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Suppression laws for multiparticle interference in Sylvester interferometers
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Quantum interference of correlated particles is a fundamental quantum phenomenon which carries signatures
of the statistics properties of the particles, such as bunching or antibunching. In the presence of particular
symmetries, interference effects take place with high visibility, one of the simplest cases being the suppression
of coincident detection in the Hong-Ou-Mandel effect. Tichy et al., [Phys. Rev. Lett. 104, 220405 (2010)]
recently demonstrated a simple sufficient criterion for the suppression of output events in the more general case
of Fourier multiport beam splitters. Here we study the case in which 2q particles (either bosonic or fermionic)
are injected simultaneously in different ports of a Sylvester interferometer with 2p � 2q modes. In particular, we
prove a necessary and sufficient criterion for a significant fraction of output states to be suppressed, for specific
input configurations. This may find application in assessing the indistinguishability of multiple single-photon
sources and in the validation of boson sampling machines.
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I. INTRODUCTION

Multiparticle quantum interference arises when several
indistinguishable particles have a nonvanishing probability
amplitude of being found at the same site or spatial coordinate.
The algebraic sum of all these probability amplitudes may
lead to strong enhancement (constructive interference) or sup-
pression (destructive interference) of the detection probability
of the different possible collective states. In that, it is a
pure and typical quantum phenomenon, which is worth being
investigated both from a fundamental perspective and for its
quantum information implications.

Qualitatively different behaviors may be observed in
general, depending on the bosonic or fermionic nature of
the particles. The antisymmetrization requirements [1] for
fermionic wave functions lead to a vanishing probability of
finding more than one particle on the same site (the Pauli
principle). Bosons, in contrast, show a marked tendency to
bunch together, with increased probability to coalesce on
the same site [2,3] or to cluster in nearby sites (bosonic
clouding [4]).

However, when particles evolve following Hamiltonians
with specific symmetries, particular fine-grained distributions
can be observed with enhanced interference peaks and dips.
The simplest case is the Hong-Ou-Mandel (HOM) effect when
two particles impinge on distinct ports of a balanced beam
splitter: quantum interference suppresses the coincident output
(one particle per each output) in the case of bosons and the
single-port output (both particles in either output) in the case of
fermions. In the multiparticle case, a sort of generalized HOM
effect occurs for symmetric multiport beam splitters [5–8]. In
particular, Tichy et al. [7] showed that for a particular class
of multiports, namely, Bell or Fourier multiports, and input
states with cyclic symmetry, a full suppression of most of the
output combinations is observed; a simple analytical law gives
a sufficient criterion for such suppression.

From a computational point of view, calculating the output
distribution of a number of indistinguishable bosons is a
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mathematically hard problem, in that it cannot be performed
efficiently on conventional (classical) computers. In fact, it
relies on the calculation of permanents of matrices, for which
an efficient classical algorithm is lacking. The realization of
such difficulty has led to the proposal [9] of boson sampling
devices as experimentally accessible platforms that could
perform some task hard to simulate with classical resources.
The specialized task of such quantum devices is to physically
implement and sample the distribution of n bosons undergoing
a certain unitary evolution. The computational difficulty of a
classical simulation of such a process (i.e., a classical sampling
of such a distribution) increases exponentially with n, rapidly
becoming infeasible. First proof-of-principle experiments with
photons have been reported very recently [4,10–14]; while
not having demonstrated yet a true quantum supremacy, these
experiments have pointed out that such a demonstration may
not be so far from being reached.

A future many-modes boson sampling experiment will
likely require the implementation of an arbitrary unitary
matrix, through a possibly reconfigurable [15] linear inter-
ferometer [13,16]. If the output is hard to predict classically,
the certification of the correct operation of such device may be
not trivial also: in fact, several solutions to this problem have
been debated [4,14,17–19]. The use of particular symmetric
unitaries that show rich but easily predictable multiphoton
distributions has been also proposed [18] as a convenient
way to assess the performance both of a multiphoton source
as well as of the reconfigurable device itself. In the same
way that the two-photon HOM effect on balanced beam
splitters has long been used as a diagnostic instrument for
measuring two-photon indistinguishability, suppression laws
for multiport interferometers could provide a suitable means
to simultaneously test the quality of a multiphoton source
and of a multimode reconfigurable device for boson sampling
experiments. Of course, these could be adopted to assess the
performance of a multiphoton source also outside of the boson
sampling context.

It has to be noted that the existence of a sharp suppression
law directly comes from the symmetry characteristics of the
matrix. While it has been conjectured that other suppression
laws could exist for other classes of symmetric unitaries, only
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the class of Fourier matrices has been investigated extensively
up to now [7,20,21].

In this work we address the study of interferometers
implementing m = 2p-modes Sylvester matrices and prove
a necessary and sufficient criterion for the suppression of most
output combinations, for certain input states of n = 2q � m

particles, either bosonic or fermionic. We further discuss
possible applications for assessing the indistinguishability of
multiple single-photon sources.

In Sec. II we recall some basic concepts about the evolution
of multiparticle Fock states through linear unitary processes
and about the definition of Sylvester matrices. In Sec. III we
give a comprehensive characterization of the output distribu-
tions in the two-particle case, while in Secs. IV and V we prove
the output suppression criteria for the cases of multiple bosons
and multiple fermions, respectively. These sections are mainly
organized as a list of propositions regarding mathematical
properties of certain matrices and their consequences on the
calculation of the multiparticle output distributions. Finally, we
discuss in Sec. VI the consequences and possible applications
of the suppression criteria proved in the preceding sections,
with particular regard to experiments with photons.

