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Abstract This study analyzes a recently discovered new class of exterior transfers
to the Moon. These transfers terminate in retrograde ballistic capture orbits, i.e.,
orbits with negative Keplerian energy and angular momentum with respect to
the Moon. Yet, their Jacobi constant is relatively low, for which no forbidden
regions exist, and the trajectories do not appear to mimic the dynamics of the
invariant manifolds of the Lagrange points. This paper shows that these orbits
shadow instead lunar collision orbits.

We investigate the dynamics of singular, lunar collision orbits in the Earth–
Moon planar circular restricted three-body problem, and reveal their rich phase
space structure in the medium-energy regime, where invariant manifolds of the
Lagrange point orbits break up. We show that lunar retrograde ballistic capture
trajectories lie inside the tube structure of collision orbits. We also develop a
method to compute medium-energy transfers by patching together orbits inside
the collision tube and those whose apogees are located in the appropriate quadrant
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in the Sun–Earth system. The method yields the novel family of transfers as well
as those ending in direct capture orbits, under particular energetic and geometrical
conditions.

Keywords Medium-energy transfer · Collision orbits · Levi–Civita regularization ·
Circular restricted three-body problem · Bicircular restricted four-body problem

1 Introduction

Low-energy transfers in multi-body systems have been extensively investigated to
reduce the fuel consumption or to attain novel trajectory features. These transfers
have been used in a number of space missions (Uesugi 1996; Burnett et al. 2003;
Folta et al. 2012) and are proposed for future applications (Campagnola and Lo
2008). Typically, invariant manifolds emanating from Lagrange point orbits are
used to analyze low-energy transfers in the restricted three-body problem, and to
view ballistic capture from another perspective (Koon et al. 2001; Belbruno and
Miller 1993). While low-energy solutions succeed in reducing the transfer cost, they
often result in long transfer times. There is thus the need to search for intermediate
solutions with shorter transfer times than low-energy transfers, at the expense of
increasing their cost, which is supposed to be still lower than that of the classic
patched-conics solutions. Solutions that reduced the transfer cost, with no penalty
in transfer time, were found in Campagnola et al. (2014b,a)

In (Topputo 2013), a global search of trajectories from a low Earth orbit (cir-
cular, 167 km altitude) to a low lunar orbit (circular, 100 km altitude) was made,
regardless of the orbit type (interior or exterior, high- or low-energy). In this anal-
ysis, a novel family of exterior transfers emerged. This family belongs to the Pareto
set in a cost vs. time space, and possesses the intermediate features sought (see
solutions (vii)–(ix) in Fig. 8 in Topputo (2013)). This class of “medium-energy”
lunar transfers has four characteristics: 1) No portion of the transfer orbit can be
related to the dynamics of the Lagrange points in the Sun–Earth system, 2) In
a planar model, the angular momentum about the Moon at arrival is negative,
i.e., the arrival orbit is retrograde, 3) The Kepler energy relative to the Moon at
arrival is negative, i.e., the orbit experiences lunar ballistic capture, 4) The Ja-
cobi energy in the Earth–Moon system is such that the forbidden regions vanish.
This new family of solutions deserved an analysis to gain insights into its peculiar
dynamics.

In the present work we investigate the dynamics of the lunar transfers in this
medium-energy regime. At these energies, the invariant manifolds associated to
the Lagrange point orbits cease to be well-behaved because of the close encounter
with the smaller primary (the Moon in our case), which causes their Poincaré
curves to open up, and cancels their separatrix role. Thus, studying the Lagrange
point dynamics is not helpful in medium-energy levels as it is at low energies.

A way to recover this loss is considering the dynamics of singular collision
orbits (or simply collision orbits), which pass through the center of the Moon.
These orbits reveal to be an important backbone structure for the dynamics in
the medium-energy regime. Complex structures, related to bounded and escape
motion relative to the smaller primary, have been identified in several systems via
collision orbits and Poincaré sections (Nagler 2005; Davis and Howell 2011; de
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Assis and Terra 2012). Recent studies on stable sets behavior about the smaller
primary have reported that a substantial portion of the weak stability boundaries
is composed of collision orbits (Topputo and Belbruno 2009; Makó et al. 2010;
Hyeraci and Topputo 2010; Sousa Silva and Terra 2012; Hyeraci and Topputo
2013; Luo et al. 2014; Luo and Topputo 2014), as well as of invariant manifolds
emanating from Lyapunov orbits (Belbruno et al. 2010, 2013). Moreover, collision
orbits have been proven to embed useful information in the context of mission
design (Anderson and Lo 2005; Kirchbach et al. 2005; Anderson and Parker 2012,
2013).

