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Abstract. In the course of the AVATAR project, partner predictions for key load components 

in storm/idle conditions separated in two groups. One group showed large loading due to 

edgewise instability, the other group damped edgewise oscillation and lower load levels. To 

identify the cause for this separation, the impact of structural and aerodynamic modeling 

options on damping of stall-induced vibrations is investigated for two simplified operating 

conditions of a single AVATAR blade. The choice of the dynamic stall model is found to be 

the primary driver, and is therefore most likely also the reason for previously observed 

differences in AVATAR storm load predictions. Differences in structural dynamics, mode 

shapes, structural and dynamic twist, as well as wake model are only secondary in terms of 

impact on damping. Resolution suffered from failure of system identification methods to 

extract reliable damping values from various non-linear response simulations. 

1.  Introduction 

Future, very large wind turbines are expected to operate in flow regimes for which current 

aerodynamic tools lack proper validation. The aim of the EU FP7 project AVATAR (AdVanced 

Aerodynamic Tools for lArge Rotors) is to improve and validate aerodynamic models and to ensure 

applicability of aerodynamic models for 10MW+ wind turbines. The project uses a low induction, 

increased rotor diameter variant of the DTU 10MW reference wind turbine as an aerodynamically 

challenging vehicle for tool improvement and validation [1]. 

In the course of the project, several partners assessed system stability in storm load cases and 

normal operation of the AVATAR research wind turbine [1]. Some simulation results disagreed 

significantly. For instance, in one group of predictions, blade loads in storm, DLC6.2, exceeded by far 

loads from other design load cases, DLCs, whereas in a second group all DLCs resulted in 

comparable, low load levels. This disagreement occurred both for the AVATAR and the INNWIND 

blade. Simulation methods used for the first set of results predicted an instability in storm, identified as 

a stall induced vibration, which did not occur with the second set of tools.  

In order to identify root causes, researchers of five AVATAR consortium members drilled down on 

differences in methods and results in a focused study. The present document reviews previous research 

on the subject, describes the approach taken to identify drivers for the observed disagreement, and 

presents numerical results quantifying key effects on the AVATAR blade. 
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2.  Review 

2.1.  Typical section in quasi-steady, detached flow: Impact of polar characteristics 

Petersen et al. [2] used quasi-steady, sectional aerodynamics to derive basic relations for in-plane, out-

of-plane, and coupling terms of the linearized damping matrix in terms of local in-plane and out-of-

plane velocities experienced by the airfoil. The respective damping terms are proportional to sectional 

chord, air density, and absolute relative velocity, and an expression containing the steady polar lift and 

drag coefficients, as well their derivative with respect to angle of attack. Hansen [3] introduced instead 

the mean inflow angle and effective direction of vibration of an elliptical airfoil motion, highlighting 

the significance of the difference between flapwise and edgewise directions of motion for damping. 

By separation into terms dependent and independent of the direction of motion, the expressions permit 

general statements about the impact of airfoil polar characteristics on aerodynamic damping. Damping 

expressions were derived for a simplified wind turbine system, and suggestions given for tuning of 

blade modes in order to mitigate instabilities. This approach was expanded later by depicting the 

combined impact of polar characteristics and direction of motion in a transparent, graphical fashion 

[4]. The impact of characteristics of the airfoil’s polar and its principal directions of motion on 

aerodynamic damping, based on quasi-steady aerodynamics, can be summarized as follows: 

 Proportionality – quasi-steady aerodynamic damping is proportional to sectional chord, air 

density, absolute relative velocity ([2], [5]), and mass ratio, Rf= c/mblade, with air density, , 

chord, c, and blade mass per unit length, mblade.[6]. 

 Airfoil polar – the largest (most positive) overall aero damping occurs in attached flow near 

angles of attack of 0° or 180° [5], the former being typical for operation in the variable speed 

region; the lowest aero damping occurs at angles of attack at and above the maximum lift 

coefficient, CLmax, for instance on stall regulated machines above rated speed (Fig. 12 of [3]). 

Petersen et al. [2] generally suggest the use of “soft stall airfoils” with low CLmax, shallow 

decline of CL at angles of attack above CLmax, and rapid rise of drag coefficient, CD, at low 

angles of attack, in order to mitigate stall-induced oscillations. 

