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Abstract: 
Traditional agroecosystems, aimed at maximizing the short term productivity, are characterized by 
oversimplification of ecological structure and dependence on the use of external inputs. Moreover, 
intensive agriculture is one of the main cause of deforestation. The main consequence of traditional 
agriculture is the loss of natural ecosystems and of their precious services. Analog forestry has emerged 
as a sustainable productive model able to be integrated in forest contexts, without degrading their 
ecological functions. The obtained agro-ecosystem is characterized by an ecological structure similar to 
the one of forest, and by the presence of several productive species in the same area. In this study we 
formalize a planning problem aimed at the optimized design of an analog forest on the medium term. In 
particular, besides the maximization of income, we considered both ecological (i.e., the presence of 
different vertical layers and several species) and socio-economic requirements (i.e., the smoothing of 
both inter- and intra-annual variability of income). We focus the analysis on the Peruvian Amazon, basing 
on a species database created by ArBio, a Peruvian association which promotes the analog forestry as 
tool for pursuing the conservation of forest ecosystem services. The obtained results show that the inter-
annual income variability, characterizing an approach of short-term maximization, can be eliminated by 
adopting the gradual planting of individuals belonging to the same species. Secondly, we quantified the 
economic and ecological performance of the designed analog forest under different settings of the 
planning problem. The introduction of the defined ecological and socio-economic constraints affects the 
economic performance on the medium term, by reducing the annual economic income up to 80%. 
 
Keywords: Analog Forestry; Amazon; Sustainable agriculture; Biodiversity  
 
 
1. INTRODUCTION 

Traditionally, agricultural areas are designed to maximize the short-term production and relative 
economic return. This usually means intensification of processes, structural simplification of the derived 
agro-ecosystem (i.e., monoculture), and degradation of important ecosystem services (e.g., regulating 
and supporting ones) in favor of product provision (Millennium Assessment Board, 2005). This becomes 
even more considerable when agricultural lands are created by converting natural ecosystems, like 
forests. Their transformation means loss of important ecosystem services, whose economic value has 
been estimated to be of the order of magnitude of trillions of US dollars per year (Costanza, 1998; 
Millennium Assessment Board, 2005; Costanza et al., 2014). Besides the economic value, in tropical 
contexts, the transformation of virgin forests into intensive agricultural assets consists in an irreversible 
process under an ecological point of view (Engel et al., 2015). Since intensive agriculture (e.g., 
monoculture, and cattle ranching, are among the main causes of deforestation (Hansen et al., 2016), in 
the last decades, less intensive and low-input agricultural productive models have been proposed and 
implemented. Analog forestry, or successional agroforestry, is a promising agro-ecosystem for tropical 
forest contexts. It is able to provide food and other marketable products on the medium-long term, while 
maintaining the ecological structure of forest, and therefore being supposed to maintain the ecological 
functions of the virgin ecosystem.  
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In order to guarantee these ecological services, the design of such complex agroecosystem should take 
into account ecological dimension together with the economic one (Mercer et al., 2014). Analog forests 
are characterized by specific structural elements (e.g., different vertical layers, from shrubs to higher 
trees), aim to eliminate external inputs (e.g., chemicals, water and energy) and guarantee a wide 
production over the whole year. Given the amount of requirements to be guaranteed and objectives to 
be pursued, the design of these complex agro-ecosystems need the support of optimization tools like 
mathematical programming and stochastic dynamic programming. These techniques are widely use for 
the optimized design of simpler agroecosystems, like agroforestry ones (Mercer et al., 2014). 

In this study, we formulate a preliminary planning problem aimed at the optimized design of an 
agricultural area dedicated to analog forestry. We focus on the Peruvian Amazon context, in particular, 
on the Madre de Dios region, where the analog forestry has been preliminary introduced by ArBio 
(http://www.arbioperu.org/), a non-profit organization and one of the Peruvian partners of the 
International Analog Forestry Network (IAFN, www.analogforestry.com). Basing on a species database 
developed by ArBio, we investigate the evolution of annual income in the long terms and we asses both 
the economic and the ecological performance of this agroecosystem under different settings of the 
planning problem. 

