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The dissipation rate, εθ , of a passive scalar (temperature in air) emitted from a
concentrated source into a fully developed high-aspect-ratio turbulent channel flow
is studied. The goal of the present work is to investigate the return to isotropy of
the scalar field when the scalar is injected in a highly anisotropic manner into an
inhomogeneous turbulent flow at small scales. Both experiments and direct numerical
simulations (DNS) were used to study the downstream evolution of εθ for scalar
fields generated by line sources located at the channel centreline (ys/h = 1.0) and
near the wall (ys/h= 0.17). The temperature fluctuations and temperature derivatives
were measured by means of a pair of parallel cold-wire thermometers in a flow at
Reτ = 520. The DNS were performed at Reτ = 190 using a spectral method to solve
the continuity and Navier–Stokes equations, and a flux integral method (Germaine,
Mydlarski & Cortelezzi, J. Comput. Phys., vol. 174, 2001, pp. 614–648) for the
advection–diffusion equation. The statistics of the scalar field computed from both
experimental and numerical data were found to be in good agreement, with certain
discrepancies that were attributable to the difference in the Reynolds numbers of the
two flows. A return to isotropy of the small scales was never perfectly observed
in any region of the channel for the downstream distances studied herein. However,
a continuous decay of the small-scale anisotropy was observed for the scalar field
generated by the centreline line source in both the experiments and DNS. The scalar
mixing was found to be more rapid in the near-wall region, where the experimental
results exhibited low levels of small-scale anisotropy. However, the DNS, which
were performed at lower Reτ , showed that persistent anisotropy can also exist near
the wall, independently of the downstream location. The role of the mean velocity
gradient in the production of εθ (and therefore anisotropy) in the near-wall region
was highlighted.

Key words: mixing, turbulent mixing

1. Introduction
The ability of turbulence to mix one or more scalars within a fluid is of particular

relevance to a variety of engineering applications including combustion, pollution
dispersion and heat transfer. Using premixed combustion as an example, reactions
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occur only if the fuel and oxidizer are sufficiently mixed at the molecular level prior
to ignition. However, our comprehension and ability to predict turbulent mixing are
limited because the fluid mechanics that governs turbulent mixing involves multiscale
phenomena for which the details are not yet fully understood.

The turbulent mixing process stretches and stirs the scalar field, which serves to
increase the scalar gradients. The scalar fluctuations are then smoothed out by the
molecular mixing that principally occurs at the smallest scales of the turbulence.
The rate of destruction of the scalar variance is quantified by the scalar dissipation
rate, εθ(≡ α〈(∂θ/∂xi)

2〉). It is the only term in the scalar variance budget that must
be non-zero in every turbulent flow. Consequently, εθ is omnipresent and of critical
importance to the description of turbulent scalar fields. Furthermore, it is a quantity
whose primary contributions derive from the smallest scales of the scalar field.

The predominant theory related to turbulent scalar mixing, Kolmogorov–Obukhov–
Corrsin (KOC) theory, predicts that the small scales should be isotropic and
independent of the large scales of a scalar field, the latter being anisotropic in
most cases. However, it has been shown that departure from isotropy occurs at the
small scales of the scalar field when its large scales are anisotropic, which questions
KOC phenomenology (Warhaft 2000).

Investigations into the local isotropy of the scalar field (and, in particular, violations
thereof) have been widely reported in the literature (e.g. Sreenivasan 1991). However,
a large majority of these studies have focused on the evolution of a scalar field
injected into a homogeneous and isotropic turbulent hydrodynamic field at large
scales. While the assumption of homogeneity considerably simplifies the analysis
and yields interesting similarities between the scaling of the velocity and scalar
fields when the injection occurs at large scales (Corrsin 1952; LaRue & Libby 1981;
Ma & Warhaft 1986; Danaila, Antonia & Burattini 2012), such a configuration is
not representative of real flows, which are generally inhomogeneous and exhibit
discrepancies between the scales of the velocity and scalar fields. Furthermore, only
a small subset of previous work has focused on the dissipation rate of the scalar
variance, even though εθ remains one of the less understood (yet most important)
quantities within a turbulent flow.

The small-scale injection of a scalar by means of a point or line source into an
inhomogeneous flow is of relevance to multiple engineering applications, including
the transport of a plume emitted by a smokestack in the atmospheric boundary layer
or the mixing of chemical species injected into a combustion chamber. Given the
importance of such applications, it is somewhat surprising that relatively few studies of
turbulent scalar mixing resulting from small-scale injection and focusing on the scalar
dissipation rate, εθ , have been undertaken. This fact motivates the research herein.

The main objective of the present work is to further investigate and understand
the evolution of the scalar field when injected in a highly anisotropic manner at
small scales into an inhomogeneous turbulent flow. In measuring the evolution of
εθ downstream of the source, we aim to further our understanding of the details
of the scalar mixing process, which will improve our effectiveness in predicting
the phenomena that rely on this process. In many cases, local isotropy is invoked
when estimating εθ . When the scalar is injected at small scales, such an assumption is
clearly inaccurate near the source. Furthermore, although this assumption may increase
in validity with increasing distance from the source, the rate at which it does so is
an important factor. Therefore, particular attention will be paid to the evolution of
the three different components of the scalar dissipation rate, εθx ≡ α〈(∂θ/∂x)2〉, εθy ≡
α〈(∂θ/∂y)2〉 and εθz≡α〈(∂θ/∂z)2〉. We focus our attention on the relative contributions
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Scalar dissipation downstream of a line source in turbulent channel flow 229

of εθx , εθy and εθz to εθ , and therefore on the evolution of this anisotropy. To this
end, all three components of the scalar dissipation rate have been studied both
experimentally and by means of numerical simulations.

The remainder of this paper is organized as follows. The relevant literature is
reviewed in § 2. Then, the experimental apparatus and details of the numerical
simulations are reported, respectively, in §§ 3 and 4. Results are presented in §§ 5–7,
comparing, as often as possible, the experimental and numerical results. The first
of these three sections presents results pertaining to the velocity field. The second
presents large-scale statistics (mean and root-mean-square (r.m.s.) temperatures) and
compares them with the previous results of Lavertu & Mydlarski (2005) to validate
the present measurements. Section 7, which comprises the vast majority of the results
presented herein, reports in detail the evolution of the scalar dissipation rate and its
three components at several locations. Finally, conclusions are presented in § 8.

2. Literature review
The theoretical foundation of (hydrodynamic) turbulence was proposed by

Kolmogorov (1941). This work, commonly referred to as K41, introduces several
concepts necessary for the description of the transport and dissipation of turbulent
kinetic energy in a turbulent flow. As there is also significant interest in heat and
mass transfer, Kolmogorov’s arguments were extended by Obukhov (1949) and Corrsin
(1951) to the transport of passive scalars, referred to as KOC phenomenology. At
sufficiently high Reynolds numbers (Re=UL/ν, where U is an average fluid velocity,
L is some characteristic length of the system and ν is the kinematic viscosity of the
fluid) and Péclet numbers (Pe = UL/α or UL/D, where α is the thermal diffusivity
of the fluid and D is the scalar (molecular) diffusivity of a chemical species in the
fluid), it supposes that there is a decay of any large-scale anisotropy when smaller and
smaller scales are considered, the scalar dissipative scales returning to a statistically
isotropic state. The smallest hydrodynamic and scalar scales (η and ηθ , respectively)
are related by the Prandtl number (Pr = ν/α) or Schmidt number (Sc = ν/D).
(Subsequently, in the interest of conciseness, we will assume that the scalar under
consideration is temperature in our discussions.) The relationship between η, ηθ and
Pr depends on whether Pr > 1 or Pr < 1. It should be noted that ηθ and η are of
the same order of magnitude in the air flow studied herein, where Pr = 0.7 ≈ O(1).
Therefore ηθ = ηPr−3/4 (Corrsin 1951), where η = (ν3/ε)1/4 and where ε ≡ 2ν〈sijsij〉
is the dissipation rate of turbulent kinetic energy. Here, sij ≡ 1

2(∂ui/∂xj + ∂uj/∂xi) is
the fluctuating strain rate.