By using Levi–Civita regularization (Lega et al. 2011), it is possible to treat
lunar collision orbits as invariant objects in the Earth–Moon planar circular re-
stricted three-body problem. We numerically reveal rich phase space structures
including tube structures of lunar collision orbits for specified energy, and investi-
gate the relationships between lunar collision orbits and two-body parameters at
lunar capture (Kepler energy and angular momentum). In doing so, we give evi-
dence that the retrograde ballistic capture orbits are bounded by lunar collision
orbits, which may be thought as a valid substitute to invariant manifolds when
designing medium-energy lunar transfers.

A method for constructing the novel exterior lunar transfers is spun-off from our
analysis. This method implements the dynamics of the bicircular restricted four-
body model and uses the patched restricted three-body models approximation
(Koon et al. 2001); orbits inside the tube structure of lunar collision orbits in
the Earth–Moon model are connected to those whose apogees lie in the second
quadrant in the Sun–Earth model. By construction, this method works under
particular conditions of Jacobi energy and orbit geometry. We obtain solutions
whose time and cost are in-between those of high- and low-energy transfers. We
also compute new medium-energy transfers leading to direct orbits around the
Moon, so complementing the search in Topputo (2013).

The structure of the paper is as follows. In Section 2 the dynamical models
are recalled along with their main features. In Section 3 the dynamics of collision
orbits is studied, and their connection with the novel transfer orbits is discussed.
The method to design novel lunar transfers is given in Section 4. Final remarks
are given in Section 5.

2 Background

2.1 Planar Circular Restricted Three-Body Problem

The planar circular restricted three-body problem (PCR3BP) models the motion
of a massless particle, P3, under the gravitational influences of two primaries, P1,
P2 of masses m1, m2, m1 > m2, which revolve in circular orbits around their
barycenter. In the present study, we use the following normalized equations (see
Szebehely (1967) for details)

ẍ− 2ẏ =
∂Ω3

∂x
, ÿ + 2ẋ =

∂Ω3

∂y
, (1)
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where

Ω3(x, y) =
1

2
(x2 + y2) +

1− µ√
(x+ µ)2 + y2

+
µ√

(x− 1 + µ)2 + y2
+

1

2
µ(1− µ), (2)

is the effective potential, and µ = m2/(m1+m2) is the mass parameter. The Jacobi
integral is

J(x, y, ẋ, ẏ) = 2Ω3(x, y)− (ẋ2 + ẏ2), (3)

and thus solutions lie on manifolds J (C) = {(x, y, ẋ, ẏ) ∈ R4|J(x, y, ẋ, ẏ) = C}
for some energy C. Projecting J (C) onto the configuration space (x, y) defines
the Hill’s regions, which confine the motion of P3. Their topology changes at the
values of C = Ck, corresponding to the Lagrange points Lk, k = 1, . . . , 5, see Figure
1. With µ = 0.0121506683, we have C1 = 3.2003449098, C2 = 3.1841641431, and
C3 = 3.0241502628; C4,5 = 3, regardless of µ.

P1 P2

L1

(a)

P1
P2

L1 L2

(b)

P1
P2

L1 L2L3

(c)

Fig. 1 Forbidden regions for varying energies. (a) C2 < C < C1; (b) C3 < C < C2; (c)
C4,5 < C < C3.