 

2. THE ANALOG FORESTRY AND ITS APPLICATION IN THE PERUVIAN AMAZON 

The analog forestry is a particular method of agroforestry. It was originally developed in Sri Lanka for 
restoring productivity of degraded lands and providing new sources of food and income to local people. 
This agro-ecosystem imitates the original native forest and has analogous structure and ecological 
functions and, at the same time, it involves productive and marketable species. Differently to traditional 
intensive agricultural models, it does not use chemical fertilizers, herbicides, pesticides or heavy 
machinery, but creates compost, plant nurseries through proper combinations and successions of 
species. 

The approach behind analog forestry is based on three main concepts (Senanayake and Jack, 1998): 
- Mimicking natural forests (i.e., climax or sub-climax vegetation) in its architectural structures and 

ecological functions similar to the original (Figure 1); 
- Ecological succession is adopted by analog forestry to create stable tree-dominated ecosystems. It 

is applied to the restoration of degraded land, and the cultivation process begins with early colonizer 
and sun-loving species, and then progresses to a more mature forest structure. From the first stages 
it provides valuable products. 

- By implementing analog forestry, opportunities to enhance landscape biodiversity and connectivity, 
protect rivers or create biological corridors or buffer areas (landscape ecology elements) can be 
identified. 

 
Figure 1. The ecological structure and species composition of analog forestry is close to the ones 

of natural forest (IAFN, www.analogforestry.com) 

The derived agroecosystem guarantees the presence of both different vertical layers (i.e., from lower 
herbs to upper canopy) and several productive species in the same area. Successful analog forests are 
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present in Sri Lanka, Burkina Faso, Costa Rica and 18 other countries around the world, especially in 
tropical areas (Kusters and Lammers, 2013).  

The Amazon rainforest is experiencing high deforestation rates due to different human activities (Aguiar 
et al., 2012), among which agriculture plays a relevant role (Sombroek and Higuchi, 2009). Nowadays, 
Peru is characterized by a medium deforestation rate, but with an increasing trend of forest conversion 
due to smallholder agriculture, artisanal gold mining and industrial agriculture, mainly for palm oil 
(Hansen et al., 2016). This loss mainly affects the primary forest (Potapov et al., 2014). In the region of 
Madre de Dios (Figure 2) the deforestation process has been increasing especially since 2011 (Velarde 
et al., 2010; Terra-i, 2012), when the Peruvian path of the Inter-Oceanic highway was finished.  

 
Figure 2. Area of study: the region of Madre de Dios located in the Peruvian Amazon 

Given this context, alternative and sustainable economic activities, able to coexist with the virgin 
rainforest, are required. ArBio, an association which operates in the Peruvian region of Madre de Dios 
since 2010, promotes the conservation of the rainforest through different activities like absolute 
conservation, eco-tourism and analog forestry. The activities are implemented in the land concessions 
granted by the association, and aim at preserving the forest ecosystem and its functions on one hand, 
and supporting local communities, whose livelihoods, based on forest products, are characterized by 
intra-annual variability, due to seasonal activities (e.g., fruits gathering).    

3. MATERIALS AND METHODS 

 

3.1. Database of suitable species 

The database used in this work was created by ArBio operators during the last year. It includes 30 
species, which are compatible with the climate and soil characteristics of Madre de Dios, and are 
marketable in the Peruvian context. For each species, we collected information regarding average 
economic yield, production cycle (production months, time of first production and time of replacement), 
dimension and size (crown, height, trunk diameter), product function (food, medicinal, aromatic etc.), 
nutrients and tolerance to specific environmental conditions (e.g., flood, drought). The distribution of 
such species across different forest layers is summarized in Table 1. 
 