II. PRELIMINARY CONCEPTS

A. Multiparticle interference in linear interferometers

A generic Fock state |T 〉 of n particles on m modes can
be written as |T 〉 = (

∏n
i=1 a

†
ti )|0〉, where a

†
ti is the creation

operator on the mode ti . Such a state can be identified by the
n-element vector �t = (t1,t2, . . . ,tn), with 1 � ti � m. Since
different orderings of the particles in the same modes are
not distinguishable, we will consider only the cases t1 � t2 �
. . . � tn.

An m-mode lossless linear evolution can be described by
an m × m unitary transformation U on the space of creation
operators. The probability amplitude associated with an input
�g = (g1,g2, . . . ,gn) and output �h = (h1,h2, . . . ,hn) is given
by

pbos = perm S�g,�h√
μ1!μ2! . . . μm!ν1!ν2! . . . νm!

(1)

in the case of bosons and by

pfer = det S�g,�h√
μ1!μ2! . . . μm!ν1!ν2! . . . νm!

, (2)

where μi and νi are the number of particles present in mode i

in the �g and �h should have the arrow sign as they are vectors
states, respectively; S is the scattering matrix with elements
Si,j = Uhi,gj

; and perm A denotes the permanent of a matrix
A. It may be useful to recall also the definition of permanent
for a matrix A:

perm A =
∑

σ

n∏
i=1

ai,σ (i), (3)

where ai,j is an element of A, σ is a permutation of {1, . . . ,n},
and thus the sum in the expression is performed over all the
possible permutations.

B. Hadamard, Fourier, and Sylvester matrices

A complex Hadamard matrix is defined as an orthogonal
matrix of complex numbers, in which all the elements have
a unitary modulus. A well-known subclass of such matrices
is that of Fourier matrices, the elements of an m × m Fourier
matrix F (m) being defined as follows:

Fj,k = e2πι(j−1)(k−1)/m, (4)

where ι = √−1 is the imaginary unit. As already mentioned,
multiparticle interference has been largely studied in the
literature [7,20,21] for interferometers implementing the nor-
malized (unitary) version of such matrices Um = 1√

m
F (m).

Real Hadamard matrices, simply referred to as Hadamard
matrices in the following, are orthogonal matrices with all
elements equal to ±1. Sylvester matrices are a particular class
of real Hadamard matrices, having size m = 2p, that can be
built recursively from the following formula:

H (2p) =
[
H (2p−1) H (2p−1)

H (2p−1) −H (2p−1)

]
, (5)

with H (20) = H (1) = [1]. From this construction one can
derive an analytic expression for the (i,j ) element of the
matrix:

[H (2p)]i,j = (−1)iB�jB , (6)

where iB and jB are the binary representations of i and j ,
enumerating the rows and columns starting from zero, and �
is the bitwise dot product.

In the following we will refer to devices implementing a
unitary matrix defined by

Um = 1√
m

H (m), (7)

with m = 2p as Sylvester interferometers.
A general expression for the permanent of Sylvester (and

more generally Hadamard) matrices is not known: while
perm H (2) = 0, it has been conjectured that for all the other or-
ders Hadamard matrices have nonvanishing permanents [22].

Note that the usual balanced beam-splitter operator is
simply 1√

2
H (2). In this case, for an input state with one

photon per mode, the well-known Hong-Ou-Mandel effect
is observed, which consists in the suppression of the output
state with one photon per mode. In fact, according to Eq. (1),
for such an output contribution, the probability amplitude is
proportional to perm H (2) = 0.

III. TWO PARTICLES

Even though some of the results of this section could be
retrieved by applying the more general results of Secs. IV
and V, the two-particle case allows for a more comprehensive
description and shows some specific features, which make it
worth addressing it separately.

Proposition 1. If two bosons are injected in the first two
modes of an interferometer described by Um = 1√

m
H (m) =

1√
2p

H (2p), the probability amplitude pi,j of an output state
with one particle on mode i and one particle on mode j follows
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the rule

|pi,j | = 1

2p−1
if i mod 2 = j mod 2, i �= j,

|pi,j | = 1

2p−1/2
if i = j,

pi,j = 0 else.

The scattering matrices S in Eq. (1), for such an input state,
are all submatrices of the first two columns of Um. Recalling
Eq. (5), one can easily observe that such columns are simply
(properly normalized) repetitions of H (2) and retrieve the
matrices S, as a function of i and j , as follows:

(1) i mod 2 = 1 and j mod 2 = 0,

S = 1√
2p

H (2) = 1√
2p

[1 1
1 −1] ⇒ permS = 0.

(2) i mod 2 = 0 and j mod 2 = 1,

S = 1√
2p

[ 1 −1
1 1 ] ⇒ permS = 0.

(3) i mod 2 = j mod 2.
S consists of two identical rows with elements ± 1√

2p
: simple

calculations show that in this case |perm S| = 1
2p−1 .

Thus, if and only if i mod 2 �= j mod 2 the permanent of
the scattering matrix vanishes, giving pi,j = 0, while the other
cases are proved by applying Eq. (1). �

Corollary 1.1. In the case of Proposition 1, the fraction of

suppressed states is
Nbos

supp

Nstates
= 1

2
m

m+1 .
The possible two-bosons output states are identified by

all the couples (i,j ) with 1 � i � j � m [we consider only
i � j because (i,j ) is the same state as (j,i)]. The number
of such states is 1

2m(m + 1). In a chessboard with m × m

squares, alternately black and white, these can be seen as
all the squares above the main diagonal or included in it. If
we color the squares in such a way that the main diagonal
is black, the condition i mod 2 �= j mod 2 (with i � j )
indicates all the white squares comprised in the region above
it, which are actually half of the total number of white squares.
Thus, the number of suppressed states is 1

4m2, giving the
result. �

Proposition 2. If two fermions are injected in the first two
modes of an interferometer described by Um = 1√

m
H (m) =

1√
2p

H (2p), the probability amplitude pi,j of an output contri-
bution with one particle on mode i and one particle on mode
j follows the rule

|pi,j | = 1

2p−1
if i mod 2 �= j mod 2,

pi,j = 0 else.