 Direction of motion – aerodynamic damping of blade motion perpendicular to the inflow 

increases with increasing (positive) lift curve slope [4]. Aerodynamic damping of blade 

motion in-line with the inflow is generally smaller than damping of out-of-plane oscillation, 

increases proportionally to drag, and decreases proportionally to lift, drag gradient, CD ([3], 

[6]), and lift gradient, CL ([3], at small inflow angles). 

 

These findings highlight the significance of correct polar data on stability of stall-induced 

vibrations. With very few exceptions though, steady polar data, either from experiment or simulation, 

are not available in the critical stall regime. Lennie et al. [7] reviewed extrapolation and correction 

methods, showing that deviations in predicted polars may account for more than 100% variation in 

accumulated fatigue damage. 

2.2.  Blade in two-dimensional quasi-steady, detached flow (strip theory): Impact of structural factors 

Expanding on the previous elaborations on exclusively 2D conditions, Petersen et al. [2] investigated 

the impact of coupling multiple structural sections by means of wind turbine rotor blade modes, still 

retaining 2D, quasi-steady aerodynamics: 

 Proportionality – the modal damping ratio is proportional to chord, air density, and absolute 

velocity (see above for quasi-steady aerodynamic damping), and inversely proportional to the 

square root of the product of modal mass and modal stiffness. Petersen et al. proposed to 

increase edgewise stiffness, “even at the expense of added weight” [2]. 

 Direction of motion – Petersen et al. identified increased aerodynamic damping of edgewise 

modes in normal operation when applying negative structural pitch, that is, inclination of the 

edgewise motion with respect to the main inflow direction such that the section is at the same 

time (a) at its maximum deflection towards its leading edge and (b) at its maximum deflection 
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towards the pressure side. For deep stall around 90° angle of attack, Voutsinas et al. [6] 

showed that negative (positive) structural pitch shifts the damping minimum towards lower 

(higher) angles of attack, but has minor impact on the value of the damping minimum itself. 

 Torsion – (or “dynamic pitch”) reduces damping of the first edgewise bending mode if torsion 

lags bending/edgewise deflection, with minimum damping at 90° phase lag (where torsion 

towards maximum angle of attack occurs simultaneously with maximum velocity in 

chordwise direction towards the trailing edge) [2]. Kallesøe [8] showed that bending of the 

blade under steady-state loading may result in such phased edge-torsion motion.  

2.3.  Unsteady sectional aerodynamics: Impact of dynamic separation and vortex shedding 

The dynamics of blade/airfoil motions inserts unsteadiness into the airflow which is represented by 

dynamic stall models. These models superimpose a hysteresis loop onto steady airfoil polar 

characteristics, effectively resulting in a lagging of loads with regard to motion. Dynamic stall models 

are a standard feature of system level load simulations tools; no single model compares generally more 

favorably with experimental data than others [9]. 

While devised for and tuned to flow physics associated with unsteadiness in flow separation 

(vorticity shedding, separation point motion, leading edge vortex travel), dynamic stall models may 

also be active and valid in deep stall [9]. Hansen [10] derived a stochastic model specifically for self-

induced turbulence in deep stall, tuned to CFD results, and applied it to a typical section using quasi-

steady aerodynamics at 90° angle of attack. Addition of stochastic inflow velocities from this model 

had little impact on the direction of motion at the bifurcation (flutter) point though. Skrzypiński et al. 

[11] investigated vortex shedding from leading and trailing edge of a typical wind turbine airfoil at 90° 

angle of attack as a function of non-dimensional edgewise displacement amplitude, A*, and time 

period, T*, using RANS and LES simulations. “Locking in” of vortex shedding into edgewise airfoil 

motion occurred near a Strouhal number of 0.13, with the lock-in frequency range widening with 

growing ratio of airfoil displacement velocity to inflow velocity (as represented by the ratio, A*/T* 

[11]). At the same time, the peak non-dimensional power extracted from the flow at lock-in was 

reduced with increasing A*/T*, highlighting the non-linearity of the phenomenon. Voutsinas et al. [6] 

observed lock-in of drag at twice the lock-in frequency of lift, using a 2D free vortex wake model; due 

to strongly non-linear behavior, they consider determination of (linear) damping challenging. 

The current review did not reveal BEM compatible, computationally efficient, readily applicable, 

and validated methods addressing vortex shedding on a rotor blade in deep stall. 

