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Abstract: Simulations and phantom measurements are used to evaluate the ability of 
time-domain diffuse optical tomography using Mellin-Laplace transforms to quantify the 
absorption perturbation of centimetric objects immersed at depth 1-2 cm in turbid 
media. We find that the estimated absorption coefficient varies almost linearly with the 
absorption change in the range of 0-0.15 cm-1 but is underestimated by a factor that 
depends on the inclusion depth (~2, 3 and 6 for depths of 1.0, 1.5 and 2.0 cm 
respectively). For larger absorption changes, the variation is sublinear with ~20% 
decrease for δµa = 0.37 cm-1. By contrast, constraining the absorption change to the 
actual volume of the inclusion may considerably improve the accuracy and linearity of 
the reconstructed absorption. 
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1. Introduction  
In recent years, the possibility to characterize in-vivo and non-invasively the optical 
properties (absorption and scattering) of biological samples has attracted a great 
interest in the field of medical imaging. Pathologies like breast cancer [1,2] or 
osteoarticular diseases [3] are related to localized changes of optical properties due to 
increase of vascularization or collagen content.  

Another important field is brain imaging. In this case, a map of oxy- and deoxy-
hemoglobin concentration is fundamental for the diagnosis of injuries like ischemia [4], 
hemorrhage [5] and for functional imaging during a variety of tasks [6]. Recently, we 
have also proposed the monitoring of autologous tissues (“flap”) in reconstruction 
surgery using diffuse optical techniques. The vascularization of these tissues is 
fundamental and a fast postoperative control is important for the success of the 
operation [7]. 

A common approach to obtain a full 3D map of the optical properties in biological 
media at depths of a few cm is based on the combination of a set of light sources and 
detectors placed on the surface of the medium. By measuring the light collected at the 
detector d due to the light injected at the source s, it is possible by the help of sensitivity 
matrices to recover the distribution of optical properties inside the sample. This 
technique is called Diffuse Optical Tomography (DOT) [8]. 

Different modalities for DOT have been proposed in literature that differentiate on 
the kind of light modulation: continuous-wave (CW) is based on CW light, time-resolved 
(TR) is based on short-pulsed light, frequency-domain (FD) is based on amplitude and 
phase modulated illumination [8]. Among these it is possible to further add spatial 
modulation both on the source and detection leading to the approach of structured-light 
illumination and compressive sensing [9,10]. 

The TR approach has the important feature that time-of-flight of detected photons 
directly encodes space and, in a reflectance geometry where sources and detectors 
are placed on the same side, this means that time encodes photon penetration 
depth [11]. Moreover, by selecting temporal gates of the time-of-flight distribution, it is 
possible to directly select photons probing deeper or shallower regions of the 
tissue [12,13]. DOT is intrinsically an ill-posed problem and usually needs some kind 
of regularization that can affect the accuracy of the reconstructed optical 
properties [14]. This side effect leads to low-pass filtered images consequently 
affecting the estimate of absolute chromophore concentrations like hemoglobin, water, 
lipid and collagen [15]. As an example, the collagen concentration in breast lesions is 
fundamental for the correct estimation of breast cancer risk, and can also help lesion 
diagnostics [16]. The lack of accuracy is a limit for the reliability and diagnostic 
capability of DOT. 

Most of DOT literature show reconstructed images of optical properties, where the 
quality reconstruction is typically evaluated as image contrast or contrast-to-noise 
ratio [17,18] and in terms of spatial resolution. Few works address the quantification 
capabilities of DOT that is the issue of accurate reconstruction of the optical properties. 
Works using FD-DOT in 2D have shown errors up to 15% for heterogeneities of 2.5 cm 
size having absorption coefficient µa = 0.1 cm-1 over a background of µa = 0.05 cm-
1  [19]. Errors of 25% have been also reported for smaller inhomogeneities (1.7 cm size) 
with almost the same background and absorption perturbation [20]. In 3D FD-DOT an 
error of 36% has been shown for a small cylindrical object (0.8 cm diameter, 1.0 cm 
height) with almost the same optical properties of the above mentioned cases [21]. A 
more systematic work about the quantification problem in 3D FD-DOT has been 
reported for objects with size ranging from 1 to 2 cm and absorption perturbations up 
to 0.2 cm-1. The error achieved, using a 3 steps reconstruction algorithm, was 27% for 
the 1 cm heterogeneity and 5.5% for the 2 cm one [15]. All these mentioned studies 
are based on FD-DOT on a cylindrical phantom with a 180 degrees arrangement of 
sources and detector at different planes, whereas no results are available for purely 
reflectance geometries, which is the most used for biomedical applications.  

Despite these specific contributions, we still lack a broad consensus on shared 
protocols for performance assessments of DOT systems and algorithms. Such 



procedures and metrics would greatly help development of new instruments and 
reconstruction tools against objective figures, permit grading of different systems, 
facilitate more sound comparison of clinical results, grant quality control in clinical 
studies and pave the way to industrial standards. All these aspects are fundamental for 
a more mature growth and uptake of DOT in clinics, and to improve soundness and 
consistency of research. 

In the more general field of diffuse optical imaging and spectroscopy, some 
successful attempts have been pursued in the last ten years to reach consensus in 
large inter-laboratory studies for performance assessment of diffuse optics 
instruments. We can quote, for instance, the MEDPHOT Protocol [22] for diffuse 
spectroscopy of homogeneous media, the BIP Protocol [23] for basic performance 
assessment of time-resolved systems, the NEUROPT Protocol [24] dealing with 
imaging in heterogeneous diffusive media. This latter is the one closest to the 
specificities of DOT, although it addresses more in general imaging systems and not 
only fully 3D tomographs. 