The transport of a scalar quantity injected by a line source into a turbulent flow
has been studied since the early experiments of Taylor (1935) and Uberoi & Corrsin
(1952). Measurements taken downstream of a heated line source in homogeneous
isotropic turbulence were carried out by Warhaft (1984) and Stapountzis et al.
(1986). The authors showed that, in isotropic turbulence, the development of the
mean thermal wake can be divided into three stages corresponding to different times
t: (i) a molecular diffusive range (t� α/〈v2〉, where 〈v2〉 is the velocity variance in
the transverse direction), in which the width of the mean temperature profile, σmean,
increases as

√
t, (ii) a turbulent convective range (α/〈v2〉 � t� tL, where tL is the

Lagrangian integral time scale) in which the growth of σmean is linear in time and
(iii) a turbulent diffusive range (t� tL) where σmean is proportional to t(2−n)/2 (n≈ 1 is
the decay exponent of the velocity field). Subsequently, Karnik & Tavoularis (1989)
investigated the evolution of a thermal plume in a homogeneous (but non-isotropic)
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turbulent shear flow. In contrast with grid turbulence, there is a continuous supply of
kinetic energy from the mean shear to the turbulence, ensuring that the turbulence
does not decay in this flow. The authors observed that the decay of the scalar
fluctuations close to the source was not very different from that observed in isotropic
turbulence. However, farther downstream, the mean shear affected the scalar statistics,
imposing the effect of its large-scale anisotropy on the evolution of the scalar. Chung
& Kyong (1989) also investigated the dispersion of a turbulent temperature field
behind a line source in a homogeneous turbulent shear flow. Their goal was to
provide experimental data for the assessment of third-order transport models. The
mean and r.m.s. scalar profiles were found to exhibit nearly Gaussian distributions
except for a minor degradation in the central region of the r.m.s. temperature profile.
The evolution of second-order moments of scalar plumes, emitted from instantaneous
and continuous area, line and point sources, was modelled by Thomson (1996). Given
that the flow under consideration was homogeneous isotropic turbulence, he was also
able to model the evolution of the scalar dissipation rate (via the scalar variance
budget). Livescu, Jaberi & Madnia (2000) used direct numerical simulations (DNS)
to study the development of the scalar plume produced by a line source in decaying
homogeneous isotropic turbulence. Their study focused on a statistical analysis of
moments of different orders and confirmed the experimental results of Warhaft (1984).

Although previous work on homogeneous flows has notably increased our
understanding of the mixing of scalars emitted from sources at small scales, their
applicability to engineering and natural flows remains somewhat limited given that
almost all ‘real’ flows (e.g. jets, boundary layers, duct flows) are inhomogeneous.
Consequently, scalar dispersion within inhomogeneous flows has also been studied.
To this end, Fackrell & Robins (1982) investigated the evolution of a thermal plume
emitted from a point source in a turbulent boundary layer. The authors reported
measurements of the variance, intermittency, peak concentration values, probability
density function (p.d.f.) and spectra of the scalar field. They showed that most of
the fluctuations are produced in the vicinity of the source, and that the maximum
amplitude of the fluctuations is source-size-dependent. Raupach & Legg (1983) studied
the dispersion of a thermal plume emitted in a turbulent boundary layer from a line
source. Their work was focused on testing first- and second-order closure models.
To this end, they measured the dissipation rate of the temperature fluctuations by
assuming local isotropy and using Taylor’s hypothesis (εθ iso ≈ (3α/〈U〉2)〈(∂θ/∂t)2〉,
where angular brackets represent averaged quantities). They reported that their
measurements of εθ were 20 % below its value inferred from the scalar variance
budget. Paranthoën et al. (1988) studied the evolution of the temperature field
downstream of a line source in a turbulent boundary layer and in a planar jet. They
reported mean and r.m.s. profiles of the temperature field and proposed a rescaling
scheme based on the temporal integral Lagrangian scale of the vertical velocity
fluctuations. The scheme was shown to be efficient in rescaling the mean profiles,
but not the r.m.s. profiles. Tong & Warhaft (1995) studied the dispersion and mixing
of temperature fluctuations emitted in the self-similar region of an axisymmetric
turbulent jet from two heated annular (ring) sources. The two sources were used
to study the mixing of two independently introduced scalar fields. Their results
contrasted with those obtained in grid turbulence (Warhaft 1984), where the mixing
and dispersion were slower. The authors also showed that far downstream of the jet
exit, the scalar field becomes independent of its method of introduction into the flow.
Tong & Warhaft (1995) also examined the relationship between the integral-scale
and dissipation-scale fluctuations in the far-field. Even though they reported that
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Scalar dissipation downstream of a line source in turbulent channel flow 231

large- (θ 2) and small-scale (1θ 2) quantities become less coupled as the Reynolds
number increases, the conditional expectations of 1θ 2 on θ exhibited a significant
dependence of the former on the latter. Rosset et al. (2001) investigated the transport
of temperature behind a line source in a turbulent jet and a turbulent boundary layer
over a flat plate. The authors were particularly interested in the behaviour of the
scalar dissipation rate, εθ . Near the source, they observed a large anisotropy of the
dissipative scales, which was explained by the high temperature gradient imposed
by the source and by the flapping of the thermal wake. This anisotropy persisted
downstream in the off-centre region of the plume. However, in the central part of
the plume, they reported a return to isotropy of the different components of εθ .
Rosset et al. (2001) derived a model to estimate the return-to-isotropy time scale
and proposed arguments to explain this phenomenon. Nevertheless, they ultimately
remarked that the details of the process remain to be understood.

One subset of inhomogeneous flows is of particular interest. Fully developed
turbulent duct flows, of circular or high-aspect-ratio cross-section, are only
inhomogeneous in one (the wall-normal) direction. Such a characteristic simplifies the
analysis given that the inhomogeneity of the underlying velocity field is limited to one
direction (as opposed to two or three). Brethouwer et al. (1999) used DNS to study
the turbulent mixing of a passive scalar in fully developed turbulent pipe flow. In their
work, the scalar was released from a point source at the centreline of the pipe. They
presented large-scale statistics, i.e. mean and r.m.s. concentration profiles, turbulent
fluxes and p.d.f.s which, in this case, at the centre of the flow, compared favorably
with experimental data from grid turbulence. The release of a scalar field from a line
source in a turbulent channel flow has also been investigated in the experiments of
Lavertu & Mydlarski (2005). The authors studied the evolution of the temperature
field in turbulent channel flow. The line source was oriented in the spanwise (z)
direction, resulting in a thermal plume that was statistically two-dimensional. The
authors reported large-scale statistics measured at different downstream locations
in the scalar plume and for several wall-normal locations of the line source. They
observed significant differences from the results in grid turbulence, which were
attributed to the inhomogeneity of this flow in the wall-normal direction. Vrieling
& Nieuwstadt (2003) and Costa-Patry & Mydlarski (2008) both studied the passive
scalar mixing downstream of two line sources in fully developed turbulent channel
flow using DNS and experiments, respectively. They showed that mean temperature
values can be inferred from measurements downstream of a single source. However,
the combined variance of two sources cannot be obtained by adding the variances of
the individual sources. In contrast to Lavertu & Mydlarski (2005) and Costa-Patry &
Mydlarski (2008), Bakosi, Franzese & Boybeyi (2007) used p.d.f. methods and the
interaction by exchange with the conditional mean (IECM) model to investigate the
dispersion of a passive scalar released continuously from a concentrated source in
a turbulent channel flow. The one-point statistics of the scalar field were compared
with the DNS data of Abe, Kawamura & Matsuo (2004) and the experimental data
of Lavertu & Mydlarski (2005). The widths of the mean scalar profiles obtained with
the IECM model were larger than those measured in the experiments at different
downstream locations from the source. Boppana, Xie & Castro (2012) performed
large-eddy simulations (LES) of the dispersion of a scalar from a line source in
a turbulent channel flow. They reported mean and r.m.s. profiles and p.d.f.s of the
scalar fluctuations. Their results were also compared with the experiments of Lavertu
& Mydlarski (2005), which exhibited discrepancies for both the width and location
of the peak of the profile. It should be noted that in contrast to Bakosi et al. (2007),