2.2 Planar Bicircular Restricted Four-Body Problem

The planar bicircular restricted four-body problem models the motion of a massless
particle, P3, under the gravitational influences of three massive bodies, P0, P1, P2

of masses m0, m1, m2, m0 > m1 > m2, respectively. In the model, P1 and P2

revolve in circular orbits around their barycenter, and P0 revolves in a circular
orbit around the P1–P2 barycenter in the same orbital plane as P3. In the present
study, P0 is the Sun, P1 is the Earth, and P2 is the Moon. The equations of motion
are (Topputo 2013)

ẍ− 2ẏ =
∂Ω4

∂x
, ÿ + 2ẋ =

∂Ω4

∂y
, (4)

where

Ω4(x, y, t) = Ω3(x, y) +
µs√

(x− as cos θs)2 + (y − as sin θs)2
− µs

a2s
(x cos θs + y sin θs),

(5)
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where µ = m2/(m1 + m2); µs is the mass of the Sun, as is the distance from the
Earth–Moon barycenter to the Sun, and the phase angle of the Sun is θs(t) =
θs,0 + ωst for some initial θs,0 at t = 0; ωs is the relative angular velocity of the
Sun. All the physical parameters used in the present study are in accordance with
those reported in Table 3 in Topputo (2013).

3 Dynamics of Lunar Collision Orbits

3.1 Levi–Civita Regularization

In the present study, we analyze singular, collisional orbits passing through the
center of the Moon in the Earth–Moon PCR3BP. We implement the Levi–Civita
regularization about the Moon (see Lega et al. (2011))

x− 1 + µ = u1
2 − u22, y = 2u1u2, ẋ =

2(u1u3 − u2u4)

u12 + u22
, ẏ =

2(u2u3 + u1u4)

u12 + u22
,

(6)
where u1, u2 are regularized coordinates, u3, u4 are their derivatives with respect
to the fictitious time s, respectively, dt = rds, and r is the distance from the Moon.
The equations of motion in regularized coordinates are

u′1 = u3, u′2 = u4, u′3 =
1

4
(a+ b)u1 +

1

4
cu2, u′4 =

1

4
(a− b)u2 +

1

4
cu1, (7)

where

a =
2(1− µ)√

(u12 − u22 + 1)2 + 4u12u22
− C + (u1

2 − u22 + 1− µ)
2

+ 4u1
2u2

2 + µ(1− µ), (8)

b = 8(u2u3 + u1u4) + 2(u1
2 + u2

2)(u1
2 − u22 + 1− µ)− 2(1− µ)(u1

2 − u22 + 1)(u1
2 + u2

2)

[(u12 − u22 + 1)2 + 4u12u22]
3
2

,(9)

c = 4u1u2(u1
2 + u2

2)− 8(u1u3 − u2u4)− 4(1− µ)u1u2(u1
2 + u2

2)

[(u12 − u22 + 1)2 + 4u12u22]
3
2

. (10)

Note that terms associated to 1/r are removed, thus Eq. (7) can handle the sin-
gularity r → 0 in Eq. (1).

In this work, collision orbits are integrated starting with the initial conditions
at the center of the Moon, u1 = u2 = 0, where the expression for the Jacobi
constant (3) becomes (Broucke 1971)

u3
2 + u4

2 =
µ

2
, (11)

Therefore, for a given µ, u3 and u4 can be parametrized with one angle, θc ∈ [0, 2π],
and the initial conditions for collisional orbits are

u1 = 0, u2 = 0, u3 =

√
µ

2
cos θc, u4 =

√
µ

2
sin θc. (12)

Note that while the initial conditions depend only on θc, the dynamical system
Eq. (7) is further parametrized by a Jacobi constant C, which appears in Eq. (8).
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3.2 Linear Stability Analysis

The null state (u = 0) zeroes the right hand side of Eq. (7), therefore the origin
is an equilibrium for the regularized dynamics. It is thus meaningful to study the
linear stability for varying Jacobi energy. Linearizing Eq. (7) around the origin
yields to two second-order identical, decoupled equations, each one having the
form

v′1 = v2, v′2 =
3(1− µ)− C

4
v1, (13)

where v1 = {u1, u2} and v2 = {u3, u4}. The eigenvalues of Eq. (13) are

λ1 =
1

2

√
3(1− µ)− C, λ2 = −1

2

√
3(1− µ)− C, (14)

which indicate a bifurcation at C∗ = 3(1 − µ) = 2.9635479951. More specifically,
the system is unstable for C < C∗ and linearly marginally stable (purely imaginary
eigenvalues) for C > C∗.