More specifically, the NEUROPT Protocol assesses 3 key features that are 
sensitivity to localized small absorption changes (contrast and contrast-to-noise ratio), 
spatial resolution (depth selectivity and lateral resolution) and quantification of 
absorption changes (accuracy and linearity). In particular, accuracy and linearity are 
important because they are directly related to the ability of quantifying chromophore 
concentrations and their variations.  

The idea of this paper is to make a step towards the translation of this performance 
assessment in TR-DOT with particular attention to the quantification problem. 

In previous studies, we have already reported results on the sensitivity and spatial 
resolution of TR-DOT using a short source-detector separation scanning scheme [25], 
demonstrating that the adoption of a fast-gated single-photon avalanche diode (SPAD) 
has enabled the possibility to detect photons with a long time-of-flight, increasing the 
sensitivity at depths higher than 2.0 cm. Further, the use of a fast-gated SPAD allowed 
us to experimentally implement the null-distance approach with advantages in term of 
contrast, spatial resolution and signal throughput [26,27]. 

In this paper, we specifically address the issue of quantification in a TR-DOT 
realization in reflectance geometry. In particular, we study the effect of the source-
detector separation, of the optical properties of the perturbation, and of its depth. The 
perturbations consist of black totally absorbing objects that – as it has been recently 
demonstrated [28] – are representative of a variety of perturbations with different shape 
and optical properties. The study is restricted to the TR approach in reflectance 
geometry and to purely absorbing perturbations. Phantom measurements are 
compared to simulations to disentangle physics or model contributions from influence 
of instrumentation. The reconstruction algorithm is based on the Mellin-Laplace 
transform (MLT) which permits to extract information in depth by time windowing the 
TR measurements [29].  

Besides providing systematic results for the specific TR-DOT approach 
considered, this paper adds contributions in view of a future inter-laboratory consensus 
study on performance assessment of DOT instruments, which could either evolve from 
the NEUROPT Protocol or start as a new initiative. 

The paper is organized as follows: Section 2 defines the problem, describes the 
experimental setup, the phantom preparation and the reconstruction algorithm. Section 
3 defines the figures used to assess the quantitation performances. Section 4 displays 
results for linearity and accuracy both on simulation and phantom experiments. Section 
5 summarizes the key findings of the study, addresses the specific factors that affect 
TR-DOT quantification, and discusses the implication for specific clinical problems. 

2. Material and methods 
2.1 Geometry 
Time-domain DOT acquisitions in reflectance geometry were carried out with a 
horizontal scan at the surface of the phantom with a probe composed of one source 
and two detectors. The scan geometry was designed to obtain 30 source positions at 
steps of 0.75 cm with the inclusion decentered compared to the scan area to better 
appreciate reliability of our system to reconstruct and detect precisely in lateral (x and 



y) directions (Fig.1 (a)). We also investigated the influence of source detector distances 
by testing two probes in L configuration with one source (yellow circle) and two 
detectors at 1.5 cm (blue crosses) or 3.0 cm (green crosses) interfiber distances, as 
represented in Fig.1 (a). The center of inclusion was set at different depths z below the 
surface of the liquid phantom. The optodes were placed on the surface of the phantom 
and were held in three holes drilled in a black PVC plank. To avoid the waveguiding 
effect, the liquid phantom touched the black PVC holder and we removed possible air 
bubbles by gently dragging a finger to sweeping away bubbles. For the reconstruction, 
we used a mesh with a step of 0.2 cm (small grey dots in Fig.1 (a)). 

The reconstruction is based on the analysis of the differences between the signal 
recorded on the inhomogeneous sample containing an inclusion and the signal 
recorded on a reference (homogenous medium). Such reference measurements have 
been acquired on an x-line scan far from the inclusion (at x = -4 cm).  
 

 
Fig. 1. (a) Geometry of the scan x-y of both source-detector distances. The source (yellow 
circle) scan the yellow area. The grey disc corresponds to the position of the inclusion (x = 
0 cm. y = 0 cm). The crosses are the detection positions of the couple of detector optical 
fibers at 1.5 cm (blue) and 3.0 cm (green) distance from the source. Each black dot is 
separated by 0.75 cm in both directions. (b) Instrumental setup with the phantom containing 
an absorbing object (detailed in section 2.2). 

2.2 Experimental Setup 
The experimental setup (whose schematic is reported in Fig. 1(b)) was based on a 
laser source providing pulses at 820 nm with a repetition rate of 40 MHz and 26 ps 
pulse width (Fianium Ltd, London). Light emitted from the laser was first attenuated by 
means of a Variable Optical Attenuator (VOA) operating from 0 up to 12 OD (Optical 
Density) and then injected into the medium via a 200 µm core optical fiber (NA = 0.22; 
2.45 m long), as reported in Fig.1(b). 

Photons reemitted from the sample were collected in two different positions by 
means of two fibers (1 mm core; 0.37 NA; 2.45 m long) posed at 1.5 or 3.0 cm distance 
from the source, depending on the experiment. Photons harvested from each detection 
fiber were then focused onto a silicon fast-gated SPAD [30] (active area diameter: 100 
µm) using a pair of aspheric lenses. 