The scattering matrices to be considered for calculating the
probability amplitudes are the same as those of Proposition
1, but the determinant [Eq. (2)] instead of the permanent has
to be calculated here. Thus, when i mod 2 �= j mod 2 the
scattering matrix is composed of two identical rows and the
determinant vanishes. In all the other cases (see the expression
of S in the proof of Proposition 1) the determinant is equal
to 1

2p−1 . Application of Eq. (2) then gives the probability
amplitudes. �

Corollary 2.1. In the case of Proposition 2 the fraction of

suppressed states is
N fer

supp

Nstates
= 1

2
m+2
m+1 .

Comparing Proposition 1 with Proposition 2, bosons and
fermions show a dichotomic behavior, in that an output
combination is suppressed for two bosons if and only if it
is allowed for two fermions and vice versa. Thus the fraction
of suppressed states (over all the possible two-particle states)

for two fermions is
N fer

supp

Nstates
=1 − Nbos

supp

Nstates
=1 − 1

2
m

m+1= 1
2

m+2
m+1 . �

Note that this fraction actually includes some states (the
states with two particles on the same port) that are indeed
suppressed by virtue of the Pauli principle and not by specific
features of the Sylvester matrix.

Proposition 3. For U2p = 1√
2p

H (2p) and a two-particle
input on an arbitrary couple of different modes, the number of
suppressed states is the same as that given in Corollaries 1.1
and 2.1 for bosons and fermions, respectively.

For an arbitrary input state, with two particles on modes
(i,j ), the scattering matrices S will take elements from the ith
and j th columns of 1√

2p
H (2p). Let us put these two columns

one next to the other, to form the n × 2 matrix A. For a given
output state (i ′,j ′), the scattering matrix S will be a submatrix
of A formed by its i ′th and j ′th rows.

Note that two different columns of a Hadamard matrix
have half of the elements with opposite sign and half of the
elements with the same sign. Half of the rows of A will be
[1,1] or [−1,−1]; the other half will be [−1,1] or [1,−1]. Let
us now perform the following operations. First, we multiply
the [−1,−1] and [−1,1] rows by −1. This will change the sign
of the permanent of the scattering matrix that should include
such rows, but it has no influence if the permanent vanishes.
At this point we will have half of the rows equal to [1,1] and
half equal to [1,−1]. Second, we reorder the rows alternating
[1,1] and [1,−1]. This is equivalent to relabeling the outputs,
which does not affect the number of suppressed output states.
At this point the matrix A will be the same as if (i,j ) = (1,2),
which is the case of Propositions 1 and 2. Hence, every input
combination has the same fraction of suppressed output states
of the input (i,j ) = (1,2), discussed in Corollaries 1.1 and 2.1
for boson and fermions, respectively. �

IV. MULTIPLE BOSONS

The aim of this section is to demonstrate a suppression law
for the case of n = 2q indistinguishable bosons. This will be
obtained in Proposition 7 at the end of the section. However,
that result is based on other propositions which will be proved
first. The first one (Proposition 4) allows us to restrict the study,
in certain conditions, from the case of n particles in m modes
to the case of n particles in n modes. Propositions 5 and 6,
in contrast, regard mathematical properties (in particular, the
value of the permanent) of certain −1, + 1 matrices.

Proposition 4. Let U = 1√
2p

H (2p) with p = k + q be a

linear transformation over m = 2p modes, and let �h = (1 +
nc, . . . ,n + nc) with 0 � c � (2k − 1) be an input state of n =
2q particles. The output state �g = (g1, . . . ,gn) is suppressed
if and only if the output state �g′ = (g′

1, . . . ,g
′
n) with g′

i =
[(gi − 1) mod n] + 1 is suppressed for the transformation
U ′ = 1√

2q
H (2q) with n particles entering one per each mode.

For input states of the kind �h = (1, . . . ,n) (i.e., one particle
per each of the first n modes), the scattering matrices will be
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submatrices of the first n columns of U . From the construction
of H (2p) = H (2k+q) = H (n × 2k) with Eq. (5), it is clear
that these first n columns are simply repetitions of H (n).
For an output state with n particles distributed on the modes
g1 . . . gn, the ith row of the scattering matrix S will be extracted
from the gi th row of U . Since such rows repeat identically
every n rows (regarding the first n columns), the scattering
matrix is the same for all states �g = (g1, . . . ,gn) having the
same g1 mod n, . . . ,gn mod n. We can look for the smallest
mode numbers giving this condition, which are g′

i = [(gi − 1)
mod n] + 1. In that case the scattering matrix is the one we
would expect for the output state �g′ = (g′

1, . . . ,g
′
n) defined as

above, when entering with n particles (one per each mode) in
an interferometer implementing U ′ = 1√

2q
H (2q).