https:/www.cambridge.org/core/terms. https://doi.org/10.1017/jfm.2014.170
Downloaded from https:/www.cambridge.org/core. Open University Library, on 13 Feb 2017 at 11:44:00, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2014.170
https:/www.cambridge.org/core


232 E. Germaine, L. Mydlarski and L. Cortelezzi

the widths of the mean profile computed by Boppana et al. (2012) were smaller
than those obtained from Lavertu’s experiments. In addition, Boppana et al. (2012)
observed a double peak in the r.m.s. profiles at locations downstream from the source
(x/h > 7.4) that were not reported in the experiments. The p.d.f.s of both the LES
and experiments were in good agreement, apart from the thermal fields generated by
the centreline source. Lepore & Mydlarski (2011) studied the downstream evolution
of a three-dimensional thermal plume in the turbulent channel flow released by a line
source oriented in the wall-normal direction. They examined in detail the mean and
fluctuating temperature fields at different locations in the thermal plume to highlight
the differences between lateral and transverse dispersion. Lastly, Mydlarski, Danaila
& Lavertu (2007) focused on the dissipation rate of a scalar field emitted from a line
source in a turbulent channel flow. The authors confirmed that small-scale anisotropy
is amplified at the interfaces between the plume and the ambient fluid. They reported
that a large anisotropy occurs in regions of high turbulent intensity and their results
showed that there may exist a competition between mechanisms that amplify and
destroy anisotropy. However, εθ was not directly measured in this work, but was
inferred from the scalar variance budget (given certain assumptions). In contrast to
their work, the present work directly measures (all three components of) the scalar
dissipation rate, using both experiments and numerical simulations.

3. Experimental apparatus
The experiments were conducted in the same open-circuit channel as the one used

by Lavertu & Mydlarski (2005), Costa-Patry & Mydlarski (2008) and Lepore &
Mydlarski (2011). The air flow was supplied by a Hudson Buffalo centrifugal blower
powered by a 7.5 h.p. electric motor whose speed was monitored by an ABB ACS
600 controller. The air flow was filtered at the inlet of the motor to prevent particles
(of diameter greater than 3 µm) from entering the channel. A flexible rubber coupling
was used to join the blower output to the entrance of the flow conditioning section to
minimize the transmission of any blower vibrations to the flow conditioning section.
The latter consisted of a wide-angle diffuser, a settling chamber and a contraction.
After exiting the contraction, the flow that entered the channel was uniform and had
a low turbulence intensity (0.25 %).

The test section was 8 m long and had a large aspect ratio, i.e. the height of the
channel in the spanwise (z) direction was large (1.1 m) compared with its width
(2h = 0.06 m) in the wall-normal (y) direction, see figure 1. Consequently, the
flow was statistically independent of z, away from the top and bottom walls of the
channel. The development of the flow was accelerated by the addition of two 3 mm
diameter cylindrical rods (located 3 mm from each wall, at the entrance of the test
section) that tripped the boundary layers that formed on the test section walls. At the
downstream end of the test section, where the measurements were recorded, the flow
was fully developed with a mean flow in the downstream (x) direction and zero mean
wall-normal (V) and lateral (W) velocities. In the fully developed region, the flow
was statistically stationary and one-dimensional with velocity statistics depending only
on the wall-normal distance (y). It should be noted that such a flow is statistically
symmetric about the midplane. Lastly, 7.5 cm of honeycomb mesh (of 5 mm cell
size) was used at the outlet to prevent perturbations from outside the channel from
being communicated upstream, into the channel. The flow conditions are listed in
table 1.

In the test section, the scalar (temperature) was injected into the flow by heating a
fine line source. The latter was a 0.127 mm diameter Ni–Cr wire extended across the
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FIGURE 1. Schematic of the experiment. Adapted from Lepore & Mydlarski (2011).

Exp. DNS

〈U〉y/h=1 (m s−1) 5.3 —
urmsy/h=1 (m s−1) 0.22 —
uτ (m s−1) 0.26 —
ηy/h=1 (m) 0.28× 10−3 —
Re (= 〈U〉y/h=1h/ν) 10 600 3600
Reτ (= uτh/ν) 520 190
Reλ (= urmsy/h=1λy/h=1/ν) 59 36
ys/h= 0.17 y+s = 88 y+s = 33
ys/h= 1.0 y+s = 520 y+s = 190

TABLE 1. Flow parameters. Properties of the flow considered in the experiments and
numerical simulations, and source locations in terms of wall units. Here, ν = 15 ×
10−6 m2 s−1.

spanwise direction of the test section at wall-normal locations of ys/h= 1.0 (channel
centreline) and ys/h = 0.17 (near-wall region). The wire was heated electrically by
a DC power supply and the power consumption was continuously monitored so that
the energy released into the flow remained equal to 45 W m−1. See figure 1 for a
schematic of the experiment.

The temperature fluctuations, θ , and their dissipation rate, εθ , were measured by
means of cold-wire thermometry. The sensors were inserted into the channel from
its outlet using a (915 mm-long) probe support (TSI-1155-36). Accurate positioning
of the sensor in the wall-normal direction was ensured by means of a precision
transversing mechanism driven by a computer-controlled stepper motor. The minimum
step increment was 0.01 mm. The sensor consisted of two parallel 90 % platinum/10 %
rhodium wires of 0.63 µm diameter mounted on a TSI 1244 probe. The variations
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of the sensor temperature were linearly proportional to its electrical resistance (over
small ranges) and were measured by a cold-wire thermometry circuit designed by
Lemay & Benaïssa (2001). The output signals of the cold-wire thermometer were
(i) amplified and filtered by a Krohn-Hite 3384 eight-pole filter and (ii) digitized
using a 16 bit (±5 V) National Instruments PCI 6036E data acquisition card. The
acquisition procedure was undertaken using LabVIEW virtual instruments. Depending
on the wall-normal location of the probe, the sampling frequency (2.5 times the
low-pass filter frequency) was in the range 5–10 kHz andthe sampling time was
fixed at 200 s for each location. The length-to-diameter ratio of the cold-wire
sensors was approximately 800 (i.e. lwire ≈ 0.5 mm) and their frequency response
was approximately 5 kHz when operated in a 5 m s−1 flow. It should be noted
that the temporal resolution of the wire was sufficient given that the Kolmogorov
frequencies, fη = 〈U〉/(2πη), of the flow studied herein did not exceed 4 kHz. In
addition, the (temporal resolution) correction proposed by Lemay & Benaïssa (2001)
was applied to the acquired data. However, the effect of this correction was relatively
small as it increased the estimate of the temperature dissipation by less than 1 %
when measured at the farthest downstream location and by 5 % when measured at
the location closest to the line source.