When a photon hits the active area of the detector, an avalanche is triggered and 
the fast-gated SPAD module provides a pulse that is fed as a “start” to the TCSPC 
board (SPC-130, Becker&Hickl GmBH, Berlin, Germany). The “stop” pulse was sent to 
both TCSPC boards by the laser synchronization signal. This signal was also sent to 
the two fast gated modules to synchronize the opening of the gate (temporal width: 5 
ns). In order to enable the detection at different delays from the laser injection into the 



medium, the signal for the gate opening was delayed by means of a home-made 
programmable delayer based on transmission lines (minimum delay step: 25 ps).  

The fast-gated modules were also used in the so-called “free-running” (i.e. non-
gated) mode thus acquiring the full distribution of time-of-flight of re-emitted photons. 
In this case, the gate was opened before the first photon is reemitted and it was closed 
after the last photons are collected. 

Both for gated and non-gated mode, at each interfiber distance, we performed the 
scan (following the geometry explained in the previous paragraph) using 4 different 
totally absorbing objects. The inclusions were posed at a depth (defined as the distance 
between the surface and the centroid of the inclusion) of 1.0, 1.5 and 2.0 cm. In case 
of gated measurements, for each scanning point and for each delay at which the SPAD 
is gated-ON, curves were acquired for 5 s (5 repetitions of 1 s). As required by the fast-
gated acquisition technique (see Ref. [31] for details), to exploit the gating capability to 
collect more late photons, there is the need to increase the power injected into the 
phantom when increasing the gate delay. In order to guarantee a significant increase 
in the number of late photons when increasing the gate delay, we decided to proceed 
in the following way for the selection of the number of gates. We started with a first 
gating window opened about 2 ns before the reflectance curve peak in order to include 
it in the acquisition window, and we set a proper attenuation using the VOA to fit the 
single-photon counting statistics (i.e. the photon counting rate was kept below 1.5 M 
counts per second, which corresponds to about 4% of the laser pulsing rate [32]) . 
Then, we increased the laser power injected into the phantom reducing the VOA 
attenuation by a factor of 5. In this situation, of course, the count rate was well above 
the single-photon statistical limit for TCSPC. In order to fit such limit, we then increased 
the delay at which the SPAD was gated-ON, thus rejecting early photons and fitting 
again the single-photon counting statistics. Afterwards, we repeated the procedure per 
each delay, up to when the maximum available power is injected into the sample. For 
3.0 cm interfiber distance, we needed 3 delays while for the 1.5 cm 5 delays were 
necessary due to the increased number of photon reaching the detector all delays when 
using small source-detector separations, as explained in Ref.  [26]. Therefore, the 
acquisition times were 15 s and 25 s, respectively. In order to have the same acquisition 
time as for gated measurements, the collection time of photon of the non-gated 
acquisitions at one scanning point was 15 s and 25 s for 3.0 cm and 1.5 cm interfiber 
distances respectively.  
2.3 Phantoms 
For the realization of realistic absorption perturbations typical of biomedical situations, 
we followed the Equivalent Black Volume (EBV) approach, that is the use of a set of 
totally absorbing objects with different volumes. It was demonstrated, both with Monte 
Carlo simulations and phantom measurements [28], that it is possible to group different 
absorption perturbations of different size (volume) and intensity (absorption 
perturbations) in equivalence classes, whose members produce the very same effect 
on time-domain photon distributions over different geometries (e.g. reflectance and 
transmittance), source-detector distances, and background optical properties. For 
each class, a totally absorbing object with a given volume can be identified, yielding 
the same effects of all perturbations belonging to the same class. In practice, the 
complex combination of different possible absorption perturbations can be modelled by 
phantoms using a set of small black PVC cylinders with increasing volumes. Table 1 
shows the dimensions and volumes (EBV) of the objects used in the present study 
together with their equivalent absorption perturbation (δµa

vol) calculated over a 1 cm3 
volume sphere. These equivalent absorption perturbations were determined in [28] and 
correspond to the δμa that a spherical perturbation of 1 cm3 volume must have to 
produce to obtain the same perturbation of the totally absorbing object. This 
correspondence was validated as far as the object is not too close to the source or 
detector (e.g., depth < 1 cm). 

Table 1. Summary of the 4 totally absorbing cylinders of various sizes with diameters, 
heights, corresponding volumes and the equivalent absorption perturbations in a region 
corresponding of a sphere of 1 cm3 [28]. 

Inclusion Size 1 Size 2 Size 3 Size 4 



Diameter [cm] 0.32 0.4 0.5 0.68 
Height [cm] 0.32 0.4 0.5 0.68 
Volume [.10-3 .cm3] 25 50 100 250 
Equivalent δμa

vol [cm-1] 0.056 0.087 0.15 0.37 
 
The inclusions were hold in a large tank (volume 29×29×14 cm3) through a thin 

wire hold on the bottom of the tank and painted in white to reduce interference. The 
tank was filled with a water suspension of Intralipid and black ink (Higgins), yielding an 
absorption coefficient (µa) equal to 0.07 cm ̵1 and a reduced scattering coefficient (µs

') 
equal to 12 cm-1 at 820 nm. We followed a standard recipe coming from the work of 
Spinelli et al [33]. 
2.4 Simulation process 
To better understand the physical mechanisms of TR-DOT concerning the 
quantification in depth, we generated simulated measurements similar to those in the 
experiments (same geometric configuration). From the mathematical point of view, 
supposing that source and detector can be seen as points, a TR measurement is the 
time convolution of the Green's functions (which are intrinsic responses of the diffusive 
medium to a Dirac point source) and the instrumental response function (IRF) of the 
experimental setup. The simulation procedure involves first to convolve the 
experimental IRF of the SPAD with the Green's functions generated using the diffusion 
equation solved with our MLT approach described below. Then each curve was 
multiplied by a scaling factor in order to get the desired photon integral. Finally, Poisson 
noise comparable with experimental measurements was added. The inclusion was 
simulated by a 1 cm3 sphere with a δµa given by the Equivalence Relation reported in 
Table 1. Geometry, background optical properties, and reconstruction processing 
matched those used for the phantom measurements.  
  