Let us consider now the more general case �h = (1 +
nc, . . . ,n + nc) with 0 � c � 2k−1. Again from the construc-
tion in Eq. (5) it can be observed that such columns will
be repetitions of ±H (n) (with a succession of positive and
negative signs that depends on c). If we properly change the
signs of the rows (an operation that is equivalent to adding a
π phase term to certain outputs, which does not influence the
probability modulus) these columns can be made identical to
those of the case �h = (1, . . . ,n), discussed above. Hence, the
output distribution is the same. �

This result holds for both bosons and fermions because no
hypotheses on the particle statistics have been adopted. In addi-
tion it can be exploited for a more precise generalization of the
results of Propositions 1 and 2 to a wider range of input states.

Proposition 5. Let A be an m × m matrix with m = 2p, built
by taking the rows {r1,r2,...,rm} from H (m) [namely, the ith
row of A is the ri th row of H (m) and rows may be repeated].
If r1,B ⊕ r2,B ⊕ . . . ⊕ rm,B �= 0, then perm A = 0, ri,B being
the binary representation of the row number, starting the count
from zero, and ⊕ being the bitwise sum (the XOR operation).

The condition r1,B ⊕ r2,B ⊕ . . . ⊕ rm,B �= 0 means that for
at least one k an odd number of ri,B has the same kth
bit. In other words, for at least one k, the kth bit of the
binary representations of the ri is 1 for an odd number of

rows and is zero for a (possibly different) odd number of
rows.

Consider now an arbitrary permutation σ in the permanent
expression perm A = ∑

σ

∏n
i=1 ai,σ (i), which is actually a set

{σ (i)} containing the numbers from 1 to n in a certain order;
further, let σ ′ be another permutation, obtained from σ by
changing the kth bit in all its components σ (i) (written in their
binary representation). Let us analyze the effect of this bit flip.
First, one should recall that, from its definition,

ai,j = (H (m))ri ,j , (8)

with |ai,j | = 1 ∀ i,j . Depending on the value of the kth bit
of ri,B , one has from Eq. (6)

ri,B |k = 1 ⇒ ai,σ (i) = (H (m))ri ,σ (i)

= −(H (m))ri ,σ ′(i) = −ai,σ ′(i), (9)

ri,B |k = 0 ⇒ ai,σ (i) = (H (m))ri ,σ (i)

= (H (m))ri ,σ ′(i) = ai,σ ′(i). (10)

If, as in the case of the hypotheses, an odd number of ri,B

have the kth bit equal to 1, in the product
∏n

i=1 ai,σ ′(i) an odd
number of factors change their sign with respect to

∏n
i=1 ai,σ (i),

giving

n∏
i=1

ai,σ (i) = −
n∏

i=1

ai,σ ′(i). (11)

This means that for each permutation σ there exists another
σ ′, biunivocally associated to σ , for which Eq. (11) holds.
Hence, in the sum over all the σ of Eq. (3), half of the addends
will have sign −1 and the other half will have sign +1, which
implies perm A = 0. �

An example of an application of this criterion is given in
Fig. 1.

Corollary 5.1. Let A be an m × m matrix with m = 2p > 2,
built by taking the rows {r1,r2,...,rm} from H (m) [namely, the
ith row of A is the ri th row of H (m) and rows may be repeated],
and r1,B ⊕ r2,B ⊕ . . . ⊕ rm,B = 0. Build the matrix B such that

FIG. 1. Example of application of the criterion of Proposition 5, for a matrix A built of the rows {1,2,3,3,5,6,7,8} of H (8). The table on
the right summarizes the application of the criterion: for each row i of the scattering matrix, which is the ri line of H (8), the binary expression
ri,B is reported. The latter is actually the binary conversion of ri − 1, since the binary enumeration of the rows must start from zero. The last
line of the table reports the bitwise sum which, being not equal to zero in this case, indicates that perm A = 0.
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all the rows are the same as those of A except the ith row, the
ith row being another arbitrary r ′

i th row of H (m), with r ′
i �= ri .

Then, B satisfies Proposition 5.
The condition r1,B ⊕ r2,B ⊕ . . . ⊕ rm,B = 0 means that in

the set of the binary representations {r1,B,r2,B,...,rm,B} each
bit recurs an even number of times with value zero and an
even number of times with value one. The matrix B is built by
removing from A its ith row [which was the ri th row of H (m)]
and by replacing it with another arbitrary r ′

i th row of H (m).
The binary representation r ′

i,B is different from ri,B for at least
one bit, say, the kth bit. Note that in the set {r1,B,r2,B,...,rm,B}
the kth bit had the value zero for an even number of times and
the value one for an even number of times: now that we have
changed ri with r ′

i the kth bit will have the value zero for an odd
number of times and the value one for (another) odd number of
times. This implies r1,B ⊕ r2,B ⊕ . . . ⊕ r ′

i,B ⊕ . . . ⊕ rn,B �= 0
and the hypotheses for Proposition 5 are verified. �

Proposition 6. Let A be an m × m matrix with m = 2p > 2,
built by taking the rows {r1,r2,...,rn} from H (m) (namely, the
ith row of A is the ri th row of H (m) and rows may be repeated).
If r1,B ⊕ r2,B ⊕ . . . ⊕ rn,B = 0, then perm A �= 0.

Take the Laplace expansion of the permanent along an
arbitrary ith row:

perm A =
∑

j

ai,j × perm Mi,j , (12)

where ai,j is an element of A and Mi,j is the i,j minor of A.
In other terms, Eq. (12) can be read as a dot product:

perm A = �ai · �c, (13)

where �ai is the n-element vector given by the ith row of A and
�c is the vector with elements cj = perm Mi,j .