The scalar derivative (∂θ/∂x) in the downstream direction was estimated using
Taylor’s hypothesis in conjunction with the time derivative of the temperature (∂θ/∂t).
This measurement required only a single cold wire, whereas two wires were needed to
estimate the derivatives ∂θ/∂y and ∂θ/∂z in the wall-normal and spanwise directions,
respectively. Zhou et al. (2003) investigated the effects of the separation between the
two wires and found that the spectra of the temperature derivatives are significantly
affected by the electronic noise contamination from one wire to the other when the
separation is smaller than 3η. In addition, they recommended the use of a correction
method similar to that of Wyngaard (1969) when the wire separation was larger
than 3η. As a consequence, we designed our sensors so that the separation between
the two wires was nominally 3η (= 0.75 mm), which was slightly smaller than 3η
at the channel centreline and slightly larger near the wall, as η is a function of
the wall-normal position. This conclusion is furthermore supported by the works
of Antonia & Mi (1993), Anselmet, Djeridi & Fulachier (1997) and Danaila et al.
(2000), who all agree that wire separations of 3η are optimal.

4. Numerical simulations

To complement the experiments described in § 3 and provide further insight into
the evolution of the scalar dissipation rate, we performed DNS of a nearly identical
problem. The fully developed turbulent flow can be assumed to be homogeneous in
the spanwise and streamwise directions while the scalar field can be assumed to be
homogeneous in the spanwise direction only. The scalar field presents a sharp gradient
at the line source while the velocity gradients of the hydrodynamic field are smooth.
However, since the temperature difference between the fluid in the plume and the
incoming fluid is small, the hydrodynamic problem can be assumed to be one-way
coupled with the advection–diffusion problem. Therefore, we split the DNS into two
parts: we first compute the solution to the hydrodynamic field and, subsequently, the
solution to the advection–diffusion problem.

Spectral methods have become a standard tool to simulate fully developed turbulent
channel flows because of their high accuracy and kinetic energy conservation
properties. We directly numerically simulate the time evolution of the hydrodynamic
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flow field by solving continuity and Navier–Stokes equations,

∂Ui

∂xi
= 0,

∂Ui

∂t
+Uj

∂Ui

∂xj
=− 1

ρ

∂p
∂xi
+ ν ∂

2Ui

∂xj∂xj
, (4.1)

with periodic boundary conditions in the streamwise (x) and spanwise (z) directions,
and no-penetration and no-slip conditions at the walls, see figure 1. The streamwise
mean pressure gradient, which drives the mean flow in the x direction, is adjusted
dynamically to maintain a constant mass flux through the channel. To integrate
the above equations, we use the spectral code Channelflow (Gibson, Halcrow &
Cvitanović 2008; Gibson 2010, licensed under the GNU GPL, http://channelflow.org/),
which uses Fourier × Chebyshev × Fourier discretization in the x, y and z directions,
and a third-order Runge–Kutta method for the time integration.

Spectral methods, however, are not suitable for the simulation of a scalar field
injected by means of a line source, i.e. a singularity, that introduces a sharp gradient
in the scalar field. In the presence of a sharp gradient, the convergence rate of spectral
methods deteriorates to first order because spurious oscillations develop in the vicinity
of a line source and propagate in the flow field (Gibbs phenomenon). Furthermore,
spectral methods are not suited for the solution of non-periodic problems. (See, for
example, Simens et al. 2009, for details.) Therefore, we solve the advection–diffusion
equation

∂T
∂t
+Uj

∂T
∂xj
= α ∂2T

∂xj∂xj
, (4.2)

with periodic boundary conditions in the spanwise (z) direction, inflow/outflow at the
inlet/outlet of the channel and adiabatic (no-flux) at the walls (see figure 1) using a
scheme we developed, named 3DFLUX (Germaine, Mydlarski & Cortelezzi 2013).
3DFLUX is a high-order three-dimensional conservative monotonicity preserving
numerical solver. It is nominally third-order in space and second-order in time. The
line source used in the experiment is simulated using a string of constant-source
nodes located on a straight line, oriented parallel to the z-axis.

In this two-step numerical approach, the solenoidal velocity field of the turbulent
channel flow is precomputed by the Channelflow code and, subsequently, passed as an
input to the 3DFLUX code to solve the advection–diffusion equation. This passage,
while apparently trivial, is indeed very delicate because of the different velocity
representations and grids used in the two codes. In Channelflow, the velocity field
has a spectral representation with a resolution dictated by the number of Fourier and
Chebyshev modes used. In 3DFLUX, the computational domain is discretized with
a number of non-overlapping control volumes or cells. The scalar field is discretized
at the centre of each cell, whereas the components of the velocity field are stored
at the centres of the faces of each cell (staggered grid). Therefore, the velocity
field produced by Channelflow is passed to 3DFLUX by interpolating the spectral
representation of the velocity field on each face of the 3DFLUX grid.

The interpolation of a divergence-free velocity field has been the subject of several
publications in the last decade (see, for example, Balsara 2001; Li & Li 2004;
Chamecki, Meneveau & Parlange 2008). The method proposed by Chamecki et al.
(2008) is efficient only when the grids of the two different discretization methods are
identical, and therefore is not applicable herein. We devised our own method in which
we first used a spectral (exact) interpolation to compute the values of the velocity
components at nine points on each face, i.e. one at the centre, four at the corners
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Velocity Scalar ys/h= 1.0 Scalar ys/h= 0.17

Lx × Ly × Lz 2πh× 2h×πh 2πh× 2h×πh 2πh× 2h×πh
L+x × L+y × L+z 1187× 378× 594 1187× 378× 594 1187× 378× 594
Nx ×Ny ×Nz 256× 193× 192 514× 195× 194 258× 390× 194
1x+, 1y+, 1z+ 4.64, 0.025–3.1, 3.1 2.32, 1.96, 3.1 4.64, 0.98, 3.1
1x∗, 1y∗, 1z∗ at y/h= 1.0 1.25, 0.83, 0.84 — —
1x∗, 1y∗, 1z∗ at y/h= 0.17 2.40, 0.88, 1.60 — —
1x•, 1y•, 1z• at y/h= 1.0 — 0.50, 0.42, 0.66 0.99, 0.21, 0.66
1x•, 1y•, 1z• at y/h= 0.17 — 0.95, 0.80, 1.27 1.91, 0.40, 1.27
t+sam 2770 665 665

TABLE 2. Details of the numerical grids for the computation of velocity and scalar fields
with two different source locations. The superscript ‘+’ indicates the normalization by the
viscous length (ν/uτ ) or time (ν/u2

τ ) scale, and the superscripts ‘∗’ and ‘•’ are used for the
normalization by the Kolmogorov (η) and Corrsin (ηθ ) length scales, respectively, estimated
at y/h= 1.0 and 0.17 as specified.

and four at the midsides of the edges of the faces. Then, we computed the value of
each velocity component at the face of each cell by averaging the nine interpolated
values. Finally, we applied a very small correction to the u-component of the velocity
field to guarantee the exact divergence-free condition. It should be noted that (i) the
choice of the u-component is arbitrary (it could have been the w-component) and
(ii) this correction has a minuscule impact on the velocity field, as it modifies the
interpolated instantaneous values of the u-component by less than 0.01 %.