2.4.  Interaction between sections: Wake modelling and three-dimensional coherent structures 

BEM-based methods generally exclude spanwise aerodynamic interaction between rotor blade 

sections, but spanwise flow effects can be included using corrected airfoil polars. Correcting 

(reducing) the 2D drag coefficient for 3D effects may result in edgewise instability of an individual 

section [6]. Since spanwise flow is only relevant at root sections, this has little impact on blade 

stability. 

By comparing BEM with CFD and free wake codes, Pirrung et al. [12] showed that neglecting 

dynamically trailed (near wake) vorticity – as done in classical BEM – may lead to overestimation of 

the absolute value of aerodynamic work in edgewise oscillations (i.e. when including trailed vorticity, 

there is less damping in stable, and less excitation in unstable conditions). Interaction between trailing 

and shed vorticity results in coherent structures which further complicate the situation. Manolesos et 

al. [13] observed experimentally that such stall cells “... are unstable, display no discernable 

periodicity, and seem to change position arbitrarily in the spanwise direction”. Heinz et al. [14] used 

CFD to investigate the interaction of coherent structures with elastic wind turbine blades in deep stall. 

Their results indicate that inclination of the blade with respect to the free stream velocity might 

correlate the individual sections’ shedding frequencies. 

Rather than using time-consuming CFD directly, Bertagnolio et al. [15] developed a data-driven 

grey box approach, using a random process model matched to experimental and DES simulation data. 
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The model addresses shedding of stochastic and coherent structures from leading and trailing edge of 

an entire blade, includes coherence between different angles of attack and radial stations, and captures 

energy peaks from coherent vortex shedding. However, frequencies associated with the energy peaks 

are overestimated, energy levels in lift and drag are underestimated, and the method cannot capture 

multiple spanwise stall cells observed in experiments [15]. The authors conclude that the underlying 

assumption of Gaussian distribution “[…] may underestimate the dynamic load effects” [16]. 

Consideration of spanwise unsteady aerodynamic interaction between sections, and dissipation of 

three-dimensional coherent structures in deep stall is subject of ongoing research. To the best 

knowledge of the authors, respective methods are not available for the majority of present BEM –

based loads simulation tools. 

3.  Approach and Methods 

In order to address relevant structural and aerodynamic aspects highlighted in the review section – 

thus potential causes for differences in damping predictions – various methods were available through 

participants’ tools. With reference to the previous two sub-sections, it is essential to note that these 

tools neither featured methods addressing vortex-induced oscillations, nor did they consider spanwise 

unsteady aerodynamic interaction between radial sections. 

 

Three major beam theory implementations were used (short-hand notations introduced in italics in 

this section are also used in the following plots): 

 Euler – straight, linear Euler-Bernoulli beam finite elements; no torsion in variant EulerB. 

 Timoshenko – engineering bending theory of beams, in which torsional deformation and 

transverse shear (as for a Timoshenko beam) flexibility as well as dynamic coupling terms for 

bending and torsion dynamics are included [17]. 

 Exact – fully populated 6x6 stiffness matrix on initially curved and twisted reference axis, 

geometrically exact beam type finite elements [18]. 

 

Only BEM methods were applied, all implementations using Prandtl tip loss factors, but with 

differences in high induction/turbulent wake state correction, and consideration of dynamic inflow:  

 StripTheory – wake disabled, no calculation of induction  

 BEMfrozen – induced velocity fixed at reference operating condition values  

 BEMdyn – TUDk dynamic inflow model as suggested by Øye [19] 

 BEMequil – instantaneously reacting equilibrium wake (using an approximation where 

inductions are not converged in each simulation time step) 

 

Two-dimensional flow about airfoil sections was modelled both as a quasi-steady phenomenon and 

using dynamic stall models (see also Holierhoek et al. [9] for a comparison): 

 qs – quasi-steady sectional aerodynamics, dynamic stall model off 

 BL – semi-empirical Beddoes-Leishman [20] model, as implemented in AeroDyn [21] 

 ONERA – empirical model with “mean airfoil” parameters [22] 

 

Eigenvalue calculations, finally, were performed by participating partners in two distinctly 

different ways: 

 SysID – system identification on the time response of the non-linear system. Variants were 

SysID1 with external blade tip follower force impulse excitation and system identification 

with MOESP algorithm applied to blade root moment and tip displacement signals, and 

SysID2 employing wind impulse excitation followed by order 8 subspace identification on 

blade degrees of freedom. 