Consider now m different matrices Al , built by replacing
the ith row of A with the lth row of H (m). For l = ri one has
Al = Ari

= A, while all the other Al will differ from A by one
row. When one calculates perm Al according to Eq. (12), the
minors Mi,j are always the same for every Al , because only
the ith row is changing. Hence, in Eq. (13) the vector �c is
always the same for every Al . The permanents of the different
Al can be interpreted as the projection of such �c onto different
vectors, given by the lth row of H (m).

It is important to note that �c is a nonzero vector. The
elements of this vector are permanents of matrices Mi,j , which
are squared (+1, − 1) matrices of order m − 1, and it has been
shown [23] that if m = 2p then no matrices of order m − 1 exist
with a vanishing permanent.

The rows of H (m) form a complete (orthogonal) basis of
Rn: a nonzero vector �c has at least one nonzero projection
on one of the vectors of the basis. We have already shown
(Proposition 5.1) that, for Al defined as above with l �= ri ,
one has perm Al = 0; i.e., the projection of �c on all the
rows of H (m), except the ri th, is vanishing. It follows that
the projection on the ri th row must be nonzero: this implies
perm Ari

= perm A �= 0. �
Proposition 7. Consider a unitary transformation m = 2p

modes Um = 1√
2p

H (2p) with p = k + q and an input state

with n = 2q bosons �h = (1 + nc, . . . ,n + nc), where 0 � c �
(2k − 1). The output state �g = (g1,g2, . . . ,gn) is suppressed if
and only if g1,B ⊕ g2,B ⊕ . . . ⊕ gn,B �= 0, gi,B being the binary

representation of gi − 1 (i.e., the binary representation of the
output mode number, starting the count from zero) truncated
to the q least significant bits and ⊕ being the bitwise sum (the
XOR operation).

First we address the case m = n, with �h = (1, . . . ,n). Here
the result comes directly from considering that the probability
of an output configuration �g = (g1,g2, . . . ,gn) is proportional
to perm S, where S is a matrix whose ith row is the gi th row
of H (n). Because of Propositions 5 and 6 such a permanent is
vanishing if and only if g1,B ⊕ g2,B ⊕ . . . ⊕ gn,B �= 0 (where
gi,B is the full binary expression of gi − 1, composed of q bits),
thus giving in this case the suppression of the corresponding
output configuration.

By exploiting Proposition 4, this result can now be
extended to the case m = 2q > 2p = n and input states of
the kind �h = (1 + nc, . . . ,n + nc). In particular, the condition
of Proposition 4 of considering the mode numbers modulo n

implies that a criterion of the kind g1,B ⊕ g2,B ⊕ . . . ⊕ gn,B �=
0 can be applied if gi,B is the binary representation of the mode
index, truncated to the q least significant bits. �

To evaluate the fraction of output combinations that is
suppressed we need to consider the set of all possible output
states {g1,g2, . . . ,gn} and estimate when their binary expres-
sions {g1,B,g2,B, . . . ,gn,B}, truncated to the q least significant
bits (for the arguments discussed above), satisfy G = g1,B ⊕
g2,B ⊕ . . . ⊕ gn,B �= 0. Adopting an approach similar to that
of Ref. [7], we assume that in such a set a certain kth bit of
the binary expression gi,B (consisting of q bits) can take the
values zero or one with equal probability, independently from
the values of the other bits. In other words, we assume that in
each subset of states with a certain bit combination (for the bits
other than the kth bit) the number of output states for which
the kth bit is zero is equal to the number of states for which
that bit is one.

Let us now consider the possible values of the binary
expression G, starting from its first bit. That bit is the result
of the ⊕ operation on n bits (the first bit of each gi,B). If we
consider the full set of possible outputs, such n bits will be
zero or one the same number of times. Thus, also the first bit
of G will be zero for half of the possible output states and one
for the other half. Those states for which the first bit of G is
1 already satisfy G �= 0, so they are suppressed. For the other
ones, they may be suppressed if the ⊕ operation on other bits
gives 1. One then considers the second bit and with analogous
arguments notes that it will be zero for the half of the output
states and one for the other half. One continues with the same
procedure up to the qth bit. Hence, the overall fraction

Nbos
supp

Nstates

of suppressed states will be 1
2 (the fraction of states which has

the first bit of R equal to 1) summed to 1
2 × 1

2 (the fraction
of states which has the first bit of R equal to zero and the
second equal to one) summed to 1

2 × 1
2 × 1

2 (the fraction of
states which has the first and second bit equal to zero and the
third equal to one) and so on. This gives

Nbos
supp

Nstates
∼

k∑
x=1

1

2x
= 2k − 1

2k
= n − 1

n
. (14)

Table I reports the fraction of suppressed bosonic states
for n � 8 and m � 64, compared with the result of Eq. (14).
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TABLE I. Fraction of suppressed states over the possible output states, when injecting an m-modes Sylvester interferometer with n bosons
in the first n inputs. The number of suppressed states has been calculated by checking the criterion of Proposition 4 for each possible output
state. In the last column the estimation from the formula (14) is given for comparison.

m

n 2 4 8 16 32 64 n−1
n

2 1
3 � 0.33 4

10 = 0.4 16
36 � 0.44 64

136 � 0.47 256
528 � 0.48 1,024

2,080 � 0.49 0.5

4 24
35 � 0.69 240

330 � 0.73 2,880
3,876 � 0.74 39,168

52,360 � 0.75 574,464
766,480 � 0.75 0.75

8 5,600
6,435 � 0.870 428,736

490,314 � 0.874 53,829,888
61,523,748 � 0.875 9,309,189,120

10,639,125,640 � 0.875 0.875

The latter expression approximates better the actual value for
increasing n or m.