The simulations of the velocity and scalar fields were both performed without
turbulence models, by resolving the entire range of scales. The computational
conditions are reported in table 2 for (i) the hydrodynamic field and (ii) the scalar
field for two source locations (ys/h = 1.0 and ys/h = 0.17). These DNS require
that the computational domain be large enough to capture the integral scales and the
spatial resolution be small enough to resolve, as accurately as possible, the dissipative
scales. The large scales are correctly represented when the two-point correlations in
the streamwise and spanwise directions are zero, respectively, at the half-length and
half-height of the domain (Kawamura et al. 1998; Moser, Kim & Mansour 1999).
The domain size selected herein is the same as in Kawamura et al. (1998), Moser
et al. (1999) and Schwertfirm & Manhart (2007). The Kolmogorov (i.e. smallest)
length scale should ideally be resolved. However, it has been claimed that this
requirement is often too stringent. Moin & Mahesh (1998) noted that the smallest
resolved length scale is required to be of the order of η but not equal to η. They
further reported that very good agreement of large-scale statistics can be obtained
between DNS and experiments even though the Kolmogorov scales are not fully
resolved in the simulation. Kawamura et al. (1998) validated the resolution of their
simulations by showing substantial drop-offs in the one-dimensional energy spectra
at high wavenumbers.

Traditionally, the goal of most experiments is to resolve all scales of size η or
larger. This being said, recent work has taken advantage of the constantly increasing
computational power to simulate turbulent scalar mixing at spatial resolutions finer
than η. For example, Schumacher, Sreenivasan & Yeung (2005) studied the fine
structures of homogeneous and isotropic turbulent scalar mixing using high-resolution
simulations (with the grid spacing smaller than η by a factor of two). They showed
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that when large fluctuations of ε exist, a spatial resolution based on η (defined
using its average value) incorrectly predicts the small-scale statistics. Kozuka, Seki
& Kawamura (2009) and Galantucci & Quadrio (2010) both performed DNS of
turbulent scalar mixing in channel flows at high resolution. Galantucci & Quadrio
(2010) carried out three DNS at increasing spatial resolutions that they labelled low,
medium and high. The low resolution was comparable with the resolution of most
wall-turbulence DNS performed to date (with passive scalars), whereas, in the high
resolution simulations, all cell sizes were consistently smaller than ηw, the averaged
Kolmogorov length scale evaluated at the wall. The spatial resolution denoted medium
was midway between the other two resolutions. The authors reported several statistics
pertaining to the rate of dissipation of the scalar field (mean, variance and p.d.f.s of
εθ ). They showed that the estimates of εθ can increase by 5 % when using the high or
medium resolutions instead of the low one. The resolutions used for the simulations
presented herein (see table 2) are comparable with the medium resolution used by
Galantucci & Quadrio (2010). The accuracy of the chosen resolution as it pertains to
the smallest scales in the flow will be subsequently confirmed when the normalized
(one-dimensional) dissipation spectra for the simulations are shown to be capable of
reproducing the dissipative scales measured in the experiments.

To compute the hydrodynamic field, uniform meshes were used in the x and z
directions, whereas a non-uniform mesh (Chebyshev distribution) was adopted in the y
direction. As shown in table 2, two different grids were used to discretize the scalar
field, depending on the source location. When the source was at the centreline, i.e.
ys/h = 1.0, a quasi-homogeneous grid was used given that the scalar plume did not
interact with the walls (for the downstream locations studied herein). When the source
was near the wall (ys/h = 0.17), the grid resolution was halved in the y direction
to capture the smallest wall-normal fluctuations of the scalar field that occur in the
vicinity of the walls. The spatial resolution (1x, 1y, 1z) of the scalar field generated
by the centreline source was, for either grid, smaller than or equal to the Corrsin scale.
The spatial resolution of the scalar field generated by the near-wall source was, in the
worst case, less than twice the Corrsin scale in the x direction. However, note that 1y
is always smaller than the Corrsin scale.

Lastly, to study the evolution of the scalar field at locations farther downstream,
we adopted a strategy that consisted of connecting several channels in series and
computing the solution for the scalar field sequentially, i.e. the outflow of the first
channel became the inflow of the second one, and so on. It should be noted that
the hydrodynamic field is the same in all channels because of its periodic boundary
conditions. In this paper, we limited our computation to two channels, i.e. (x/h)max=
2Lx/h, where Lx is the length of one channel in the x direction.

5. Results: velocity field

To be consistent with Lavertu & Mydlarski (2005), the experiments were carried
out (in the same experimental facility) at Reτ = 520. However, the simulations were
performed at a lower Reynolds number (Reτ = 190) to resolve all scales while keeping
the flow turbulent and the computational effort feasible. Mean velocity profiles in fully
turbulent channel flow from both the experiments and DNS are plotted in figure 2(a)
and compared with the numerical results of Moser et al. (1999) (Reτ = 180 and 590)
and Abe, Kawamura & Matsuo (2001) (Reτ = 180 and 640). The experiments of
Hussain & Reynolds (1975) (Reτ = 640) are also included for comparison. The mean
velocity profile obtained from the present DNS is in very good agreement with those
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FIGURE 2. Velocity profiles in fully turbulent channel flow. Mean (a) and r.m.s.
(b) velocity profiles (normalized by uτ ) from experiments (Reτ = 520 (•)), DNS (Reτ =
190 (◦)) and compared with the DNS of Abe et al. (2001) (Reτ = 180 (- - -) and
Reτ = 640 (—)) and Moser et al. (1999) (Reτ = 180 (�) and Reτ = 590 (�)), and the
experiments of Hussain & Reynolds (1975) (Reτ = 640 (+)).

measured in flows at Reτ = 180. As noted by Kim, Moin & Moser (1987), even if
Reτ = 180 is a relatively low Reynolds number (for a turbulent flow), both linear
and logarithmic regions exist and are distinct. Small differences are observed between
the experiments and the DNS. However, these differences can be attributed to the
difference in Reynolds number of the flows, a conclusion that is confirmed by the
good agreement between the present experimental results and the higher-Reynolds-
number simulations of Moser et al. (1999) and Abe et al. (2001). These simulations
also exhibit smaller values of u+ for a given location y+ in the logarithmic region.

The r.m.s. of the velocity fluctuations is plotted in figure 2(b). The data of Hussain
& Reynolds (1975), Moser et al. (1999) and Abe et al. (2001) are once again reported
for comparison, where available. The values of the three components (u+rms, v

+
rms and

w+rms) increase with Reτ and are consistent with the differences in the Reynolds number
between the present experiments (Reτ = 520), Moser et al. (1999) (Reτ = 590) and
Abe et al. (2001) (Reτ = 640). Furthermore, the present DNS (Reτ = 190) agrees very
well with the results of Moser et al. (1999) and Abe et al. (2001) (both with Reτ =
180). In brief, figure 2(b) shows good agreement between the present and previous
data obtained at similar Reτ . (It should be noted that the peak value of u+rms measured
by Hussain & Reynolds (1975) is somewhat low compared with the other results. This
discrepancy may be justified by the difficulties in performing these early near-wall
measurements.) Finally, it should be noted that the original and interpolated velocity
fields are indistinguishable. Consequently only the former has been plotted.