Table 1. Species database: the involved species have been grouped into five vertical layers, according 

to their maximum height 

Layer 
definition 

(max height, H) 
Species # of  

species 

1 max H <= 1 
Lantern Chilli, Corazón de motelo, Hot pepper 
(Ojito de pescado), Pineapple, Uncucha, Manioc 

6 

2 1 < max H<= 4 
Araza fruit, Camu-camu, Chacruna, Cocona fruit, 
Pigeon pea, Small sunflower, Lime, Papaya, 
Banana  

9 

3 4 < max H<= 15 
Carambola, Orange, pacay (or ice-cream bean 
tree), Malay Apple, Pomelo, Inga (Shimbillo) 

6 
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4 15 < max H<= 25 
Aguaje, Coconut, brazilian Huasai,  Mango, 
Breadfruit, Sapote 

6 

5 max H> 25 
Brazilian nut, Copaiba, Dragon’s blood (Sangre 
grado) 

3 

3.2. Problem formulation 

The annual income (ys(t)) per unit area from species s in each year t of the planning horizon depends 
on the production cycle of each species. It is defined through the time at which the first production occurs 
and the time of plant replacement. From the series of annual income, we can calculate the net present 
value (NPVs, Mil Soles) of each species assuming a time horizon of h years and a given discount rate 
d:  
 

NPVs =∑ 1ℎ
𝑡=1 [ys(t) /(1+d)t]                                                                              (1) 

 
For the present study, h is assumed equal to 15 years and d equal to 5%. 
From the economic viewpoint, the overall objective to be maximized by an analog forest, where a certain 
number ps of plants of species s are present, is defined as follow: 

max
{𝑝𝑠}

JJ = (∑ 𝑝𝑠
𝑛
𝑠=1  𝑎𝑠 𝑁𝑃𝑉𝑠)                                                    (2) 

where: 
- ps is the number of individuals for each species s (i.e., the decision variable); 

- as is the area occupied by a single individual of species s 

- n is the number of species considered 

- NPVs is the net present value of species s over horizon h 

General constraints of the problem are: 

- the use of land should be less or equal to the available land exposed to sunlight 𝐴𝑡𝑜𝑡 
 

∑ 𝑝𝑠 𝑎𝑠
𝑛
𝑠=1  ≤ 𝐴𝑡𝑜𝑡                                                                                                                                   (3) 

- the decision variables are non-negative and integer. 

 

𝑝𝑠   ≥ 0, integer       ∀𝑠                                                                                                                              (4) 

The last constraint (integrality), obviously plays a role only for large, sparse trees (layer 5) while becomes 
less and less relevant going down to the lower layers. The design of an analog forest should consider a 
fundamental structural characteristic: the presence of different vertical layers, from lower shrubs to 
higher trees (Sombroek and Higuchi, 2009). As previously described, we organized the considered 
species into five layers, l=1,…,5 (see Table 1). The deriving constraint is:   

𝐿 ≤  ∑ 𝑝𝑠 𝑎𝑠 𝑠 ∈𝑙 ≤ 𝐿       ∀ 𝑙                                                     (5) 

where 𝑳 and �̅� are the lower and the upper bounds of the areal fraction of each layer, respectively, and 

∑ 𝑝𝑠 𝑎𝑠 𝑠 ∈𝑙  is the area dedicated to each layer (l), obtained by multiplying the number of individuals (ps) 
of each species s by the area occupied by each individual (as). In this study we set 𝑳 equal to 0.1 and  

�̅� equal to 1. The area dedicated to lower layers depends on the availability of both the surface exposed 
to sunlight and shaded one. The latter derives from the area occupied by the highest layers (i.e., 4 and 
5). Moreover, we investigate how two further aspects may influence the performance of the designed 
agroecosystem, by defining two constraints. The first aspect we introduced concerns the intra-annual 
variability of income, which is determined by the seasonality of production of the various species. As 
previously said, these fluctuations strongly affect the livelihood of local communities, which relies on 
forest products. In order to avoid too strong variations, we set a constraint aimed at bounding monthly 
fluctuations of income over a year: 