2.5 Reconstruction technique 

Forward model 
Light propagation in the diffusive medium was modeled using the time-domain diffusion 
equation: 
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where c is the speed of light in the medium depending of the optical index fixed at n = 
1.4.  D( r! ) is the spatial distribution of the diffusion coefficient which is defined by 

))(3/(1 ' rs
!µ  with )(' rs

!µ  the reduced scattering coefficient. µa( r
! ) is the spatial distribution 

of the absorption coefficients. ),( trS !  is the spatial and temporal distribution of the light 
source. ),( tr!ϕ  is the photon density. To take into account the boundary constraints of 
the surface, we apply the modified Robin boundary condition. For the reconstruction, 
we will only take )(ra

!µ  as the unknown and )(' rs
!µ  is chosen constant and equal to 12 

cm-1. 
Green’s function, noted G ( r

! , r! ',t), is defined as the solution of Eq. (1) at position 
r! ’ for a Dirac source at r! . We also note Gs( r

! ,t) = G( sr
! , r! ,t), Gd( r

! ,t) = G( dr
! , r! ,t) and 

Gsd(t) = G( sr
! , dr
! ,t) some subsets of the Green’s function where s and d are indexes for 

sources and detectors. 
When a small perturbation on the absorption δµa( r

! ) is applied, the Green’s 
functions of Eq. (1) are known to vary according to Eq. (2): 
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where ‘*’ is the time convolution product. 
Inverse Problem 
Our reconstruction method is based on the work by Puszka et al  [34] which showed 
that by combining perturbed )(tM B

sd  and reference )(tM A
sd measurements acquired on 

two configurations without (A) and with the inclusion (B) with the known Green’s 
functions (GA) of configuration (A) and the estimation at iteration k of the Green’s 
functions (GB(k)) of configuration (B), we obtain an equation which links measurements 
to the update δµa to be applied to the unknown absorption map (µa

(k+1)
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The advantage of such an equation is that it does not require the knowledge of the 
IRF of the acquisition system. 
  



Discretization of the problem  
To numerically solve the problems (forward problem, i.e. the determination of Green’s 
function and inverse problems, i.e. the µa update computation), discretizations in time 
and space are applied. Spatial discretization is obtained by using the finite volume 
method (FVM) which gives a finite partitioning in tetrahedra of the 8.0×6.6×3.6 cm3 
medium with 24354 nodes. The time discretization is obtained by using the MLTs as 
described in [29]. It permits to transform the continuous TR signals f(t) to a few 
coefficients as shown in the following:  
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The parameter n (integer) is the order of the transform (growing from 0 to N, here N 
being fixed to 20) and p (a positive real number) is the analysis precision set here to 3 
ns-1, meaning that 3 coefficients are extracted per nanosecond. The MLT, which 
performs windowings on TR signal, is suitable to extract pieces of information from late 
photons and, therefore, to improve the quality of reconstruction of deep layers of 
scattering media. The ability to detect an inclusion in depth was studied in Ref. [34]. 

Update of the medium optical properties 
After the problem discretization, Eq. (3) is transformed as a matrix equation: 
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where W is the sensitivity matrix and m index of the volume of node. 
The 3D map of the absorption coefficient update is obtained by minimizing the 

weighted least squares criterion χ2 associated to Eq. (5) with a conjugated gradient 
method (5 iterations). The formula below of χ2 is given in matrix form.  

22 )( WRXYL −=χ  (6) 

The L (Left preconditioning) matrix in Eq. (6) is a diagonal matrix filled with the inverse 
of standard deviation of the noise on Y, derived from an assumption of photon noise 
on the original measurements A

sdM and B
sdM . We also introduce an R (Right 

preconditioning) matrix to reexpress the problem on an adapted basis ([δµa = RX]). In 
the following, R is either used to attribute weight to voxels when it is a diagonal matrix. 
In this case, we set its elements Rmm to the square of the distance between the position 
of node m and the proximal source and detector locations to reinforce sensitivity in 
deep layers. In another case R can also force identical optical parameter per predefined 
region. R is then a “Dictionary matrix” whose columns gather voxels together into these 
predefined regions.  

Ten iterations for all the cases (forward model and optical parameters updates) are 
performed to get the final reconstructed µa. 

Constrained Method  
By incorporating geometric constraints in the reconstruction, it was demonstrated in a 
review [35] that prior information in near-infrared spectroscopy (NIRS) maximizes the 
accuracy in recovery the expected optical parameters. The constrained method 
implemented here consists in using R as a Dictionary matrix to force the absorbing 
inclusion on the expected position of the equivalent volume (i.e. a sphere of 1 cm3).  

Because of the low resolution of DOT, one of the solutions is to do multimodal 
imaging and use a high resolution imaging like magnetic resonance imaging (MRI) to 
bring spatial information seen as a priori for DOT. Thus in this paper, we are exploring 



a priori spatial approach and see if the quantification can be improved with such an 
algorithm. 

