. 

An analysis of the reasons for the appearance of false positive responses for the CF filter 

was made in [6]. The example considered in this work shows that if two different elements x 

and y have a double collation so that fingerprint( ) fingerprint( )f x y   and 

hash( ) hash( )i x y  , it is obvious that these elements will have the same alternative ad-

dresses hash( )j i f  . Not hard to see, even after removing any of these elements from 

filter, the search for the removed element will continue to give a positive answer, which is 

actually a false positive answer. 

An analysis of the collision probability In CF was also made in [6]. Let  – be the tar-

geted percentage of false positives, f – the length of the fingerprint signature, α – the load fac-

tor of the hash table, b – the number of elements in each cell, m – the size of the hash table, n 

– the number of elements, and C – the average number of bits in each element. Let be given a 

set consisting of q elements and x – one of them such as hash( )xi x  and fingerprint( )xt x . 

The probability that, of the remaining 1q   elements, any y element had fingerprint( )xt y  

equal 
1

2 f
 and the probability that the first index of the element y had a value of either ix or 

 hashx xi t  equal to 
1

2 f
, you can then calculate the collision probability with the following 

formula 

1
2 1

2

q

fm



 
 

 
. 

The aforementioned insertion algorithm will fail if the alternative cells overflow for some 

element x. Given the capacity of each cell, we can then say that failure will occur at 2 1b  

collisions. Of the n elements, the number of such collisions is 2 1b

nC  . The expected probability 

of failure of the insertion algorithm is 

(2 1) 1 2

2 1 2 1 2

2 12 2 4

b b

b

n f f bf

n n
C

bm cn

 

       
        

       
. 

Optimizing the amount of memory occupied by the CF filter is an important task in its 

practical implementation. You can estimate the memory footprint in terms of the average 

number used to represent each element of the filter. Let’s call C this metric measured in bits. 

You can then define 

 
hash table size

bits
maximum number of stored elements

f m f
C

m


  

 
. 

The CF filter found its practical application in [7] in integration with the network traffic moni-

toring system Bro. Comparison of various CF filter implementations with traditional HashTa-

ble and HashSet data structures. Showed more than a hundredfold decrease in memory ca-
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pacity. Methodological considerations for the selection of CF filter parameters, given by the 

authors Jan Grashofer and al. led to a decrease in the rate of false negatives. In this regard, the 

optimal size of the hash table was established 2km  , leading to the described decrease in the 

percentage of false positives. 

c. Quotient filter 
The quotient filter, is a probabilistic data structure that has come to replace the Bloom fil-

ter. As in the case of the Bloom filter, the Private filter is used to check for the occurrence of 

some element x in the set X. QF also supports insertion, search and deletion operations. The 

innovation of QF is the ability to combine with other filters and resize the filter without hav-

ing to rehash the original keys. The quotient filter, like the Bloom and Cuckoo filters, has in-

herent false positive responses as a result of search activity. 

The quotient filter data structure is based on a variant of the hash table containing only 

part of the hash key and three additional meta bits. The hash function generates a fingerprint 

of length p. The least significant r bits are called the remainder and the most significant 

q p r   bits are called quotient. The hash table then take 2
q
 places. 

Let the key K have a hash h(K) with quotient hq(K) and remainder hr(K). The cell at in-

dex hq is canonical for remainder hr. When you try to insert hr into a cell with an index hq, two 

collision situations are possible. Full collision and partial collision. Full collision – coinci-

dences of quotient and remainders of two different ones, partial collision is coincidence of 

only quotients. The main reason for false positives of the filter is a complete collision, but 

when a partial collision occurs, it is possible to avoid false positives using additional meta-

bits. 

A run is a sequence of cells with the same quotients. The run whose first element occu-

pies its canonical slot is the start of the cluster. Cluster – a sequence of runs ending in an emp-

ty cell or the beginning of another cluster. 

Additional meta-bits are used to control collision in the hash table and have the following 

meanings. The busy bit is one if the cell is canonical to some key in the filter, optionally 

stored in that cell. Continuation bit – equal to one if the cell is occupied, but not the first ele-

ments in the run. The shift bit is one if the run is shifted relative to the canonical slot. 