(mym+1 - mym) ≤ f       ∀ 𝑚, my13=m1                                                                       (6) 

Where: 
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- mym is the monthly income of month m; 

- f  is a desired maximum variation of the monthly income. It can be set, for instance, as a fraction of the 

average monthly income (i.e. ys(t)/12). 
Secondly, as a preliminary assessment of ecological aspects, we evaluate the biodiversity of the 
obtained analog forest (SAF) through the Simpson’s diversity index (Simpson, 1949), calculated on the 
areal fractions : 

SAF = 1 – ∑ (
𝑝s  𝑎𝑠

𝐴𝑡𝑜𝑡
)𝑛

1
2                                                                                                (7) 

where 𝐴𝑡𝑜𝑡 is again the whole available area. This index will be limited with a lower bound 𝑺 and different 

values of this bound will be set in the carried analysis: 

 SAF≥ 𝑺                                                                         (8) 

Once defined the problem, we first run the optimization in order to analyze the inter-annual variability of 
yearly income. Secondly, we assess how the introduction of different constraints (i.e., 6 and 8) influence 
the performance of the agro-ecosystem in terms of both of income and biodiversity. In this study, we 
assume an area of 50,000 m2 as object of the planning problem. 
 
4. RESULTS 

 

4.1. Comparison of different planting strategies 

The problem is a typical planning one, which assumes that the decision is taken once, at the beginning 
(year 0). The evolution of the agroecosystem and the derived income are determined by the occurrence 
of the first production and the replacement time of each involved species. 

Assuming that (i) all the individuals are planted in the first year, (ii) that they all survive for their planned 
productive life, and then (iii) they are replaced all together according to the replacement time, we 
determined the optimal species mix and simulate the evolution of annual incomes over a 100-year 
horizon, constraining the presence of all the five vertical layers (eq. 5). In Figure 3, we report the obtained 
trajectory (grey solid line), whose periodicity is longer than a century, due to the different replacement 
times of the considered species.  

 
Figure 3. Comparison of two planting strategies: a gradual planting approach (dashed line) is able to 

eliminate the intra-annual variability resulted with the non-gradual approach.   

Given the strong fluctuating behavior of incomes over the horizon (for three consecutive years the 
income may be only 12% of the average of the preceding 15 years), we introduce a smoothing 
mechanism: the plants belonging to the same species are gradually planted and replaced, in order to 
always have at least one individual of each selected species growing in the area. This also accounts for 
the fact that, during the planned productive life, some individuals may anyway need to be replaced for a 
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number of reasons (e.g. pests, sickness, low productivity). The obtained trajectory (dashed line) is 
characterized by an initial transient period, but after 6 years it permanently remains at about 1870 Mil 
Soles/year (i.e. approximately the average value obtained by the full replacement policy). The removal 
(or at least the reduction) of inter-annual variability is a fundamental aspect for local communities in 
Madre de Dios. On the other hand, referring to the first 15 years, the NPV obtained with the second 
strategy is 13% lower than the former (i.e., 936 versus 1079 Mil Soles/year).  
 

4.2. Economic value of constraints 

Assuming the gradual replacement strategy previously described, we solved the above optimization 
problem (eq. 2) under different assumptions to investigate various economic and ecological aspects. 
As a first step, we run the optimization to maximize the income, without setting any constraints on 
ecological or economic conditions. The obtained solution is the monoculture of Camu Camu (which 
belongs to the second vertical layer). Referring to the analyzed horizon (15 years), the derived annual 
NPV achieves the value of 1290.8 Mil soles, while the value of Simpson index is obviously null.  

As a second step (case 2), we included the constraint regarding the presence of the five different vertical 
layers (eq. 5). In the obtained analog forest, the number of species increased from 1 to 5, i.e. an optimal 
one for each layer is selected, and the value of Simpson index improves up to 0.6. The second layer 
(i.e., between 2 and 10 meters, Table 1), the one including the most productive plant (Camu Camu), 
occupies 60% of the available area, while all the other layers are limited to the set minimum of 10%. On 
the other hand, the annual discounted income over the first 15 year decreased by 27% (i.e., 936.3 Mil 
Soles per year) when compared to the first result (case 1).   