3. Measuring the quantitation 
While the objectives assessment of sensitivity and spatial resolution in DOT have been 
addressed in many papers, and are related to the figures of contrast (C) or contrast-to-
noise ratio (CNR) and to spatial localization and resolution, conversely the assessment 
of quantitation is less discussed. 

To be in agreement with the use of the EBV approach, we evaluate the 
reconstructed δµa

vol integrated over a given volume because the maximum value δµa
max 

of the reconstructed absorption has non-physical meaning since it will depend on the 
effective volume of the perturbation. This approach is consistent with the findings of 
the EBV study. Since plenty of combinations of absorption changes and volumes yield 
the very same effect on the measurements, then it is not possible to assess δµa alone. 
Rather, we can estimate the equivalent δµa

vol corresponding to a given volume. It is not 
even simply the product of δµa and volume that is retrieved since the Equivalence Class 
implies a non-linear relation. Clearly, these equivalence relations are in force only for 
small objects (e.g. volume ≤ 1 cm3) and are ultimately related to the poor spatial 
resolution of DOT [28].  

In this paper, we quantified the absorption variation (δµa) in the DOT reconstruction 
by comparing the integral reconstructed δµa,i

vol over a volume of each absorbing object 
i according to δµa,i

true which is the expected variation. In our case, the integral 
reconstructed δµa,i

vol was calculated by taking the integral over the equivalence volume 
of the perturbation (i.e. a 1 cm3 sphere) and by subtracting the background absorption 
coefficient. The background absorption coefficient was determined by taking the mean 
in an area without perturbation of the inclusion. 

We evaluate the accuracy on the retrieval of δµa with a relative error ε defined as 
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We evaluate the linearity on the retrieval of δµa by fitting the dependence of δµa
vol 

vs. δµa
true using a 2nd order polynomial and looking at the linear and non-linear terms. 

More precisely, we extract the 3 parameters a, b, c using the expression: 

cbxaxy ++= 2  (8) 

Where
γ

δµ vol
ay = ,

γ
δµ true

ax = , and -1cm	1.0=γ  is a normalization factor to 

provide dimensionless coefficients. The linearity of the retrieval can be assessed 
considering the slope of the interpolating polynomial that is the first derivative of the 
previous expression: 

baxslope += 2  (9) 

Thus, a  represents the non-linear distortion that must be referred to the b  value. 
The deviation from linearity can be expressed as: 

x
b
aNL Δ= 2  (10) 

Which is the fractional deviation from a linear behavior over a spanned range of 
absorption of xΔ . For example, referring to the numbers which will be identified in the 



Results session for z = 1 cm, a nonlinear coefficient %10=a  combined with %100=b  
implies that a distortion from linearity (i.e. a relative decrease in slope) of %20−  is 
expected spanning an absorption range of 1=Δx  (i.e. over a range of absorption 
change of 0.1 cm-1). The linear coefficient b  should be as close as possible to 100% 
so as to reproduce the correct variation in δµa. For high values of NL, the slope must 
be evaluated for the effective x value. A lower value of b  – accompanied by a low non-
linearity NL – indicates still a linear trend but with a reduced slope on the retrieved δµa. 
Obviously, for 0→b  and 0=NL , the system is linear but absorption variations are so 
low that cannot possibly be detected. The coefficient c  displays the offset of the 
retrieval for 0=x , thus for a null absorption perturbation. The closeness of b  to 100%, 
accompanied by a low a  and c  coefficients can be used as another measure of 
accuracy.  

Another important parameter of quantification in clinical diagnosis is precision. This 
parameter is typically addressed under the sensitivity framework, as contrast-to-noise 
ratio, which indicates how the detected perturbation stands out of noise. We have not 
studied this figure systematically for all combinations of δµa, z, ρ, and gated modality. 
Rather, we performed some overnight repeated scans for one inclusion and we 
obtained relative standard deviations less than 8% at different depths, which 
demonstrates a good stability of the quantified values.  

4. Results 
The simulation and experimental results obtained with non-gated SPAD of the 
reconstructed 3D absorption maps are displayed in Figs. 2 and 3 with two cut views 
along the transversal slice (z-y) at x = 0 and the horizontal slice (z-y) at the expected 
depth. The common colorbar for simulation and experiment shows the quantitative 
scale of the reconstructed absorption coefficient distribution.  

The absorption perturbation appears as a spot surrounded by a quite homogenous 
background whose µa is close to the expected value of 0.07 cm-1 with less than 13.1 % 
relative error. For all the maps, a good localization in x-y and in depth z with an 
accuracy better than 0.2 cm is obtained. In Fig. 2, a gradual increase of the absolute 
absorption coefficient is observed from inclusion “size 1” (δµa = 0.056 cm-1) to inclusion 
“size 4” (δµa = 0.37 cm-1). The absorption values of the experimental results are slightly 
higher than in simulation. Fig. 3 shows the effect of the depth on quantification. The 
reconstructed absorption of a given inclusion (“size 2” is shown here) decreases with 
the depth (1.0-1.5-2.0 cm). The experimental and simulation 3D maps are comparable 
and follow the same trend. In both figures (Fig.2 and Fig.3), artefacts appear for high 
absorption inclusions (white hollows below and around the absorption spot) probably 
due to the L configuration of the probe affecting the reconstruction. With gated SPAD, 
we get the same remarks on the 3D reconstruction absorption maps (not shown).  

 



 
Fig. 2. Numerical and experimental 3D reconstruction absorption maps with non-gated 
SPADs at 3.0 cm source-detector distance represented in a vertical (z-y) and a horizontal 
(y-x) slices both passing through the expected center of the inclusion (x = 0, y = 0 and z 
= 1.0 cm). From top to bottom, the 4 inclusion sizes are shown (see Table 1 for equivalent 
δµa). The black circle corresponds to a 1 cm3 sphere and is centered on the expected 
position of the inclusion. 