6. Results: large-scale statistics of the scalar field
In this section, the large-scale statistics of the scalar field from experiments and

numerical simulations are analysed and compared with those obtained in Lavertu &
Mydlarski (2005). As the experiments were performed at a different Reynolds number
from that of the numerical simulations, we normalized the downstream location (x/h)
by the ratio (urms/〈U〉)−1, where urms and 〈U〉 are the r.m.s. and mean velocities

https:/www.cambridge.org/core/terms. https://doi.org/10.1017/jfm.2014.170
Downloaded from https:/www.cambridge.org/core. Open University Library, on 13 Feb 2017 at 11:44:00, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2014.170
https:/www.cambridge.org/core


Scalar dissipation downstream of a line source in turbulent channel flow 239

1.0

0.8

0.6

0.4

0.2

0 0.5 1.0 1.5 2.0

y /h

1.0

0.8

0.6

0.4

0.2

0 0.5 1.0 1.5 2.0

y /h

(a) (b)

FIGURE 3. Non-dimensionalized mean temperature excess profiles for two line source
locations. Experiments (solid symbols) and DNS (open symbols) are reported at several
downstream locations: t/tL= 0.08 (• and ◦); t/tL= 0.2 (N and 4); t/tL= 0.4 (� and �).
The vertical line indicates the transverse location of the source and the solid lines are the
best-fit Gaussian curve fits to the numerical data.

measured at the centreline. It should be noted that this normalization is equivalent
to normalizing the flight time from the source by (an approximation of) the integral
time scale (tL ≈ h/urms),

t/tL = (x/〈U〉)
(`/urms)

≈ (x/〈U〉)
(h/urms)

= (x/h)
(〈U〉/urms)

. (6.1)

The mean temperature profiles at three downstream locations behind the line source
(t/tL = 0.08, 0.2 and 0.4) are shown in figures 3(a) and 3(b) for the ys/h = 1.0
and 0.17 source locations, respectively. Given that mean temperature excesses
(〈1T〉≡ 〈T〉−T∞) can be difficult to measure accurately due to drift in the free-stream
temperature, we used the technique proposed by Lepore & Mydlarski (2011), which
consists of sequentially measuring the free-stream (i.e. ambient, room) temperatures
at the same location, immediately after measuring the mean temperatures at a given
(x, y) location in the thermal plume, to estimate the mean temperature excess based
on the ‘instantaneous’ free-stream temperature, which accounts for the aforementioned
drifts in the free-stream temperature (as opposed to assuming that T∞ is the same for
all measurements of 〈T(x, y)〉).

For the centreline source location (ys/h = 1.0), very good agreement between the
experiments and numerical simulations is observed, and the mean profiles are well
approximated by Gaussian curve fits. Gaussian fits are of interest for three reasons.
First, a Gaussian profile is the analytical solution to the advection–diffusion equation
for the dispersion from a line or point source in a constant velocity and constant,
laminar or turbulent, diffusivity flow, which is approximately the case in the centre
of the channel, and less so near the wall. Second, such fits assist in comparing with
results that have been obtained in homogeneous turbulent flows, where Gaussian
profiles have been observed. Third, due to the least-square fitting process, fitting
a curve to the data allows a more precise estimate of the standard deviation (or,
alternatively, the half-width) of the plume by reducing error. We further note that

https:/www.cambridge.org/core/terms. https://doi.org/10.1017/jfm.2014.170
Downloaded from https:/www.cambridge.org/core. Open University Library, on 13 Feb 2017 at 11:44:00, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2014.170
https:/www.cambridge.org/core


240 E. Germaine, L. Mydlarski and L. Cortelezzi

the LES of Boppana et al. (2012), carried out at Reτ = 520 (i.e. the same value
as the experiments herein), did not agree as well with the experiments of Lavertu
& Mydlarski (2005) (which give very similar results to those herein and will be
discussed shortly in the context of figures 5–8) and underestimated the plume width;
see their figure 10(c). This presumably derives from their under-resolved transverse
velocity fluctuations; they obtained values of 〈v2〉 at y/h = 1 that were 20 % lower
than the those obtained by Moser et al. (1999) at Reτ = 590; see figure 5 in Boppana
et al. (2012). Although a 20 % underestimate of 〈v2〉 may not seem egregious, the
observed good agreement between the present DNS and experiments implies that
accurate estimates of 〈v2〉 are critical to reliably predicting the evolution of the
plume. We furthermore remark that the p.d.f. method simulations of Bakosi et al.
(2007) overestimated the widths of the mean profiles for a centreline source. However,
the explanation in this case is less clear, especially given that they also under-resolved
〈v2〉 (see their figure 1b), as noted by Boppana et al. (2012).

Similarly, good agreement between the experimental and numerical mean temperature
profiles is obtained for the near-wall line source (ys/h = 0.17). However, for the
farthest downstream distance considered herein (t/tL = 0.4) the experimental mean
temperature profile is wider than the numerical one. Far downstream of the source,
the (two-dimensional) plume grows and becomes wider in the transverse direction.
One edge of the plume is mixed with the cold flow contained in the central region
of the channel, whereas the other edge comes into contact with the (nominally)
adiabatic walls. Consequently, the plume contains a hot region near the wall and
a colder region away from the wall. The discrepancies observed for t/tL = 0.4 in
figure 3(b) are consistent with an energy loss (in the experiments) to the walls due
to the latter not being perfectly adiabatic (because 1Tpeak is smaller than it should
ideally be in the experiments due to the heat transfer from the plume to the wall). In
dimensional terms, the peak mean excess temperature at t/tL = 0.4 when ys/h= 0.17
is less than 0.4 ◦C, so even very minor energy losses to the channel wall, which is
not perfectly adiabatic in reality, can have an effect. For the case of the centreline
source, neither side of the plume comes into contact with the channel walls and the
mean temperature profile remains symmetric about the line source location, in very
good agreement with the numerical simulations. Similarly to the case of the centreline
source, the LES of Boppana et al. (2012) were found to underestimate the width of
the mean plume when ys/h= 0.17 at all downstream locations; see their figure 10(b).
This presumably derives from their under-resolved transverse velocity fluctuations,
combined with the abovementioned heat transfer to the wall in the experiments,
which results in overly wide (normalized) plume widths further downstream.

The simulations also exhibit a shift in the peak of the mean profile towards the
region of lower velocity (i.e. towards the wall) when ys/h= 0.17. A similar shift was
reported in Karnik & Tavoularis (1989). At the wall, the simulated mean temperature
profiles must all exhibit ∂〈T〉/∂y|y=0 = 0, consistent with the adiabatic boundary
conditions imposed in our simulations. Experimental measurements in the range 0<
y/h< 0.1 were, however, not possible due to interference of the probe with the wall.

The transverse profiles of the r.m.s. temperature fluctuations, θrms, normalized by
their peak values, θrms-peak, are reported in figures 4(a) and 4(b) respectively for
ys/h = 1.0 and 0.17 at three downstream locations, t/tL = 0.08, 0.2 and 0.4. The
experimental and numerical results collapse well for both line source locations, in
addition to being well approximated by Gaussian curve fits. At ys/h= 1.0, the peaks
of the fluctuations remain behind the line source, as expected, due to the underlying
symmetry of this flow. However, for ys/h = 0.17, a drift of the peak towards the
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FIGURE 4. Non-dimensionalized r.m.s. temperature excess profiles for two line source
locations. Experiments (solid symbols) and DNS (open symbols) are reported at several
downstream locations: t/tL= 0.08 (• and ◦); t/tL= 0.2 (N and 4); t/tL= 0.4 (� and �).
The vertical line indicates the transverse location of the source and the solid lines are the
best-fit Gaussian curve fits to the numerical data.
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FIGURE 5. Downstream evolution of the non-dimensionalized peak mean temperature for
two line source locations. Experiments (�), DNS (�) and Lavertu & Mydlarski (2005)
(×).

centreline is clearly observed. Similar drifts have been reported in Fackrell & Robins
(1982), Raupach & Legg (1983) and Lavertu & Mydlarski (2005). One should also
note the very good agreement between the experiments and simulations at t/tL = 0.4
for the case of the near-wall source. The good collapse of the two r.m.s. profiles
(when normalized by their peak values) reaffirms our hypothesis that the disagreement
observed in figure 3(b) for the mean profiles at the same location arises from an
underestimate of 1Tpeak. For a centreline source, the LES of Boppana et al. (2012)
underestimate the plume width, similarly to their results for the mean profile. For the
case of the source at ys/h= 0.17, the r.m.s. profiles of Boppana et al. (2012) are of
a similar shape, but are offset and closer to the wall. Given that the r.m.s. profiles
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FIGURE 6. Downstream evolution of the non-dimensionalized peak r.m.s. temperature for
two line source locations. Experiments (�), DNS (�) and Lavertu & Mydlarski (2005)
(×).
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FIGURE 7. Downstream evolution of the non-dimensionalized width of the mean
temperature profiles for two line source locations. Experiments (�), DNS (�) and Lavertu
& Mydlarski (2005) (×).

are related to the mean profiles (i.e. the former can be predicted from the latter using
gradient transport theory, for example), such a result is consistent with their mean
profiles which are not as wide. Similarly to the mean profiles, the simulations of
Bakosi et al. (2007) overpredicted the widths of the r.m.s. profiles.