 Lin – eigenvalue analysis for a linearized system model, only in combination with BEMfrozen. 
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In order to minimize any potential disagreement from transferring specification data to tool-specific 

simulation models, the present study reduced the simulation scope to a single AVATAR blade. 

Resulting limitations on transferability of conclusions to the remaining project, AVATAR wind 

turbine design, and its dynamic and stability properties were accepted in favor of simplification. Three 

different conditions were simulated:  

 blade only – Eigenvalue solution performed for a blade mounted rigidly to a fixed hub at its 

root, without gravity loads, aerodynamic loads, and structural damping. The objective was to 

quantify differences in mass, stiffness, frequency, mode shapes, and particular coupling 

between bending and torsion. 

 blade as wing – Eigenvalues were obtained for the first edgewise blade bending mode through 

a wide range of attached/separated/deep stall flow conditions. Compared to blade only 

conditions, aerodynamic loading from homogeneous, constant inflow at 42 m/s wind speed 

was included in order to mimic the storm load case addressed in [1]. 

 rotating blade – a study similar to blade as wing, but with aerodynamic and inertial loading 

from 25 m/s wind speed and hub/blade rotating at 9.6 RPM, representative of AVATAR rotor 

conditions at cut-out in order to investigate the impact of resultant sectional inflow speed on 

unsteady blade loads and stability. 

4.  Results 

4.1.  Excluded by Model and Test Definition 

Participants used given tabular data for chord and mass vs. radius, identical operating condition 

definitions, and identical steady airfoil polars (for a fixed Re = 13106). These parameters, and derived 

factors like mass ratio, Rf, blade mass and static moment can therefore be excluded as drivers for 

deviation in damping predictions (differences from integration of mass distribution were verified to be 

smaller than 0.005%). 

4.2.  Blade only: Blade structure characterisation 

Shared data also included sectional stiffness properties, but stiffness is also affected by the beam 

theory. The impact on natural frequency is depicted in Figure 1. Increasingly restricting cross-

sectional deflections – from Exact via Timoshenko to Euler and finally EulerB – shifts the spectrum to 

higher values, with the increase for the first edge frequency less than 3%. Increasing cross-sectional 

constraints increases the flap components of the first edgewise bending mode, while its twist 

component is reduced, Figure 2. Accordingly, structural pitch (for the given coordinates, the arc 

tangent of negative ratio of flap to edge component) grows and dynamic pitch (twist) shrinks in 

magnitude, Figure 3 (no explanation was found for negligible flap components predicted by the 

Timoshenko beam model). These trends could explain over-prediction of damping in stall-induced, 

edgewise vibrations when quasi-steady aerodynamics are used, per outcome of the review as 

summarized in section 2.2.   

4.3.  Blade as wing 

Comparisons of damping ratio vs blade pitch for this scenario are presented in Figure 4 through 

Figure 6. Vertical captions indicate the key flow conditions. 90° pitch relates to free stream inflow 

from the leading edge, decreasing pitch increases angle of attack through separation in positive stall to 

deep (positive) stall at 0° pitch, and so on. Pitch values between 90° and 180° represent negative 

angles of attack and negative stall, respectively. At -90° pitch, the blade experiences reverse flow. The 

legend identifies the combination of analysis components beam theory, wake model, sectional 

aerodynamics, and eigensolution used to generate the depicted data set, using the short hand notations 

introduced in section 3.    
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Figure 1: Deviation of blade natural frequency from Exact beam results  

(data labels indicate Exact beam natural frequency in Hz) 

  

Figure 2: Flap and twist components of edge mode 1, scaled to 1m tip deflection in edge. 

flap positive towards suction side, edge positive towards trailing edge, twist positive “nose up” 

 

  

Figure 3: Structural and dynamic pitch of edge mode 1 at 75% rotor radius 
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Each figure depicts the impact of varying one analysis component at a time, while selecting for the 

other components the option representing the smallest potential for variation amongst participants’ 

methods (Euler beam, Euler, quasi-steady sectional aerodynamics, qs, and wake off, StripTheory, 

respectively; exceptions are noted individually). 

The vast majority of damping results are above -3%, with damping ratios below -5% in few data 

points. Since structural damping ratios are frequently set to values between 0.5% and 1.5% [23], 

instability is present through a wide range of flow conditions except attached flow. 