 



 
Fig. 3. Numerical and experimental 3D reconstruction absorption maps with non-gated 
SPADs at 3.0 cm source-detector distance represented in a vertical (z-y) and a horizontal 
(y-x) slices both passing through the expected center of the inclusion “size 2” (equivalent 
δµa = 0.087 cm-1). From top to bottom, the 3 depths are shown. The black circle 
corresponds to a 1 cm3 sphere and is centered on the expected position of the inclusion 
(x = 0, y = 0 and given depth). 

 
Fig. 4 synthesizes the quantified absorption variations δµa

vol from the 3D 
reconstruction absorption results for all the configurations: at 1.5 or 3.0 cm interfiber 
distance, with non-gated or gated SPAD, for simulations and for experiments (dotted 
and continuous lines, respectively) at 1.0, 1.5 or 2.0 cm depth and for each inclusion. 
For example, the continuous and dotted brown curves in box “Non Gated” and “ρ = 3.0 
cm” are absorption variations extracted from the 3D reconstruction maps of the 
absolute absorption distribution of Fig. 2. All the plots are increasing in accordance with 
the expected black curve. Concerning the linearity, the plots seem to be fairly linear up 
to δµa = 0.15 cm-1 in all cases. The gated SPAD slightly improves the quantification for 
ρ = 1.5 cm. The shorter source-detector separation provided slightly better results in 
general. A possible reason for this is due to stricter photon confinement at the shorter 
as compared to a larger distance yielding a better contrast and thus a better 
quantification. We observe that the quantification decreases with depth and this effect 
is the same for both experiment and simulation data. This reinforces the reliability of 
the direct model based on the diffusion approximation. Only the experimental results 
with the inclusion “size 4” (δµa = 0.37 cm-1) with ρ = 1.5 cm is far from the associated 
simulation which is possibly due to the limits of the conditions of EBV approach for 
short distances (inclusion vs surface and source-detector couple) or to the higher 
complexity of measurements at a short ρ.  



 
Fig. 4. Overview of quantified plots of δµa

vol, the integral variation in absorption coefficient 
over a 1 cm3 spherical volume, in the different configurations: with small or large source-
detector distance (ρ) (columns), by using two non-gated or gated SPADs (rows), in 
simulation and experiment, at 1.0, 1.5 or 2.0 cm depth and with each inclusion. The black 
curves correspond to the expected values δµa of each inclusion. The dotted curves 
correspond to the simulation curves and the continuous curves correspond to the 
experimental curves.  

 
The accuracy is obtained only at 1.0 cm up to 0.15 cm-1 with relative errors inferior 

to 30% in the experiment (brown curves in Fig. 4). Results in simulation for deep 
inclusion are similar for 1.5 or 3.0 cm interfiber distance. The decrease of quantification 
with depth and for high absorptions may be due to the loss of resolution of the 
reconstruction with depth and the difficulties to get marked inclusions without 
smoothing of the reconstructed data. The current algorithm seems to have limits to 
reconstruct absorbing objects with high absorption variation above 0.2 cm-1 but it is an 
acceptable absorption range for the target medical applications of diffuse optics 
imaging 

With the spatially constrained method, the quantified plots are more linear and the 
reconstructed values of the absorption perturbation are much larger and closer to the 
expected ones for all depths (Fig. 5). In simulation, we recover exact absorption of the 
background and inclusion for each depth, each mode and for both source-detector 
distances. With 3.0 cm interfiber distance, the experimental curves are linear with a 
small offset. For ρ = 1.5 cm, some problems of accuracy are visible for high absorption 
(δµa = 0.37 cm-1). By comparing the two modes, the gated mode gives slightly better 
accuracy for ρ = 1.5 cm than the non-gated mode but no difference is observed for ρ 
= 3.0 cm.  

This method gives good perspectives for the use of TR-DOT to quantify though it 
still requires to know the size and position of the absorption perturbation (with another 
imaging modality for instance). By constraining the reconstruction on specific regions 
the dimension of the space of unknowns is reduced. Consequently, the problem of 



quantification is no more ill-posed as demonstrated by the important improvements of 
results in Fig. 5.  

 
Fig. 5. With constrained method, quantified plots of δµa in the different configurations: with 
small or large source-detector distance (ρ) (columns), by using two non-gated or gated 
SPADs (rows), in simulation and experiment, at 1.0, 1.5 or 2.0 cm depth and with each 
inclusion. The black curves correspond to the expected values δµa of each inclusion. The 
dotted curves correspond to the simulation curves and the continuous curves correspond 
to the experimental data.  

 
Fig. 6 displays the percent of relative errors of δµa

vol (calculated with Eq. (7)) 
between the simulation and theory and between experiment and theory. The same is 
reported in Fig. 7 but applying the constrained method. Using the standard code (Fig. 
6), relative errors are increasing with depth and with absorption perturbations 
independently of the gating-modality and the source-detector distance both for 
phantom and numerical realizations. For example, we get with the inclusion “size 2” in 
experiment a relative error ε = -16% on average with a standard deviation σ = 3% at 
1.0 cm depth and ε = -49% on average with a standard deviation of 4% at 1.5 cm depth. 
For inclusion “size 3” at 1.0 cm, we obtain ε = -28% with σ = 6%. Thanks to the 
constrained method (Fig. 7), we recover in simulations the exact absorption variations 
where the average ε = 0.2% going from 0 to 4% with σ = 1%. Relative errors of phantom 
experiments in Fig. 7 are almost all positives and for ρ = 3.0 cm, average and standard 
deviation (respectively 44% and 14%) of relative errors are lower in absolute and less 
spreading than in Table 2 (respectively -53% and 22%) without the a priori approach. 
At the 3 depths, no significant difference is observed between non-gated and gated 
mode. 