V. MULTIPLE FERMIONS

The case of fermions is less significant, with respect to
bosons, from a computational point of view; in fact the proba-
bility amplitudes of the output configurations are proportional
to the determinant of the scattering matrix [see Eq. (2)], which
differently from the permanent can be calculated efficiently.
However, investigating the suppression laws arising for this
kind of particles enables a better understanding of the effects
of statistics in multiparticle interference.

Proposition 8. Consider a unitary transformation over m =
2p modes Um = 1√

2p
H (2p) with p = k + q and an input state

with n = 2q fermions �h = (1 + nc, . . . ,n + nc), where 0 �
c � (2k − 1). The output state �g = (g1, . . . ,gn) is suppressed
if and only if gi mod n = i mod n ∀i ∈ [1,n].

Let us consider, to begin, the case n = m, i.e., n fermions
entering an n-mode interferometer one per each port. The
only possible output state allowed from the Pauli principle
is �g = (1, . . . ,n), namely, the state having one particle per
mode, which can be written also as gi = i ∀i ∈ [1,n]. Such a
condition is easily extended to the case of a more generic input
state �h = (1 + nc, . . . ,n + nc) of n = 2q fermions entering an
m = n × 2k interferometer through Proposition 4, becoming
gi mod n = i mod n ∀i ∈ [1,n]. �

The number of allowed and suppressed output states can
be evaluated considering that, in an interferometer with m =
n × 2k modes, the condition gi mod n = i mod n can be
satisfied for 2k different values of gi . Hence, the number of
allowed output states is the number of sequences of n numbers,
each with 2k possible values, i.e., 2kn = (m

n
)n.

The possible output states of n particles on m modes
are Nstates = (m + n − 1

n ) = (m+n−1)!
(m−1)! n! (combinations with repeti-

tions). The fraction of allowed states, for large m, thus tends
to [24](

m

n

)n (m − 1)! n!

(m + n − 1)!
�

(
m

m − 1

)n
n!

nn
� n!

nn
, (15)

and the fraction of suppressed states is asymptotically equal to

N fer
supp

Nstates
= 1 − N fer

allowed

Nstates
� 1 − n!

nn
. (16)

Table II reports the fraction of suppressed fermionic states
for n � 8 and m � 64, calculated over all the possible n-
particles states, together with the asymptotic estimation with
Eq. (16).

VI. DISCUSSION

The predictions of the suppressions laws proved above can
be compared with the general trends that usually distinguish
the particles’ behavior, depending on their statistics. While
for fermions the compatibility of Proposition 8 with the Pauli
principle is intrinsic in its same proof, the behavior of bosons,
which would be expected to show an enhanced tendency to
bunch together, is more peculiar. Actually, similarly to Ref. [7],
we observe that many bunching events are not enhanced
but included in the suppression conditions of Proposition 7.
The probability of full-bunching events (events with all n

bosonic particles on the same output mode, over the m

possible modes) can be calculated easily: the scattering matrix
is composed of identical rows with half +1/

√
m and half

−1/
√

m elements; by inverting the sign of the columns with
negative elements (an operation which does not affect the
permanent [25]), we obtain a matrix of all +1/

√
m, whose

permanent equals n!/mm/2. Thus the probability of this event
is ( n!

mm/2
√

n!
)2 = n!/mm [from squaring Eq. (1)], which is an

enhancement of n! with respect to the probability of such an
event for distinguishable particles. This enhancement factor

TABLE II. Fraction of suppressed states over the possible output states, when injecting an m-modes Sylvester interferometer with n

fermions in the first n inputs. In the last column the asymptotic value 1 − n!
nn is given for comparison.

m

n 2 4 8 16 32 64 1 − n!
nn

2 2
3 � 0.67 6

10 = 0.6 20
36 � 0.56 72

136 � 0.53 272
528 � 0.52 1,056

2,080 � 0.51 0.5

4 34
35 � 0.97 314

330 � 0.95 3,620
3,876 � 0.93 48,264

52,360 � 0.92 700,944
766,480 � 0.91 0.91

8 6,434
6,435 > 0.999 490,058

490,314 > 0.999 61,458,212
61,523,748 � 0.999 10,622,348,424

10,639,125,640 � 0.998 0.998
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FIG. 2. (Color online) (a) Ratio between the average number of
occupied modes for bosons and for distinguishable particles, for
n = 2,4,8 particles entering an m-mode Sylvester interferometer,
one per each of the first n modes. (b) Probability distribution of
detecting an output state with a certain number of occupied modes,
when entering with n = 8 indistinguishable bosons (one per each
input mode) in a m = 8 Sylvester interferometer (blue squares) or
Fourier interferometer (red diamonds). Probability for distinguishable
particles (black circles) in analogous interferometers is also reported.

for full-bunching events is indeed a general law for all unitary
processes [3]. With regard to antibunching events (particles
in all different ports), it is not difficult to observe that for
n = m > 2 they are instead never suppressed for bosons: the
scattering matrix for such an event would be a full Sylvester
matrix, whose permanent is proved [26] to be nonvanishing
by observing that for {r1,r2, . . . ,rn} = {1,2, . . . ,n} one has
r1,B ⊕ r2,B ⊕ . . . ⊕ rn,B = 0 and by exploiting Proposition 6.
This also marks a difference with respect to Bell multiports,
where such events are always suppressed for an even number
of bosons [20].