The choice of simple vs. more sophisticated beam models, Euler/EulerB vs. Exact, respectively, 

has little effect on stability in the majority of flow conditions when quasi-steady aerodynamics are 

used, Figure 4. A notable exception is positive stall onset at 70° pitch angle, where only EulerB 

predicts stability. This observation confirms the previously suspected over-prediction of damping by 

EulerB due to its lack of dynamic pitching specifically when quasi-steady sectional aerodynamics are 

used, see sections 2.2.  and 4.2.   

However, application of unsteady aerodynamics to EulerB removes this feature, Figure 5, and 

damping in general is significantly increased. BL (Beddoes-Leishman) predicts smaller increases than 

ONERA, which even removes instability at all pitch angles but 60°, corresponding to angles of attack 

around 30°.  

Results obtained using Timoshenko beam theory indicate damping values in positive stall up to 2% 

lower than those obtained with other beam theories, Figure 4. Since additional flapwise contributions 

would insert additional damping, it is suspected that the very small flapwise component observed in 

the previous section is the main reason for this result. Note that depicted Timoshenko results were 

obtained using including induced velocities provided by BEMfrozen, since “wake off” (StripTheory) 

results were not available.  

For EulerB beam theory, the choice of wake model has little impact on damping, Figure 6. 

In conclusion, results indicate that the choice of the dynamic stall model – and its respective, 

airfoil-dependent parameters – drives stability of the single AVATAR blade in this scenario, and is 

likely the primary driver for differences in previous AVATAR storm load predictions [1]. 

4.4.  Rotating blade 

Results for the rotating blade are presented in Figure 7 through Figure 9 in the same way as for blade 

as wing in the previous section. Inflow conditions are shifted in pitch due to blade rotation, with 

inflow being aligned with blade tip chord at about 20°, and reverse flow occurring at around -160° 

pitch. Compared to the blade as wing case (with 42 m/s resultant inflow), the following changes are 

noticeable: 

The beam theory has larger impact on damping than in the blade as wing scenario, Figure 7; 

aerodynamic damping in stall decreases consistently with growing restriction in cross sectional 

deflection.  

Aerodynamic damping levels with quasi-steady strip theory dropped from -3% (blade as wing) to 

around -5%, Figure 8. This trend is consistent with growth of magnitude of quasi-steady aerodynamic 

damping with absolute wind speed, as predicted by e.g. Petersen et al. [2]: Rotating the blade at 

9.6RPM in 25 m/s wind leads to 112 m/s resultant inflow velocity at the blade tip, compared to 42 m/s 

for blade as wing. A linear growth in damping is not observed as predicted since only the tip of the 

rotating blade is exposed to this absolute wind speed. Damping increments due to addition of the 

Beddoes-Leishman dynamic stall model were nearly unchanged at +2% (compare with Figure 5). 

ONERA still stabilizes the system except at -10° pitch. 
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Figure 4: Blade as wing edge mode 1 damping ratio [%] vs. pitch [°]:  

Beam solutions, quasi-steady section aerodynamics 

 

 

 

Figure 5: Blade as wing edge mode 1 damping ratio [%] vs. pitch [°]:  

Section aerodynamics, strip theory (wake off) 

 

 

  

Figure 6: Blade as wing edge mode 1 damping [%] vs. pitch [°]:  

Wake models, quasi-steady section aerodynamics 

 

  

L
E

 I
n

fl
o

w

D
ee

p
 S

ta
ll

 +

T
E

 I
n

fl
o

w

D
ee

p
 S

ta
ll

 -

-9%

-6%

-3%

0%

3%

6%

-180 -135 -90 -45 0 45 90 135 180

EulerB-StripTheory-qs-SysID2
Euler-StripTheory-qs-Lin
Timoshenko-BEMfrozen-qs-Lin
Exact-StripTheory-qs-SysID1

L
E

 I
n
fl

o
w

D
ee

p
 S

ta
ll

 +

T
E

 I
n
fl

o
w

D
ee

p
 S

ta
ll

 -

-9%

-6%

-3%

0%

3%

6%

-180 -135 -90 -45 0 45 90 135 180

EulerB-StripTheory-qs-SysID2
EulerB-StripTheory-BL-SysID2
Euler-StripTheory-ONERA-Lin