The double-peaked r.m.s. profile in the vicinity of the source reported by Warhaft
(1984) and Karnik & Tavoularis (1989) for homogeneous flows is also observed for
the simulations (not shown). The double peak remains up to t/tL = 0.1 (x/h = 2.0),
after which the profile becomes single-peaked. It should be noted that when ys/h =
0.17 the double peak is not symmetric, as it must be for the centreline source case,
with the near-wall peak having a lower magnitude. Lastly, note that experiments were
not performed close enough to the line source to observe double-peaked θrms profiles.
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FIGURE 8. Downstream evolution of the non-dimensionalized width of the r.m.s.
temperature profiles for two line source locations. Experiments (�), DNS (�) and Lavertu
& Mydlarski (2005) (×).

Figures 5 and 6 respectively show the downstream decay of the peak of the mean
and r.m.s. profiles normalized by a reference temperature

〈1T〉ref =

∫ 2h

0
ρcp〈U〉〈1T〉dy∫ 2h

0
ρcp〈U〉dy

= Ps

ṁcp
(6.2)

(see Incropera et al. 2007, p. 495), where ρ and cp are, respectively, the density and
the specific heat at constant pressure of air, 〈U〉 = 〈U(y)〉 is the mean velocity, Ps is
the power of the line source and ṁ is the mass flow rate of air in the channel. It
should be noted that the above definition of 〈1T〉ref is different from that proposed
by Rosset et al. (2001), 〈1T〉ref = (Ps/ls)/(ρcpUsds), where Ps/ls is the electric power
per length unit injected via the line source, Us is the mean longitudinal velocity at the
source location and ds is the source diameter. Such a reference temperature may not
be appropriate if both the diameter of the source and the input power change. For
instance, when ds and Ps are each multiplied by two (assuming that the change of
diameter has a negligible impact on the temperature profiles, which is reasonable for a
very small diameter line source like those used herein), 〈1T〉ref should also be doubled
to maintain a consistent normalization, which is not the case using their definition, due
to the dependence of the latter on ds.

Figures 5 and 6 show good agreement between the numerical and experimental
results, both the present ones and those of Lavertu & Mydlarski (2005). We note
that the change in curvature observed in figure 5(b) is a consequence of the adiabatic
walls. The downstream locations of the changes correspond to the locations at which
the peak ‘encounters’ the wall, and subsequently stops spreading on that side. Due
to the adiabatic boundary conditions at the wall, the peak remains at y = 0 for
all subsequent downstream locations. A similar change in curvature was observed
for plumes emanating from a near-wall source in Boppana et al. (2012). Such
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a phenomenon, however, was absent in the case of the centreline source, as the
downstream distances studied herein were not large enough for the plume to have
grown sufficiently for its edges to interact with the channel walls.

The downstream evolutions of the half-widths of the mean and r.m.s. profiles (i.e.
the widths of the profiles at the locations where they fall to 50 % of their peak
values) are plotted in figures 7 and 8 respectively for the two source locations. The
standard deviations σ are determined by best fitting a Gaussian curve to the data
of figures 3 and 4. (It should be noted that the standard deviation of the Gaussian
profile is linearly related to its half-width.) Once again, good agreement between
experimental and numerical results is obtained. One can note that in figure 7(b),
the standard deviation of the numerical results tends to be larger than that of the
experiments for the farthest downstream distance present herein, in contrast to the
results of figure 3(b). This difference derives from the fact that a Gaussian curve fit
is not an especially accurate fit far downstream of the line source.

To complement the preceding analysis of large-scale statistics of the scalar field,
we plot in figure 9 the instantaneous temperature fields generated by our DNS
downstream of both a centreline and a near-wall line source. One can note the ‘holes’
in the temperature field for the plume emanating from the centreline source. Such
holes are absent in the plume emanating from the near-wall source given the different
nature of the mixing near the wall (including a reduced tendency of the plume to
flap). The presence of the wall (i) limits the growth of the plume on one side, (ii)
is the cause of the inhomogeneity of the flow (which is strongest near the wall) and
(iii) affects the mixing, as will be further discussed.

7. Results: small-scale statistics of the scalar field
We now proceed to investigate the small-scale structure of the scalar field. Both

experiments and numerical simulations are used in our analysis. We present statistics
at various (downstream and transverse) locations behind the line source. The details
of the measurement locations are specified in the figures.

7.1. Spectra of θ, εθ and ∂θ/∂xβ
We begin by plotting the one-dimensional longitudinal power spectra of the scalar
fluctuations, Eθ(κ1), where κ1 is the longitudinal wavenumber. Results are presented
for four downstream locations for each of the two line source locations studied herein,
ys/h= 1.0 and 0.17, in figures 10 and 11, respectively. The experimental results are
obtained from time series, which provide Eulerian time spectra, Eθ(f ). Eulerian spatial
spectra, Eθ(κ1), are obtained using Taylor’s hypothesis, Eθ(κ1) = (〈U〉/(2π))Eθ(f ),
where κ1 = 2πf /〈U〉. Taylor’s hypothesis is a reasonable approximation in most
regions of the flow where urms/〈U〉< 10 %. (See Sreenivasan, Antonia & Danh 1977;
Prasad & Sreenivasan 1990, for example.) For consistency with the experiments, the
numerical spectra were also computed from time series, in order to not introduce any
artificial differences associated with the (small) errors induced by the inevitable use
of Taylor’s hypothesis in the experiments.

To compare experiments and simulations, the abscissa and ordinates were
normalized by small-scale quantities, i.e. ε−3/4ν5/4εθx and η = (ν3/ε)0.25. It should
be noted that the dissipation rate of the turbulent kinetic energy, ε, was determined
using the assumption of local isotropy, i.e. ε = 15ν

∫∞
0 κ2

1 Eu(κ1)dκ1, where Eu is
the power spectrum of the longitudinal velocity fluctuations. Although the complete
definition of ε can be computed in the DNS, the simulations calculated η using
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FIGURE 9. Instantaneous temperature fields generated (by DNS) downstream of line
sources at two wall-normal locations, ys/h= 1.0 (a) and ys/h= 0.17 (b). Here, Reτ = 190
and t+ = 2770 for the velocity field and t+ = 166 for the scalar field (where, in the
latter case, t+ = 0 corresponds to the time at which the scalar is first injected into the
flow). It should be noted that the scale bars are nonlinear in the non-dimensionalized
temperature ((T − T∞)/(Tmax − T∞)). Imagery produced by VAPOR (www.vapor.ucar.edu,
see also Clyne & Rast 2005, Clyne et al. 2007).

the above equation so that the results would be consistent with those obtained in
the experiments (for which ε can only be estimated using the assumption of local
isotropy). Near the centreline, this is an excellent assumption; however, very close
to the wall, at locations outside of the range of the experimental measurements
undertaken in this work, it does introduce some error (Antonia, Kim & Browne
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FIGURE 10. One-dimensional longitudinal spectra of the temperature fluctuations for
ys/h= 1.0 at three downstream locations and at two wall-normal locations. Results from
experiments (solid line) and DNS (dashed line) are reported.