An overall figure that may quantify the bunching be-
havior [7] is the average number M̄ of occupied modes at
the output. The bosonic bunching tendency should reduce
the number of occupied modes with respect to the case
of distinguishable particles. Figure 2(a) reports the ratio
between the average number of occupied modes in the case of
indistinguishable bosons and that in the case of distinguishable
particles, for n = 2,4,and 8 particles injected in the first modes
of Sylvester interferometers with up to 32 modes. This ratio is
always smaller than unity, confirming the bunching behavior.
However, while from the previous discussion we know that
the fraction of suppressed states is practically constant with
increasing m, this ratio looks to approach 1 in the same limit:
the larger number of available modes makes the particles
more likely to exit on different ports, approaching the classical
probability on this aspect. Thus, the suppression law seems to

be a stronger nonclassical signature than the bunching behavior
itself, which is less evident with large m.

The detailed probability of having a certain number of
occupied modes is reported in Fig. 2(b) for the case n = m =
8, with the comparison of the distribution in the case of a
Fourier interferometer. The three distributions are different
in shape and the shift toward a smaller number of occupied
modes for the two nonclassical distributions is evident. In this
particular case the average number of occupied ports is �4.1
for both Sylvester and Fourier interferometers in the case of
identical bosons and is � 5.3 in the case of distinguishable
particles.

As a further analysis, the asymptotic fraction of allowed
fermionic states can be compared with the asymptotic fraction
of allowed bosonic states, to evaluate the strength of the
suppression law in the two cases. For large m, one has

N fer
allowed

Nstates
� n!

nn
= n

n

n − 1

n
. . .

1

n
<

1

n
� Nbos

allowed

Nstates
. (17)

Interestingly, the suppression law seems to act more severely
for fermions, for large m. Note that the calculation in Eq. (17)
actually includes, for fermions, all the possible multiparticle
states, even those already forbidden from the Pauli principle
itself. It can be observed, however, that N fer

states = (mn) �
(m + n − 1

n ) = Nstates for large m, where N fer
states are all the possible

fermionic states, i.e., states with all different output ports. Thus
the inequality (17) holds asymptotically also considering (for
fermions) only the fraction of events that were not already
suppressed by the simple application of the Pauli principle.
It is worth recalling that, besides manifesting naturally for
true fermions and bosons, the effects of the statistics can be
simulated by proper entangled states [27,28]. Thus, the laws
here developed for the two kinds of particles hold true for the
corresponding entangled states.

From a more applicative point of view, suppression laws
such as the one presented here for Sylvester interferometers
may be exploited to test the indistinguishability of n-photon
sources [7]. Further, they may be used, in the context of boson
sampling experiments, to simultaneously check the quality
of the sources and of a possible reconfigurable device [18],
that would perform the required unitary that expresses the
suppression law. The limitation of the laws for Sylvester
interferometers to specific values of n may seem, at first glance,
quite disadvantageous in a possible general case when it may
be required to test a general n-photon source where n may
not be a power of 2. However, one may envisage that the full
n-photon interference could be used as an overall check of
the source quality, but an accurate troubleshooting of possible
malfunctioning or imperfections requires different subsets of
single-photon sources to be tested separately. To this purpose
one may configure a device to implement a block-diagonal
matrix, having for each block a different 2p-mode (Sylvester)
unitary to test separately different subsets of single photons.

An interesting perspective to test at the same time the
indistinguishability of different couples of photons, without
the need of reconfiguring the device, is given by Proposition 3,
which is characteristic of Sylvester matrices and does not hold
for Fourier ones. In fact, in the two-photon case, whichever
couple of inputs is excited, an identical fraction of outputs
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is suppressed. This may be particularly useful to check
single-photon sources for scattershot boson sampling [29]:
there, several heralded single-photon sources are used, each
coupled to a different input port, and multiphoton states (with
one photon per port, but multiple ports excited) are generated
randomly. Couples of photons on random input ports are
generated efficiently in such a setup and by comparing the
detected output events with the predictions of Proposition 3
the indistinguishability of all the possible couples of sources
may be conveniently tested.

VII. CONCLUSION

In conclusion, we have proved a necessary and sufficient
criterion for the suppression of many output combinations
when n = 2q particles are injected in certain inputs of a
linear interferometer with m = 2p modes implementing a
Sylvester matrix. While both the bosonic and fermionic cases
have been studied, the result is particularly significant for

bosons, whose output distribution is hard to compute in the
general case. Therefore, this suppression law may be exploited
for the use of Sylvester multiports as benchmark devices
for the indistinguishability of multiple single-photon sources
or the assessment of the overall quality of reconfigurable
interferometers.

This study has also shown that comprehensive laws that
describe the output multiphoton distribution of multiport
interferometers on the basis of the symmetry of the imple-
mented matrix are not limited to Fourier ones. Indeed, further
investigations could pursue the definition of similar criteria
for a wider class of matrices, thus giving greater insight on the
features of multiparticle interference.
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[27] Y. Omar, N. Paunković, L. Sheridan, and S. Bose, Phys. Rev. A
74, 042304 (2006).

[28] J. Matthews, K. Poulios, J. Meinecke, A. Politi, A. Peruzzo, N.
Ismail, K. Worhoff, M. Thompson, and J. O’Brien, Scientific
Reports 3, 1539 (2013).

[29] A. P. Lund, A. Laing, S. Rahimi-Keshari, T. Rudolph, J. L.
O’Brien, and T. C. Ralph, Phys. Rev. Lett. 113, 100502 (2014).