The linear analysis is assessed by integrating the initial conditions in Eq. (12)
using the fully nonlinear, regularized equations of motion (7). In Case (a) we set
Ca > C∗, whereas in Case (b) Cb < C∗. Backward integration is carried out from
t = 0 to t = −π for both cases. The results are shown in Fig. 2. As expected by the
linear analysis, lunar collision orbits in Case (a) stay in the vicinity of the Moon,
whereas those in Case (b) suddenly leave the Moon. A similar feature has been
observed in Anderson and Lo (2005) in the Jupiter–Europa system.

0.8 0.9 1 1.1

x (EMrf)

-0.1

-0.05

0

0.05

0.1

y
(E

M
rf
)

(a)

-1 -0.5 0 0.5 1 1.5 2

x (EMrf)

-1.5

-1

-0.5

0

0.5

1

1.5
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2.5

y
(E

M
rf
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(b)

Fig. 2 Lunar collision orbits integrated from the center of the Moon backward in time within
[0, −π]; Case (a): Ca = 3.1720030296, Case (b): Cb = 2.9520030296. 26 orbits are shown in
each figure, whose initial conditions are evenly spaced in θc (see Eq. (12)). (In this Figure and
in the remainder, EMrf abbreviates Earth–Moon rotating frame.)

3.3 Phase Space Structure of Lunar Collision Orbits

Figure 3 shows the cuts of the lunar collision orbits in Case (b) with a Poincaré
section at x = 0, ẋ > 0 with (a) y < 0 and (b) y > 0. Note that the energy level



Analysis of Medium-Energy Transfers to the Moon 7

is such that forbidden regions vanish since Cb < 3. We include multiple crossings
of the Poincaré section and stop integration if the trajectory is sufficiently far
from the section, unless otherwise noted. We see that there are closed curves
composed of lunar collision orbits in both figures, which indicate the existence of
tube structures.

Fig. 3 The cuts of the lunar collision orbits in Case (b) on a Poincaré section at x = 0, ẋ > 0
and (a) y < 0, (b) y > 0. In both figures, 62832 collision orbits are integrated backward in
time within [0, −1000]. There are 31610 intersections in (a) and 35495 in (b).

Fig. 4 The cuts of WS
L1

(cyan), WS
L2

(green), and WS
DRO (black) on the same Poincaré section

as in Fig. 3(a).
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We then investigate a relationship between lunar collision orbits and invariant
manifolds emanating from several unstable periodic orbits at the same energy (see
Koon et al. (2011) for details on computing periodic orbits and their invariant
manifolds). Fig. 4 shows the cuts of the stable manifolds emanating from the L1

Lyapunov orbit W s
L1

, L2 Lyapunov orbit W s
L2

, and period-3 distant retrograde
orbit W s

DRO (Capdevila et al. 2014; Mingotti et al. 2012) superimposed on the
Poincaré section in Fig. 3(a). Note that at this energy level W s

L1
and W s

L2
do not

form closed curves because of the close encounters to the Moon. Figure 4 indicates
that lunar collision orbits have rich structures, and shadow the invariant manifolds
of the unstable periodic orbits near the Moon.

Invariant manifolds of the period-3 Distant Retrograde Orbit (DRO) lie in
the nested structures of lunar collision orbits. Since the period-3 DRO gives rise
to homoclinic tangles (Wiggins 1991) that result in sticky motion around the
secondary body (Scott and Spencer 2010), the nested structures could generate
trajectories staying around the Moon for a long time.

In Fig. 5, we show four types of lunar collision orbits sampled from the Poincaré
section in Fig. 3(a). The case of y > 0 (Fig. 3(b)) is qualitatively similar. Note
that the lunar collision orbits near the nested structures (orbits (c) and (e)) exhibit
looping behaviors around the Moon because of the sticky motion near invariant
manifolds of the period-3 DRO. Fig. 5 also indicates that fast lunar collision orbits
approaching the Moon without looping behaviors, such as the orbit in Fig. 5(b),
may lie on the simple closed curve. This is confirmed in Section 3.4.

We also investigate the behavior of orbits taken across the lunar collision orbits
in Fig. 3(b). In Fig. 6, orbits inside the closed curve, (d), (e), (f), may be regarded
as the Type II (retrograde) flyby, whereas those outside, (b), (c), (g), (h), as
the Type I (direct) flyby. This nomenclature refers to recently identified families
of flybys in PCR3BP (Campagnola et al. 2012). The relationship between lunar
collision orbits and the sign of angular momentum around the Moon is investigated
in Section 3.5.