 
Figure 4. Economic and ecological performances of the analyzed planning problems. 

As a further constraint, we introduced the limit to the intra-annual income variability (i.e., difference 
between monthly income, case 3). The annual NPV further decreases to 639.8 Mil soles (71% with 
respect to case 1), while the biodiversity index increases to 0.70 (the number of species becomes 6).  

As a last step, we run the optimization by setting the high values (higher than 0.95) to the biodiversity 
bound 𝑺 (eq. 8). The maximum value of 𝑺 for which we found a feasible solution is SAF = 0.97 (case 4). 

The obtained solution involves all the 30 species included in the database. Concerning the economic 
profitability, the resulting annual NPV is equal to 226 Mil soles/year, i.e., -82% if compared to case 1. 
The obtained results are summarized in Figure 4 on the plane Annual income – Simpson index, while 
Figure 5 shows how the available area is partitioned among the different layers. 
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Figure 5. Partition of the designed agricultural area among the different vertical layers. 

5. DISCUSSION AND CONCLUSION 

In this study, we solved the planning problem of one of the most complex agroecosystems: the analog 
forestry. In particular, we focused on the Peruvian Amazon context, basing our analysis on the species 
database developed by ArBio association. We formulated a design problem which takes into account 
some relevant ecological aspects required by this agroecosystem, together with the economic ones.  

As a first step, we analyzed the evolution of annual income and we compared two different planting 
strategies: a batch policy, in which all the individuals of the same species are planted and replaced 
together, and a gradual planting strategy, which guarantees the presence of each selected species in 
every year. The results show the positive contribution of the gradual strategy in terms of inter-annual 
income fluctuation when compared to the former one. This achievement is fundamental for the local 
communities, whose livelihood is based on forest production. On the other hand, when estimating the 
cumulative NPV over the first 15 years, the gradual plantation strategy causes a reduction of about 13%. 
In the second analysis, we quantified the changes in both economic and ecological performance of the 
designed agroecosystem obtained with different settings of the problem. In particular, we identify the 
two extreme solutions of the Pareto frontier: the maximum economic objective (i.e., NPV, calculated 
over the 15-years period) is obtained through a monoculture strategy (the selected species is Camu 
Camu, case 1), while the best biodiversity performance is achieved with a very diversified agro-
ecosystem, involving all the 30 species available (case 4, i.e., obtained by setting high values of S in eq. 

8). The economic objective decreases by 82% passing from the first solution (i.e., monoculture) to the 
second one. We then analyzed two intermediate solutions obtained by adding two fundamental 
constraints defined for this problem: the presence of different vertical layers, from shrubs to higher trees 
(case 2), and the minimization of intra-annual variability (case 3). The sequential introduction of these 
two constraints has positive contribution on the biodiversity index, but a negative one on the economic 
income (from -60% to -72% when compared to monoculture). 

These quantitative outcomes can preliminarily support the determination of mechanisms for advising 
farmers, who decide to implement complex agroecosystems, like analog forestry, pursuing ecological 
goals. The average annual economic performance is affected by the introduction of ecological 
constraints and biodiversity, but on the other hand, these choices allow to preserve important ecosystem 
functions within the agro-ecosystem, which may lead to the reduction of cultivation costs, which have 
not been considered in this study. Of course, this work represents a preliminary attempt of addressing 
the design of such a complex agroecosystem in the Peruvian context. Future developments will need to 
improve plant dynamics, introduce spatial analysis of plantation (e.g., distances between trees and 
shadow interference), as well as other ecological aspects like nutrient balance and carbon storage. 
Moreover, a more flexible management strategy may be adopted in order to optimize the transient 
period/s, where higher species do not have achieved their maximum dimension yet, and a wider sunny 
area is available for lower annual crops. 
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