The search for any element x in the filter starts by calculating its hash h(x) and separating 

the quotient hq and the remainder hr. The cell at index hq is canonical for hr. If all three addi-

tional bits had the value 0, we can unambiguously conclude that there is no element in the 

filter. Otherwise, you need to set the run and cluster to which the element belongs. To estab-

lish the beginning of the cluster, we will scan the left area from the canonical cell hq, while 

starting the counter. Each time the busy bit is set to 1, the counter incremented by 1. When the 

shift bit set to 0 is encountered, the scan ends, the cluster start is found. Next, scan in the op-

posite direction. On encountering a continue bit set to 0, the counter is decremented by 1. The 

counter will have a value of 0 at the start of the quotient hq run. One can then compare each 

remainder in this run with hr. If such comparisons succeed, then we can conclude that the el-

ement is probably in the filter. Otherwise, we can unambiguously say that there is no such 

element in the filter. 

The filter insertion algorithm starts by looking for an element in the filter. If there is such 

an element in the filter, then the insertion is completed, otherwise we insert the rest of the el-

ement in the current run in such a way as to keep this run sorted and shift all the rests to the 

right by one cell, starting from the occupied position by the inserted element. This updates all 

shift bits of the shifted elements. If a new element was added at the start of the run, then the 

offset at the start of the run is shifted to the right and its continue bit is set to 1. Shifting the 

remainder of the cell does not affect the busy bit of the cell, because it refers to the slot, not 

the remainder, contained in the cell. 

An estimate of the probability of a false positive filter operation was carried out in [8]. 

Based on the observation that a false positive is only possible in QF if for any two different 
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elements such that 'x S  and x S  (S – set of n elements, h – hash function ), which is a 

complete collision, the authors Michel A. Bender et al. came up with a formula. 

For a quotient filter, the average length of clusters plays an important role, since the in-

sertion, search, and deletion algorithms have a certain time complexity, since these actions are 

performed within one cluster without affecting the entire filter. The cluster size can be esti-

mated using the Chernoff estimate. Let  0,1  and 
ln( )

(1 )
ln( ) 1

m
K   

  
. The probabil-

ity of existence of a cluster with a size greater than K, 

Pr(the existence of a cluster with size ) 0mK m     , where 2qm   – is the num-

ber of cells in the filter, α – is the load factor. The mathematical expectation of the size of the 

clusters is then less than 1
1
1 e 

. 

2. Pattern (String) matching algorithms 

a. Aho – Corasick algorithm 

In 1975 Alfred V. Aho and Magaret J. Corasick presented in their work [9] an algorithm 

for searching for a pattern in a text. This algorithm is based on building a state machine from 

a given set of keywords and then using this machine to search for occurrences of keywords in 

the incoming text in one pass. 

The Aho – Corasick algorithm is divided into two parts: the FSM algorithm and the text 

search algorithm. The presented algorithms for constructing a finite automaton are partly in-

spired by the idea of the Knuth – Morris – Pratt algorithm and classical methods for construct-

ing finite automata. 

Let  1 2{ , , .... kK y y y  – be a finite set of keywords and x – any text. The task is to find 

all occurrences of the keywords yi in the text x, taking into account that the keywords may 

overlap. The program that implements the automaton proposed by the authors has three func-

tions: transition function g, failure function on f, output function Output. The automaton con-

sists of numbered states combined into a directed graph. The state with the number "0" is con-

sidered initial. The transition from state to state is carried out by a function g that takes two 

parameters – the current state and the input symbol. This function can be defined as 

 
state

state ,
fail

l

k ig a
 

  
 

. fail – means no transition from the state statek  by symbol ai. The 

function ( ) 'f s s  allows you to go from state s to state 's  in the absence of a transition from 

s by character ai, that is,  , failig s a  . Some states can be final, which means that the func-

tion returns a list of keywords for which these states are final. 

The transition function g can be built on the basis of a directed graph. The graph starts 

from state "0". Each keyword yi is added to the graph from the initial state so that the se-

quence of arcs forming a new path in the graph is marked with the keyword symbols yi. It is 

also important to note that it is added only if there is no path in advance in the column con-

taining this word yi. For the state that completes the new path in the graph, a list of recognized 

keywords is formed using the function output. It is important to note that for any symbols, the 

transition from the state "0" always exists and is different from fail, therefore, for all symbols 

with which the key does not start, transitions from "0" to "0" are automatically added. 

A function f that provides an alternate transition when a failure occurs can be computed 

based on the function g. The depth depth( )s  of a certain state s is an integer number of transi-

tions that must be made from the initial state "0" to reach s. For any states with depth 1, it is 

obvious that the alternative transition is the state "0", which is equivalent to 
( ) 0f s 

. The 

calculation of the function f value for states with depth d occurs iteratively using the values of 
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the functions f and g for states with a smaller depth. Let r – any state with depth 1d  , f can 

then be calculated for the d depth states as follows: 

• If ( , ) failg r a   for all a – then stop. 

• If ( , ) failg r a s   for any character a: 

   – Announce state state ( )f r . 