3.4 Looping Behavior of Collision Orbits

Although looping behavior is sometimes useful for mission trajectories (Uesugi
1996), it takes time of flight because of the non-straight motion. Since one of this
work’s motivations is the investigation of fast, medium-energy transfers, neglecting
those lunar collision orbits exhibiting looping behavior eases our analysis.

Using Earth-centered polar coordinates (r, θ) it is possible to isolate and remove
orbits exhibiting loops. Along one loop there are two points in which θ̇ = 0, one
having ṙ > 0 and the other ṙ < 0 (see Fig. 2(a) and Fig. 3 in Oshima and Yanao
(2015) for details). Thus, we track θ̇ = 0 events along lunar collision orbits, and if
ṙ > 0 and ṙ < 0 occur in succession, the orbit is excluded from the analysis. Orbits
that cross the abscissa of the Moon three times are not considered as well.

Fig. 7 shows the cuts of the lunar collision orbits in Fig. 3 when the two criteria
above are applied. It is found that the simple lunar collision orbits (i.e., those with
no loops) define closed curve on a Poincaré section. This is not trivial, and gives us
a valid tool to replace invariant manifolds in the medium-energy regime. In Fig. 7
only the first intersection between the orbits and the surface of section is shown;
this is also applied in the figures below, unless otherwise specified. We refer to γ
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Fig. 5 Sample lunar collision orbits picked from Fig. 3(a). The blue spot is the Earth, the
pink one is the Moon.

to indicate the curves having the same properties as those in Fig. 7. Note that
point (b) in Fig. 5(a) belongs to γa in Fig. 7(a), whereas points (d), (e), and (f)
in Fig. 6(a) are defined inside γb in Fig. 7(b).
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Fig. 6 Sample orbits taken across the closed curve in Fig. 3(b).
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Fig. 7 The cuts of the lunar collision orbits in Fig. 3 once the looping orbits are removed; (a)
y < 0, (b) y > 0.

3.5 Lunar Capture Portion of the Novel Transfer to the Moon

The new family of exterior transfers to the Moon (Pareto solutions (vii), (viii),
(ix) in Fig. 8 in Topputo (2013)) has three distinct features in the lunar capture
portion: 1) negative angular momentum (retrograde orbits), 2) negative Kepler
energy (ballistic capture), and 3) medium energy regime (no forbidden regions).

Fig. 8 shows the projection of the reproduced Pareto solution (ix) obtained
by integrating the orbital data (publicly available as supplemental material in
Topputo (2013)) using the bicircular restricted four-body model, and the lunar
collision orbits γ (red curves) computed in the PCR3BP.

Fig. 8 The intersection of the reproduced Pareto solution (ix) in Topputo (2013) and the
lunar collision orbits γ (red curve) on a Poincaré section with C = 2.9947030296, y = 0.69612,
ẏ < 0. The location of the surface of section is chosen at the point where the Jacobi energy of
the reference solution becomes nearly constant. The figures also show initial conditions that
result in (a) positive angular momentum (cyan region) and negative angular momentum (grey
region), and (b) negative Kepler energy (grey region) at the first Moon encounter at 100 km
altitude or less after propagating from the Poincaré section in the Earth-Moon PCR3BP.
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Fig. 8 also shows the initial conditions that result in low-altitude (below 100
km) close approaches at the Moon after propagating in the Earth-Moon PCR3BP.
In particular, in Fig. 8(a) cyan points result in positive angular momentum (di-
rect), and grey points result in negative angular momentum (retrograde). Fig. 8(b)
shows the initial conditions generating orbits with negative Kepler energy (ballistic
capture) at the first Moon encounter at 100 km altitude or less. Angular momen-
tum, h2, and Kepler energy, H2, about the Moon in the Earth–Moon PCR3BP
can be computed via (Topputo 2013)

h2 = (x+ µ− 1)(ẏ + x+ µ− 1)− y(ẋ− y), (15)

H2 =
1

2
[(ẋ− y)2 + (ẏ + x+ µ− 1)2]− µ

r2
, (16)

where r2 denotes the distance from the Moon.
The reference solution lies inside γ, which separates direct from retrograde

lunar capture orbits. Retrograde orbits lie inside γ, whereas direct orbits lie outside
γ, see Fig. 8(a). Note that there is a second complex structure inside γ; this is
associated to orbits having looping behavior about the Moon. We see also that
simple ballistic capture orbits reaching 100 km altitude at the Moon are defined
near γ, see Fig. 8(b).

