
Runtime resource management for lifetime
extension in multi-core systems

Cristiana Bolchini
Dip. Elettronica, Informazione e Bioingegneria - Politecnico di Milano, Italy

Email: cristiana.bolchini@polimi.it

The availability of numerous, possibly heterogeneous, pro-
cessing resources in multi-core systems allows one to exploit
them to optimize performance and/or power/energy consump-
tion. In particular, strategies have been defined to map and
schedule tasks on the system resources, with the aim of
optimizing the adopted figure of merit, at design time, if the
working context is known in advance and relatively stable,
at run time when facing changing/unpredictable working con-
ditions [1]. However, it is important to be aware that such
strategies may have an impact on the overall lifetime of the
system because of aging and wear-out mechanisms. Therefore
such management strategies, generally adopted for handling
performance and power consumption aspects, should be en-
hanced in order to consider such issues. Furthermore, specific
Dynamic Reliability Management (DRM) policies have been
devised to deal with lifetime issues in multi-core systems,
acting mainly on the workload distribution (and eventually
on architectural knobs, such as voltage/frequency scaling) to
mitigate the stress caused by the running applications.

Here we will focus on DRM strategies, whose goal is
pursuing the improvement of lifetime reliability by means
of load distribution policies that identify the resource where
to map a new application entering the system, or where to
periodically migrate tasks to balance stress. More precisely, a
selection of state-of-the-art solutions will be presented and
analysed, with respect to the achieved expected lifetime,
evaluated when considering the first failure as well as the
sequence of failures leading to the system being unable to
fulfill the user’s performance of service requirements.

In several approaches, as the work in [2], [3], stress is
maintained homogeneous among the processing cores, in order
to postpone the moment one core among the working ones
will fail. The analysis shows how this pursuit effectively
postpones the time the first core is expected to fail. In fact,
as discussed in [3] to maximize the Mean Time To Failure
(MTTF) of the first core, perfect spatial and temporal load
balancing must be achieved, so that the maximum core wear
state among all the cores must be minimized. Approaches in
this category estimate the wear-out level of each core, for
instance based on the previous executed workload, and decide
to map tasks on the least wear-out core. Indeed load/wear-
out balancing solutions succeed in prolonging the moment the
first core fails. Such load/wear-out balancing is reasonably
easy to perform when considering single-thread application,
incurring a reduced number of constraints in the decision

process. On the other hand, these DRM policies are more
complex and difficult to be integrated in runtime resource
managers when considering multi-threaded applications to be
mapped, since more tasks need to be allocated on several
cores thus increasing the complexity of the decision space
[4]. Moreover, these policies take into account the system to
be failed when the first core fails. However, when adopting
the more realistic (although more complex to be computed)
system MTTF where the system survives until the k-th core
failure, wear-out balancing is not necessarily the most effective
choice, as shown in [5].

In this perspective, another class of approaches focuses
on maintaining spare cores, if the performance requirements
allow for it, to be used only when a core fails. Different
strategies can be adopted when deciding which cores (spatially
and temporally) should be considered spares, having different
impact on the final system lifetime, since wear-out does not
only depend on the actual workload executed by a core,
but also by the activity (and consequent temperature) of the
adjacent cores [2], [6]. Moreover, some strategies exploit the
use of spare to periodically migrate workload from one core to
a spare one, in order to mitigate wear-out effects and possibly
increase the overall system MTTF.

A comparison of the selected approaches will be presented
and analyzed from an empirical point of view, by adopting a
state-of-the-art reliability modeling and estimation framework.

REFERENCES

[1] A. K. Singh, M. Shafique, A. Kumar, and J. Henkel, “Mapping on
Multi/Many-core Systems: Survey of Current and Emerging Trends,” in
Proc. Design Automation Conf., 2013, pp. 1–10.

[2] L. Huang and Q. Xu, “Characterizing the lifetime reliability of manycore
processors with core-level redundancy,” in Proc. Int. Conf. on Computer-
Aided Design, 2010, pp. 680–685.

[3] T. Chantem, Y. Xiang, X. S. Hu, and R. P. Dick, “Enhancing Multicore
Reliability Through Wear Compensation in Online Assignment and
Scheduling,” in Proc. Conf. on Design, Automation and Test in Europe,
2013, pp. 1373–1378.

[4] M.-H. Haghbayan, A. Miele, A. M. Rahmani, P. Liljeberg, and H. Ten-
hunen, “Lifetime-aware load distribution policies in multi-core systems:
An in-depth analysis,” in Proc. Conf. on Design, Automation and Test in
Europe, 2016, pp. 854–857.

[5] C. Bolchini, L. Cassano, and A. Miele, “A lifetime-aware runtime
mapping approach for many-core systems in the dark silicon era,” in Proc.
Conf. on Design, Automation and Test in Europe, 2016, pp. 804–809.

[6] A. Simevski, R. Kraemer, and M. Krstic, “Increasing multiprocessor
lifetime by Youngest-First Round-Robin core gating patterns,” in Proc.
NASA/ESA Conf. Adaptive Hardware and Systems, 2014, pp. 233–239.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Politecnico di Milano

https://core.ac.uk/display/55260958?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