   – Run zero or more times state (state)f  until you get (state, ) failg a  . 

   – You can then declare ( ) (state, ) 'f s g a s  . 

   – You can update the function output( ) output( ) output( ' )s s s  . 

You can optimize the number of failed transitions by introducing a function δ to replace 

g and f. The function δ then defines a deterministic finite automaton. 

b. Booyer – Moore Algorithm 

Robert S. Boyer and J. Strother Moore in their work [10] presented an algorithm for 

searching for a pattern in a text. The main idea of the BM algorithm is that when scanning the 

text from left to right, the comparison of characters occurs from right to left, that is, from the 

end of the searched pattern. The BM algorithm, through the use of two heuristics and tables 

associated with them, conducts jumps in the text. These heuristics set the rules for calculating 

the shift length, which eliminates the need to check all the characters in the text. 

Let T – be the text and P – be the searched pattern. The stop character heuristic is based 

on finding the first non-matching character T[i] when comparing characters between text and 

pattern from right to left. If the symbol T[i] is found on the left at the position P[j] in the pat-

tern, then the searched pattern is shifted to the right so that T[i] and P[j] match. Otherwise, if 

there is no such position on the left so that [ ] [ ]T i P j , then the whole pattern is shifted to the 

right after the symbol T[i]. If the stop character is behind a character such that [ ] [ 1]T i T i  , 

then the good suffix heuristic is applied. 

The matching (good) suffix heuristic is based on finding a pattern suffix S that matches 

some substring t of text T when comparing characters from right to left. Let P[j] the character 

before the suffix S and T[i] be the character before the substring t. If there is a substring 'S  

on the left in the pattern that matches S such, that the character P[k] in front of it differs from 

P[j], then the heuristic suggests shifting to the right by the minimum distance so that P[k] 

matches T[i]. Otherwise, if there are no more substrings on the left matching the substring S, 

then P is shifted by the minimum distance so that the prefix of the shifted pattern P matches 

the suffix of the substring t. And if such a shift is not possible, then shift the pattern P to the 

right by m positions, where m is the length P. 

When found P in the text T, then the pattern P is shifted by the minimum distance so that 

the prefix of the shifted P matches the suffix of the found occurrence P in the text T. And if 

such a shift is not possible, then shift the pattern P to the right by m positions. 

3. Statistical processing and spectral analysis of network flow 

a. Entropy 
Entropy is a major notion drawn from physics and mathematical statistics and infor-

mation theory. According to information theory, entropy allow us to compute the amount of 

information in the system. In that case, this measure helps to process the network flow charac-

teristic such as IP addresses, Port numbers into a sequence of numbers. Entropy is then com-

puted on constant interval of time for instance every 5 or 10 minutes. pi has to be interpreted 

as the probability of each unique characteristic in the aforementioned time interval. 

1

log
n

i i

i

H p p


  . We can then normalize the entropy using the following formula 
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 0 0 0,1
log( )

H
H H

n
   . Following is the algorithm generally used to detect anomaly in 

time series: 

• Choose which attributes will be used to build entropy time series. 

• Based on accumulated statistics during a large period, build time series for normalized 

Shannon entropy. 

• For each time series on the its reference interval compute the variance. 

• Then we are able to detect abrupt changes making short-time forecast and compare real 

traffic to the forecasted one. (Forecast can be done using ARIMA models, LSMT or 

more complex models). 

b. Wavelet transform 
Another way to process traffic into time series for its following analysis is perform wave-

let transform. Traditional wavelet transform is based on Haar basis functions 

1, 0 1 2,
( )

1, 1 2 1

x
x

x

 
  

  
 and scaling function ( ) 1x  , 0 1x   to decompose input signal 

into piecewise constant signal. Novakov in [11] presents a spectral analysis technique for 

anomaly detection in network traffic. 

Conclusion 

This article after having briefly evoked the reasons, objectives and goal of the analysis of 

the network traffic, has reviewed a great number of techniques of analysis of the flows net-

works according to whether one is in an encrypted network or not. For each category of meth-

ods we recalled the theoretical foundations. For example, for probabilistic structures, we had 

underlined the negative impact of false positives, hence the need to be able to determine the 

factors minimizing the probability of false positives. Also it has been seen the contribution 

that classical text search algorithms can have in the detection of signatures. Then, we present-

ed some methods for analyzing encrypted networks. As such, the role of the concept of entro-

py in the transformation of traffic with a view to its processing was presented. Finally, the 

contribution of spectral analysis in the detection of anomalies has been noted. Far from being 

a complete review, this article can however be improved and extended to other types of meth-

ods not listed in this work. 
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