 



 
Fig. 6. Relative errors in percent (%) of δµa

vol between (a) simulation and theory (Sim/Th) 
and (b) experiment and theory (Exp/Th) calculated with Eq. (7) for each reconstruction in 
each configuration (ρ = 1.5 or 3.0 cm and Non Gated (NG) or Gated (G) SPAD). Colors 
encode depth while the filling gated or not and the color intensity the ρ. 

 
To extract quantitative information on the linearity of the reconstruction, we report 

in Table 2 the coefficients of the polynomial fit of δµa
vol vs. δµa

true divided by a reference 
γ  = 0.1 cm-1 as defined in Section 3. The slope and the NL term are estimated for x = 1 
and Δx = 1, that is around γ = 0.1 cm-1. For what concerns the simulations, we observe 
a general trend with respect to the depth z, substantially similar for both source-detector 
distances and for the gated and non-gated modalities. The slope is close to 50%, 30% 
and 15% for z = 1.0, 1.5, and 2.0 cm respectively. In practical terms, all this means that 
compared to the ideal slope = 100% there is a z-dependent decrease in slope by a 
factor of 2, 3 and 6 for z = 1.0, 1.5, and 2.0 cm respectively. This is a strong effect, still 
not so huge to mask deep changes due to more superficial alterations. The NL 
coefficient accounts for the nonlinearity for increasing δµa

true and is around -20%, at all 
depths. Thus, the non-linearity with the increased δµa

true is acceptable at least for 
absorption changes in the order of 0.1 cm-1. The c coefficient that is the offset at δµa

true 
= 0 is substantially negligible (~5%) (Table 2).  

The coefficients (Table 2) related to the experiments are more scrambled, as 
expected, since only 4 absorption points affected by experimental noise are possibly 
not enough to get a robust 3-parameter fit. The general trend for ρ = 3.0 cm is 
substantially similar to what observed on simulations still with a higher non-linearity 
(more around 30%). For ρ = 1.5 cm there is more discrepancy with simulations, clearly 
due to noisy measurements particularly for the non-gated detector as observed in 
Fig. 4. Upon applying the gating, data are slightly more regular, in particular at the 
larger depth (z = 2.0 cm). 

 



 
Fig. 7. [Constrained method] Relative errors in percent (%) of δµa between (a) simulation 
and theory (Sim/Th) and (b) experiment and theory (Exp/Th) calculated with Eq. (7) for each 
reconstruction in each configuration (ρ = 1.5 or 3.0 cm and Non Gated (NG) or Gated (G) 
SPAD). Colors encode depth while the filling gated or not and the color intensity the ρ. 

 
Table 3 displays the same parameters yet for the constrained method. On 

simulations the agreement is perfect with basically only b = 100% and all other terms 
negligible. This means that the knowledge of the exact location and size of the 
perturbation can completely cure the depth and absorption related decrease in the 
retrieved δµa. These results are substantially confirmed also on experiments at ρ = 3.0 
cm. For ρ = 1.5 cm results are substantially altered with a strong non-linearity and non-
systematic alterations. It looks like measurements at ρ = 1.5 cm are more critical, and 
the constrained method while fixing model-based inaccuracy, at the same time 
enhances any experimental artefacts. The gating does not help here. 

Table 2. Coefficients of the polynomial fit of reconstructed δµa
vol vs. δµa

true as defined in 
Section 3 for Non Gated (NG) and Gated (G) SPAD modes. 

de
pt

h ρ 
[cm] mode 

Simulation 
coefficients of the polynomial fit  

Experiment 
coefficients of the polynomial fit  

a b c NL 
(Δx=1) 

slope 
(x=1) a b c NL 

(Δx=1) 
slope 
(x=1) 

1.
0 

cm
 1.5 NG -6% 64% 1% -18% 53% 0% 63% 25% -1% 62% 

G -6% 64% 1% -19% 52% 2% 47% 27% 9% 51% 
3.0 NG -5% 56% 1% -16% 47% -11% 86% 4% -26% 63% 

G -4% 53% 3% -15% 45% -9% 79% 8% -24% 60% 

1.
5 

cm
 1.5 NG -4% 35% 5% -22% 28% -10% 68% -1% -29% 48% 

G -4% 39% 2% -23% 30% -9% 56% 0% -31% 38% 
3.0 NG -4% 36% 1% -20% 29% -6% 43% 11% -27% 32% 

G -4% 36% 3% -21% 28% -5% 42% 10% -26% 31% 

2.
0 

cm
 1.5 NG -1% 14% 6% -12% 12% -1% 13% -6% -12% 11% 

G -2% 19% 3% -23% 15% -7% 37% -2% -39% 23% 
3.0 NG -2% 20% 2% -21% 16% -4% 30% 4% -29% 21% 

G -2% 20% 3% -22% 16% -5% 33% 2% -30% 23% 
 



Table 3. [Constrained method] Coefficients of the polynomial fit of reconstructed δµa
vol 

vs. δµa
true as defined in Section 3 for Non Gated (NG) and Gated (G) SPAD modes. 