L
E

 I
n
fl

o
w

D
ee

p
 S

ta
ll

 +

T
E

 I
n
fl

o
w

D
ee

p
 S

ta
ll

 -

-9%

-6%

-3%

0%

3%

6%

-180 -135 -90 -45 0 45 90 135 180

EulerB-StripTheory-qs-SysID2

EulerB-BEMequil-qs-SysID2

EulerB-BEMdyn-qs-SysID2

The Science of Making Torque from Wind (TORQUE 2016) IOP Publishing
Journal of Physics: Conference Series 753 (2016) 042019 doi:10.1088/1742-6596/753/4/042019

8



 

 

 

 

 

 

 

 

Figure 7: Rotating blade edge mode 1 damping ratio [%] vs. pitch [°]:  

Beam solutions, quasi-steady section aerodynamics 

 

 

 

 

Figure 8: Rotating blade edge mode 1 damping ratio [%] vs. pitch [°]:  

Section aerodynamics, strip theory (wake off)  

 

 

  

Figure 9: Rotating blade edge mode 1 damping [%] vs. pitch [°]:  

Wake models, quasi-steady section aerodynamics 

 

  

L
E

 I
n

fl
o

w

D
ee

p
 S

ta
ll

 +

T
E

 I
n

fl
o

w

D
ee

p
 S

ta
ll

 -

-9%

-6%

-3%

0%

3%

6%

-180 -135 -90 -45 0 45 90 135 180

EulerB-StripTheory-qs-SysID2

Euler-StripTheory-qs-Lin

Exact-StripTheory-qs-SysID1

L
E

 I
n
fl

o
w

D
ee

p
 S

ta
ll

 +

T
E

 I
n

fl
o

w

D
ee

p
 S

ta
ll

 -

-9%

-6%

-3%

0%

3%

6%

-180 -135 -90 -45 0 45 90 135 180

EulerB-StripTheory-qs-SysID2

EulerB-StripTheory-BL-SysID2

Euler-BEMfrozen-ONERA-Lin

L
E

 I
n
fl

o
w

D
ee

p
 S

ta
ll

 +

T
E

 I
n
fl

o
w

D
ee

p
 S

ta
ll

 -

-9%

-6%

-3%

0%

3%

6%

-180 -135 -90 -45 0 45 90 135 180

EulerB-StripTheory-qs-SysID2

EulerB-BEMequil-qs-SysID2

EulerB-BEMdyn-qs-SysID2

The Science of Making Torque from Wind (TORQUE 2016) IOP Publishing
Journal of Physics: Conference Series 753 (2016) 042019 doi:10.1088/1742-6596/753/4/042019

9



 

 

 

 

 

 

 

In agreement with blade as wing, the choice of wake models had little impact generally, and no 

effect on damping in stall, Figure 9. In case of the dynamic wake, BEMdyn, this could certainly be 

explained by the spectral gap between time scales associated with edgewise vibration, and those 

relevant for wake dynamics. This explanation does not hold for results with the (quasi-) equilibrium 

wake, BEMequil, which reacts instantaneously to changes in blade loads. Despite high time-averaged 

loading on the blade, the steady-state and oscillatory pressure load of a single rotor blade appears to be 

insufficient to generate a significant induced velocity variation. 

In attached flow results, differences are mainly attributed to system identification issues which are 

also apparent in the 50° through 80° pitch range for simulations with quasi-steady aerodynamics. 

Generally, system identification was found to be sensitive to proper excitation, selection of 

identification method, and tuning of its parameters, due to non-linearity of the aeroelastic system and 

complexity of its response. Proper identification and association with physical modes failed in some 

operating conditions. It is advisable to follow system identification best practice and to complete 

convergence and tuning studies before extensive application to an unknown dynamic system. 

Wherever results from linear models are available, these should be used to tune identification 

algorithms. 

5.  Conclusions 

Results of simulations performed in this investigation show that the choice of the dynamic stall model 

– and its respective, airfoil-dependent parameters – can make the difference between damped and 

unstable edgewise oscillation of an individual AVATAR rotor blade. This choice is most likely also 

the primary driver for differences in early AVATAR storm load predictions. Differences in structural 

dynamics, mode shapes, and structural and dynamic twist from application of different beam models 

had only secondary influence on stall-induced vibration damping, albeit being more noticeable in the 

higher loaded rotating blade scenario. In both simplified cases investigated, selection of the wake 

model had negligible impact. Resolution of results suffered from failure of the applied system 

identification methods to extract reliable damping results from various non-linear response 

simulations. 
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