To sum up, results in Fig. 8 indicate that trajectories satisfying three distinct
features in the lunar capture portion of the novel exterior transfer to the Moon
in Topputo (2013), i.e., medium-energy, retrograde arrival, ballistic lunar capture,
can be found inside γ on a Poincaré section. In this medium–energy regime, lunar
collision orbits can replace invariant manifolds, which are not well-behaved in the
low–energy regime.

4 Construction of the Novel Exterior Transfer to the Moon

We apply the analysis above to develop a method to qualitatively construct medium-
energy, exterior transfers to the Moon. This is done by patching orbits inside γ

and those whose apogees lie in the appropriate (second or fourth) quadrant (Miller
2003) in the Sun–Earth system. For this purpose we use the patched restricted
three-body problem approximation (Koon et al. 2001) to derive initial guess solu-
tions. These are later verified in the bicircular restricted four-body model.

The fourth interesting feature of the novel exterior transfers to the Moon is
that they bounce at apogee far from Sun–Earth Lagrange points L1 or L2, i.e., the
Sun–Earth Lagrange point dynamics is not utilized. In the Sun–Earth PCR3BP,
we take CSE = C1 + ε, ε > 0, and focus on the second quadrant around the Earth.
Note that CSE corresponds to closed forbidden regions at both L1 and L2. This
proves that the Sun–Earth Lagrange point dynamics is not used.

Fig. 9 shows a portion of the zero velocity curve (green) and the boundaries
of the second quadrant (black and cyan). We consider that initial conditions with
C = CSE on the green curve (ẋ = 0, ẏ = 0), black line (x = 1 − µ, ẏ = 0), and
cyan line (y = 0, ẋ = 0) represent the boundaries of trajectories bouncing in the
second quadrant with C = CSE .

We then propagate these initial conditions forward in time using the equations
of motion of the Sun–Earth PCR3BP. Since we seek bounces at apogees, not at
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Fig. 9 A portion of the zero velocity curve (green) and the boundaries of orbits bouncing in
the second quadrant (black, cyan); CSE = 3.0009030034.

perigees, we only integrate the initial conditions satisfying r̈E < 0, where rE =
[(x − 1 + µ)2 + y2]1/2 is the distance from the Earth. Note that ṙE = 0, r̈E <

0 is the condition for apogees. We stop integration at a Poincaré section y =
−0.00102782085, which corresponds to a Poincaré section y = 0.4 in the Earth–
Moon rotating frame with the phase of the Sun θS = 0. These intersections are
transformed into the Earth–Moon system (Koon et al. 2011) with θS = 0 (see
Fig. 10 that uses the same color code). For computation of the trajectories in the
portion of the Earth–Moon PCR3BP, we propagate the lunar collision orbits with
CEM = 2.9920030296 using the regularized equations of motion Eq. (7) backward
in time to the same Poincaré section y = 0.4 in the Earth–Moon rotating frame
and isolate γ (red in Fig. 10).

The result of superposition in Fig. 10(a) exhibits an intersection of γ and the
region of trajectories with apogees in the second quadrant. Thus, the patched
three-body technique (Koon et al. 2001) indicates that the intersecting region is
of potential interest.

We then perform two-dimensional grid search, i.e., propagate forward and
backward in time from the vicinity of the intersection on the Poincaré section:
1.2 ≤ x ≤ 1.6 and −0.22 ≤ ẋ ≤ 0.11 with C = CEM and θS = 0, using the bi-
circular restricted four-body model in the Earth–Moon rotating frame. By this
search, we could find solutions reaching the predefined boundary conditions: 100
km altitude at the Moon and 167 km altitude at the Earth. Point P , the black dot
in Fig. 10, is the solution having the lowest cost.