013811-8

http://dx.doi.org/10.1103/PhysRev.139.B500
http://dx.doi.org/10.1103/PhysRev.139.B500
http://dx.doi.org/10.1103/PhysRev.139.B500
http://dx.doi.org/10.1103/PhysRev.139.B500
http://arxiv.org/abs/arXiv:1106.0849
http://dx.doi.org/10.1103/PhysRevLett.111.130503
http://dx.doi.org/10.1103/PhysRevLett.111.130503
http://dx.doi.org/10.1103/PhysRevLett.111.130503
http://dx.doi.org/10.1103/PhysRevLett.111.130503
http://dx.doi.org/10.1038/nphoton.2014.152
http://dx.doi.org/10.1038/nphoton.2014.152
http://dx.doi.org/10.1038/nphoton.2014.152
http://dx.doi.org/10.1038/nphoton.2014.152
http://dx.doi.org/10.1103/PhysRevLett.83.959
http://dx.doi.org/10.1103/PhysRevLett.83.959
http://dx.doi.org/10.1103/PhysRevLett.83.959
http://dx.doi.org/10.1103/PhysRevLett.83.959
http://dx.doi.org/10.1103/PhysRevA.62.013809
http://dx.doi.org/10.1103/PhysRevA.62.013809
http://dx.doi.org/10.1103/PhysRevA.62.013809
http://dx.doi.org/10.1103/PhysRevA.62.013809
http://dx.doi.org/10.1103/PhysRevLett.104.220405
http://dx.doi.org/10.1103/PhysRevLett.104.220405
http://dx.doi.org/10.1103/PhysRevLett.104.220405
http://dx.doi.org/10.1103/PhysRevLett.104.220405
http://dx.doi.org/10.1038/ncomms2616
http://dx.doi.org/10.1038/ncomms2616
http://dx.doi.org/10.1038/ncomms2616
http://dx.doi.org/10.1038/ncomms2616
http://dx.doi.org/10.1126/science.1231692
http://dx.doi.org/10.1126/science.1231692
http://dx.doi.org/10.1126/science.1231692
http://dx.doi.org/10.1126/science.1231692
http://dx.doi.org/10.1126/science.1231440
http://dx.doi.org/10.1126/science.1231440
http://dx.doi.org/10.1126/science.1231440
http://dx.doi.org/10.1126/science.1231440
http://dx.doi.org/10.1038/nphoton.2013.102
http://dx.doi.org/10.1038/nphoton.2013.102
http://dx.doi.org/10.1038/nphoton.2013.102
http://dx.doi.org/10.1038/nphoton.2013.102
http://dx.doi.org/10.1038/nphoton.2013.112
http://dx.doi.org/10.1038/nphoton.2013.112
http://dx.doi.org/10.1038/nphoton.2013.112
http://dx.doi.org/10.1038/nphoton.2013.112
http://dx.doi.org/10.1038/nphoton.2014.135
http://dx.doi.org/10.1038/nphoton.2014.135
http://dx.doi.org/10.1038/nphoton.2014.135
http://dx.doi.org/10.1038/nphoton.2014.135
http://dx.doi.org/10.1038/nphoton.2011.283
http://dx.doi.org/10.1038/nphoton.2011.283
http://dx.doi.org/10.1038/nphoton.2011.283
http://dx.doi.org/10.1038/nphoton.2011.283
http://dx.doi.org/10.1103/PhysRevLett.73.58
http://dx.doi.org/10.1103/PhysRevLett.73.58
http://dx.doi.org/10.1103/PhysRevLett.73.58
http://dx.doi.org/10.1103/PhysRevLett.73.58
http://arxiv.org/abs/arXiv:1309.7460
http://dx.doi.org/10.1103/PhysRevLett.113.020502
http://dx.doi.org/10.1103/PhysRevLett.113.020502
http://dx.doi.org/10.1103/PhysRevLett.113.020502
http://dx.doi.org/10.1103/PhysRevLett.113.020502
http://arxiv.org/abs/arXiv:1410.8547
http://dx.doi.org/10.1088/1367-2630/7/1/155
http://dx.doi.org/10.1088/1367-2630/7/1/155
http://dx.doi.org/10.1088/1367-2630/7/1/155
http://dx.doi.org/10.1088/1367-2630/7/1/155
http://dx.doi.org/10.1088/1367-2630/14/9/093015
http://dx.doi.org/10.1088/1367-2630/14/9/093015
http://dx.doi.org/10.1088/1367-2630/14/9/093015
http://dx.doi.org/10.1088/1367-2630/14/9/093015
http://dx.doi.org/10.1016/j.laa.2005.02.030
http://dx.doi.org/10.1016/j.laa.2005.02.030
http://dx.doi.org/10.1016/j.laa.2005.02.030
http://dx.doi.org/10.1016/j.laa.2005.02.030
http://dx.doi.org/10.1016/0012-365X(83)90279-0
http://dx.doi.org/10.1016/0012-365X(83)90279-0
http://dx.doi.org/10.1016/0012-365X(83)90279-0
http://dx.doi.org/10.1016/0012-365X(83)90279-0
http://dx.doi.org/10.1103/PhysRevA.74.042304
http://dx.doi.org/10.1103/PhysRevA.74.042304
http://dx.doi.org/10.1103/PhysRevA.74.042304
http://dx.doi.org/10.1103/PhysRevA.74.042304
http://dx.doi.org/10.1038/srep01539
http://dx.doi.org/10.1038/srep01539
http://dx.doi.org/10.1038/srep01539
http://dx.doi.org/10.1038/srep01539
http://dx.doi.org/10.1103/PhysRevLett.113.100502
http://dx.doi.org/10.1103/PhysRevLett.113.100502
http://dx.doi.org/10.1103/PhysRevLett.113.100502
http://dx.doi.org/10.1103/PhysRevLett.113.100502