de
pt

h ρ 
[cm] mode 

Simulation 
coefficients of the polynomial fit  

Experiment 
coefficients of the polynomial fit  

a b c NL 
(Δx=1) 

slope 
(x=1) a b c NL 

(Δx=1) 
slope 
(x=1) 

1.
0 

cm
 15 NG 0% 101% 0% -1% 100% 115% 

-
139% 123% -166% 91% 

FG 0% 101% 0% 0% 100% 59% -25% 71% -480% 93% 
30 NG 0% 100% 0% 0% 100% -9% 152% 2% -12% 133% 

FG 0% 100% 0% 0% 100% -9% 149% 2% -13% 130% 

1.
5 

cm
 15 NG -

1% 105% 
-

3% -2% 103% 101% 
-

103% 118% -197% 99% 
FG 0% 100% 0% 0% 101% 27% 56% 43% 96% 110% 

30 NG 0% 100% 0% 0% 100% -7% 155% -3% -9% 142% 
FG 0% 101% 0% 0% 100% -7% 154% -3% -9% 140% 

2.
0 

cm
 15 

NG 2% 94% 5% 5% 99% 76% 
-

144% 177% -106% 9% 
FG 0% 102% 

-
1% -1% 101% 5% 111% 49% 8% 121% 

30 NG 1% 97% 2% 2% 98% 9% 108% 34% 17% 126% 
FG 0% 98% 1% 1% 99% 8% 112% 33% 13% 127% 

5. Discussion and conclusions 
In this paper, we have addressed the quantification of DOT using time-domain 
reflectance measurements and Mellin-Laplace analysis both on simulations and on 
phantoms. The issues of sensitivity (i.e., minimum detectable focal perturbation as a 
function of depth) and localization (i.e., correct retrieval of lateral and depth position of 
the perturbation) have already been addressed elsewhere [25–27] and results reported 
here basically confirm those findings. Rather, this paper is focused on the quantification 
of the value of the reconstructed absorption perturbation. 

Five main conclusions can be drawn from the results:  
1) The main parameter affecting the correct reconstruction of δµa

vol is the depth z. 
A depth-dependence underestimation of the absorption is observed, with a reduction 
of the slope by a factor of 2, 3 and 6 for z = 1.0, 1.5 and 2.0 cm respectively.  

2) The reconstructed δµa
vol is fairly linear with respect to the increase in the real 

δµa with the absorption change in the range 0-0.15 cm-1. For higher absorption 
changes, a deviation from linearity is observed with a non-linear coefficient NL of 
around 20% for a change in δµa = 0.1 cm-1 (for a 1 cm3 volume). 

3) The adoption of a constrained approach, where the perturbation location and 
volume are fixed a priori, completely cures depth- and absorption- reduction in the 
reconstructed δµa on simulations, and greatly improves the outcome on experiments.  

4) The geometry (source-detector distance ρ), as well as the adoption of a fast 
gating approach to suppress early photons have marginal effects both on simulations 
and experiments. While substantial improvements in sensitivity and localization were 
demonstrated adopting a short-distance, fast-gated approach, there seems to be only 
minor advantage for the issue of quantification. A possible explanation results from 
worse photon confinement at the larger ρ as compared to a shorter distance yielding a 
deterioration of contrast and thus affecting the quantification. Conversely, results at the 
shorter ρ  = 1.5 cm distance are more scrambled and more prone to experimental 
alterations. The fast-gating does not help here.  

5) Phantom measurements substantially agree with simulations, at least for the 
general trends. Apart from some intrinsic higher variability, phantom measurements 
show a systematic small overestimation of the reconstructed δµa particularly for 
shallower inclusions. This effects has still to be fully explained and could well reside in 
some experimental inaccuracies, yet, the main conclusions of items 1, 2, 3, and 4 are 
fully confirmed by phantom measurements. 

Taken as a whole, these results are quite encouraging since they demonstrate that 
for a fixed depth – e.g. in brain functional imaging at the brain cortex – absorption 
linearity for limited yet realistic absorption changes is preserved. This feature is 



important for instance in functional brain imaging or in the study of brain connectivity, 
since it permits to follow temporal evolutions of the signal during the exercise, or to 
perform spectral analysis with low distortion. The depth-decrease in the reconstructed 
δµa is clearly present and must be taken into account when comparing absolute 
reconstruction at different depths – for e.g. characterization of breast lesions in 
reflectance geometry. Still, this effect is somewhat a constant trend, not much 
dependent on the other parameters such as the measurement geometry, and could be 
somehow taken into account. 

The origin of the depth- and absorption- related underestimation in δµa – already 
observed in different DOT papers – seems to be indeed due to the general spread of 
the reconstructed δµa – possibly due to the ill-posedness of the problem – leading to a 
dilution of the absorption change. Constraining the region of the optical perturbation – 
as recalled above at item #4 – completely solves this problem. In practical terms, this 
approach is not unrealistic, since can be implemented in co-registration with a different 
imaging modality yielding the size and location of the activation or suspect lesions. 

Clearly, the present paper is not exhaustive since it leaves untouched the effect of 
other parameters, such as the background optical properties, different source-detector 
arrangements, and other reconstruction schemes. Still, the aim here is more on one 
side to appreciate the effective quantification capability of a practical DOT system, and 
whether this is acceptable for the specific applications, on the other to contribute to the 
proposal of tests and figures-of-merits to measure quantitation of δµa towards the 
proposition of shared protocols for objective performance assessment of DOT systems 
and algorithms.  
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