Fig. 11 shows the trajectory propagated from P forward and backward in
time using the bicircular restricted four-body model and shown in the (a) Earth–
Moon rotating frame and (b) Sun–Earth rotating frame. For this solution, the
total time of flight is 66.25 days and cost is 3820 m/s, which are similar values
of the focused Pareto solutions (vii), (viii), (ix) in Topputo (2013). Moreover,
the obtained solution reproduces the distinct four features of the novel exterior
transfers; dynamics of Lagrange points in the Sun–Earth system is not utilized,
final angular momentum around the Moon is negative (h2 = −0.0107), final Kepler
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Fig. 10 Superposition of γ (red) and the trajectories integrated from the boundaries in Fig. 9.
Point P (black dot) is the solution with the lowest cost. (b) is a particular of (a).

energy around the Moon is negative (H2 = −0.02427), and medium energy (CEM <

3, no forbidden regions).
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Fig. 11 The transfer trajectory leading to a retrograde orbit around the Moon obtained by
propagating P forward and backward in time. (a) Earth–Moon rotating frame, (b) Sun–Earth
rotating frame. (The dashed line at y = 0.4 in Fig. 11(a) represents the surface of section on
which Fig. 10 is achieved.)

4.1 Direct medium-energy solutions

In Topputo (2013), families of transfers usually came in pairs, with each direct-
approach family shadowing the retrograde-approach one. The retrograde solutions
typically improve on the cost of the direct solutions. In fact, while the velocity
in the rotating frame is almost fixed for a given r and C (see Campagnola and
Russell (2010)), when computing the orbit insertion costs, retrograde solutions
benefit from the relative velocity of the reference frame, while direct solutions are
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penalized by the same amount. The retrograde family discussed in the present
paper, however, was not paired by a direct family in Topputo (2013).

We used our method to compute a new family leading to direct orbits around
the Moon and found them from outside γ on the Poincaré section (point Q in
Fig. 10(b)). Fig. 12 shows the obtained direct solution with the lowest cost shown
in (a) the Earth–Moon rotating frame and (b) the Sun–Earth rotating frame. The
total time of flight is 65.98 days and the sum of fuel consumption is 3859 m/s. We
confirm that the obtained direct solution also possesses the distinct features of the
novel exterior transfers except for the sign of the angular momentum.
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Fig. 12 The obtained transfer trajectory leading to a direct orbit around the Moon. (a)
Earth–Moon rotating frame, (b) Sun–Earth rotating frame.

5 Conclusions

The present study analyzes medium-energy dynamics based on collision orbits with
the Moon in the Earth–Moon planar circular restricted three-body problem. We
have revealed rich phase-space structures of lunar collision orbits and investigated
the relationships between lunar collision orbits and two-body parameters at lunar
capture (Kepler energy and angular momentum) in the medium-energy regime.

The analysis is applied to develop a method for constructing the novel exterior
transfer to the Moon previously found by Topputo (2013). The proposed method
works in the medium-energy regime once geometrical conditions on the collision are
satisfied. The rationale is exploiting information of the tube structures of lunar
collision orbits and boundaries of bounces in appropriate quadrant around the
Earth at apogees. By this method, we have constructed trajectories of the same
family of the novel lunar transfers, and also found medium-energy transfers leading
to direct orbits around the Moon in the bicircular restricted four-body model.

Acknowledgements This study has been partially supported by Grant-in-Aid for JSPS Fel-
lows No. 15J07090, and by JSPS Grant-in-Aid No. 26800207.



16 Kenta Oshima et al.

References

Anderson, R. L., Lo, M. W.: Virtual exploration by computing global families of trajectories
with supercomputers. 15th AAS/AIAA Space Flight Mechanics Meeting, AAS 05-220,
Copper Mountain, CO, (2005)

Anderson, R. L., Parker, J. S.: Survey of ballistic transfers to the lunar surface. J. Guid.
Control Dyn. 35, 1256–1267 (2012). doi:10.2514/1.54830

Anderson, R. L., Parker, J. S.: Comparison of low-energy lunar transfer trajectories to invariant
manifolds. Celest. Mech. Dyn. Astr. 115, 311–331 (2013). doi:10.1007/s10569-012-9466-3

Belbruno, E., Miller, J.: Sun-perturbed Earth-to-Moon transfers with ballistic capture. J. Guid.
Control Dyn. 16, 770–775 (1993). doi:10.2514/3.21079

Belbruno, E., Gidea, M., Topputo, F.: Weak stability boundary and invariant manifolds. SIAM
J. Appl. Dyn. Syst. 9, 1061–1089 (2010). doi:10.1137/090780638

Belbruno, E., Gidea, M., Topputo, F.: Geometry of weak stability boundaries. Qualit. Theory
of Dyn. Syst. 12, 53–66 (2013). doi:10.1007/s12346-012-0069-x

Broucke, B.: Periodic collision orbits in the elliptic restricted three-body problem. Celestial
Mechanics 3, 461–477 (1971). doi:10.1007/BF01227792

Burnett, D. S., Barraclough, B. L., Bennett, R., Neugebauer, M., Oldham, L. P., Sasaki, C.
N., Sevilla, D., Smith, N., Stansbery, E., Sweetnam, D., Wiens, R. C.: The GENESIS
discovery mission: Return of solar matter to the Earth. Space Sci. Rev. 105, 509–534
(2003). doi:10.1023/A:1024425810605

Campagnola, S., Lo, M. W.: BepiColombo gravitational capture and the elliptic, restricted
three-body problem. Proceedings in Applied Mathematics and Mechanics 7, 1030905–
1030906 (2008). doi:10.1002/pamm.200700330

Campagnola, S., Russell, R. P.: Endgame problem part 2: Multi-body technique and T-P
graph. J. Guid. Control Dyn. 33, 476–486 (2010). doi:10.2514/1.44290

Campagnola, S., Skerritt, P., Russell, R. P.: Flybys in the planar, circular, restricted, three-
body problem. Celest. Mech. Dyn. Astr. 113, 343–368 (2012). doi:10.1007/s10569-012-
9427-x

Campagnola, S., Boutonnet, A., Schoenmaekers, J., Grebow, D. J., Petropoulos,
A.E.: Tisserand-Leveraging Transfer. J. Guid. Control Dyn. 37, 1202–1210 (2014).
doi:10.2514/1.62369

Campagnola, S., Buffington, B. B., Petropoulos, A.E.: Jovian tour design for or-
biter and lander missions to Europa. Acta Astronaut. 100, 68–81 (2014).
doi:10.1016/j.actaastro.2014.02.005

Capdevila, L., Guzzetti, D., Howell, K.: Various transfer options from Earth into distant retro-
grade orbits in the vicinity of the Moon. 24th AAS/AIAA Space Flight Mechanics Meeting,
AAS 14-467, Santa Fe, NM, (2014)

Davis, D. C., Howell, K. C.: Trajectory evolution in the multi-body problem with
applications in the Saturnian system. Acta Astronaut. 69, 1038–1049 (2011).
doi:10.1016/j.actaastro.2011.07.007

De Assis, S. C., Terra, M. O.: Escape dynamics and fractal basin boundaries in the planar
Earth–Moon system. Celest. Mech. Dyn. Astr. 120, 105–130 (2014). doi:10.1007/s10569-
014-9567-2

Folta, D. C., Woodard, M., Howell, K., Patterson, C., Schlei, W.: Applications of multi-body
dynamical environments: The ARTEMIS transfer trajectory design. Acta Astronaut. 73,
237–249 (2012). doi:10.1016/j.actaastro.2011.11.007

Hyeraci, N., Topputo, F.: Method to design ballistic capture in the elliptic restricted three-body
problem. J. Guid. Control Dyn. 33, 1814–1823 (2010). doi:10.2514/1.49263

Hyeraci, N., Topputo, F.: The role of true anomaly in ballistic capture. Celest. Mech. Dyn.
Astr. 116, 175–193 (2013). doi:10.1007/s10569-013-9481-z

Koon, W. S., Lo, M. W., Marsden, J. E., Ross, S. D..: Low energy transfer to the Moon. Celest.
Mech. Dyn. Astr. 81, 63–73 (2001). doi:10.1023/A:1013359120468

Koon, W. S., Lo, M. W., Marsden, J. E., Ross, S. D..: Dynamical Systems, the Three-Body
Problem and Space Mission Design. Marsden Books, Wellington (2011)
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