1991). For example, at y/h = 0.05 (which corresponds to y+ ≈ 10 in the DNS), the
difference in estimates of the Kolmogorov microscale is ∼2. Here, εθx was determined
from its definition (α/〈U〉2)〈(∂θ/∂t)2〉 and also invoking Taylor’s hypothesis.

Figures 10 and 11 show very good agreement between the experimental and
numerical results at large κ1, independent of the line source location. However,
some differences exist at small κ1 for the spectra measured downstream of the
centreline line source (see figure 10) due to the difference in Reynolds numbers
between the experimental and numerical flows. (Given that the normalization is
based on small-scale quantities, one cannot expect the spectra of the two flows at
different Reynolds numbers to be the same at large scales.) It should be noted that
the turbulence intensity (and therefore the local Reynolds number) is higher in the
near-wall region and, hence, the mixing is more effective (Lavertu & Mydlarski 2005).
As a consequence, the agreement between the experimental and numerical results at
small to medium κ1 is better for the scalar field generated by the near-wall source
(figure 11) than that for the centreline source (figure 10).

One-dimensional streamwise dissipation spectra, i.e. κ2
1 Eθ(κ1), for thermal fields

originating from line sources located at ys/h = 1.0 and ys/h = 0.17 are plotted in
figures 12 and 13, respectively. The experiments and DNS are in good agreement at
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FIGURE 11. One-dimensional longitudinal spectra of the temperature fluctuations for
ys/h= 0.17 at three downstream locations and at two wall-normal locations. Results from
experiments (solid line) and DNS (dashed line) are reported.

all measurement locations for both line source locations. It should be noted that the
normalization used in these figures implies that the area under each curve is equal
to the Prandtl number (Pr= 0.7). As previously noted, these results serve to confirm
that the resolution of our DNS is sufficient to (i) accurately resolve the contributions
to εθ and (ii) reproduce the range of length scales measured in the experiments.

The dissipation spectra are generally found to peak at κ1η≈ 0.2, showing that most
of the dissipation occurs at length scales five times larger than η, consistent with the
findings of Kozuka et al. (2009). However, a slight drift of the peak locations with
increasing downstream distance from larger to smaller κ1 for the centreline source
is observed. (The peak occurs at κ1η = 0.26, 0.21 and 0.17 for t/tL = 0.08, 0.2 and
0.4, respectively.) Such a trend is not observed downstream of the near-wall sources.
This may be attributed to the increased mixing that occurs near the wall (Lavertu &
Mydlarski 2005).

We now proceed to analyse the components of the dissipation spectra by examining
the one-dimensional spectra of the temperature derivative ∂θ/∂β, where ∂θ/∂β is the
β-derivative of the scalar fluctuations (β = x, y or z). To this end, figures 14 and 15
plot spectra of the streamwise (x), wall-normal (y) and spanwise (z) components
of the fluctuating temperature gradient, i.e. E∂θ/∂β . Here, E∂θ/∂x was measured by
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FIGURE 12. One-dimensional longitudinal dissipation spectra of the temperature
fluctuations for ys/h= 1.0 at three downstream locations and at two wall-normal locations.
Results from experiments (solid line) and DNS (dashed line) are reported.

assuming Taylor’s hypothesis, whereas the other two components were measured
using a second-order finite difference approximation. It should be noted that the
streamwise (one-dimensional) spectrum tends towards zero at large scales, which
differs from the two other spectra which are subject to aliasing and have finite values
at zero wavenumber (Van Atta 1991). This difference is therefore not dynamical and
thus is not indicative of a lack of local isotropy. It should be noted that the spectra
were normalized by εθη/ν, where εθ = εθx + εθy + εθz and where η was computed
using the assumption of local isotropy.

The present spectra are similar to those reported by Van Atta (1991) and
Thoroddsen & Van Atta (1996), who studied scalar dissipation in decaying stably
stratified grid turbulence. The authors showed that the large and small scales are
anisotropic near the grid but become strongly anisotropic farther downstream in their
stratified flow. Interestingly, they noticed that all scales develop anisotropies at about
the same rate.

In the present research, the scalar is injected in a highly anisotropic manner
that produces sharp gradients in the y direction in the vicinity of the source. This
anisotropy is shown in both figures 14(a) and 15(a), where εθy > εθz . However, the
gap between εθy and εθz diminishes considerably with increasing downstream distance.
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FIGURE 13. One-dimensional longitudinal dissipation spectra of the temperature
fluctuations for ys/h = 0.17 at three downstream locations and at two wall-normal
locations. Results from experiments (solid line) and DNS (dashed line) are reported.

Ultimately, the experimentally measured spectra of εθy and εθz at t/tL= 0.4 (figure 14c)
are almost indistinguishable, which shows a clear tendency of the scalar dissipation
rate towards isotropy. It is also interesting to note that the collapse between the
spectra of εθy and εθz appears even sooner when the source is in the near-wall region
(i.e. t/tL= 0.2 as shown in 15b). This can again be attributed to the higher turbulence
intensity (and therefore better mixing) that occurs in the near-wall region.

Figures 14 and 15 exhibit good agreement between the experiments and DNS at
large wavenumbers, especially for the centreline line source. Furthermore, a similar
good agreement is also reported at small wavenumbers when the line source is located
at the centreline, which reinforces the validity of the results presented herein. However,
discrepancies exist at small wavenumbers when the line source is in the near-wall
region. The numerical results exhibit a persistent anisotropy between εθy and εθz when
ys/h= 0.17. These discrepancies are related to the production of εθ by mean velocity
gradients, which occurs away from the centreline, near the wall. This effect will be
discussed in more detail further on in this section. The reader is also referred to
Gonzalez (2000), in which the effects of mean velocity and temperature gradients on
the isotropy of εθ are described in detail.
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FIGURE 14. One-dimensional spectra of the temperature derivatives (∂θ/∂β, where β =
x, y or z) for ys/h= 1.0 at three downstream locations and at two wall-normal locations.
Results from experiments (solid line) and DNS (dashed line) are reported.

7.2. The p.d.f.s of ∂θ/∂xβ and εθ
The p.d.f.s of the temperature derivatives are plotted in figures 16 and 17 for
line sources located at ys/h = 1.0 and 0.17, respectively. The p.d.f.s of the three
components are quite different from each other near the source and become similar at
the farthest downstream distance, where they develop quasi-exponential tails. Close to
the source, figure 16(a) shows three peaks in the simulated p.d.f. of the wall-normal
temperature derivative, P(∂θ/∂y), whereas the p.d.f.s of the other two derivatives
are unimodal. These triple peaks are due to the nature of the temperature field
immediately downstream of the source. For very small t/tL, the plume has a top-hat
profile and thus we expect the p.d.f. to be given by two delta functions where the
two peaks are nominally at ± (Twire − T∞) /(ds/2), where ds is the source diameter.
However, slightly farther away from the source, after some mixing has occurred, the
principal peak (or mode) starts to emerge while the other two initial peaks recede.
Even further away from the source, the peaks from the initial top-hat profile disappear
and the p.d.f. develops exponential tails, in this case characteristic of a well-mixed
scalar. In the near-wall region, as the mixing is better, the initial peaks disappear very
quickly and the initial trimodal p.d.f. is not observed for the measurement locations
considered herein. For a similar reason, the experimentally measured P(∂θ/∂y) (as it
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FIGURE 15. One-dimensional spectra of the temperature derivatives (∂θ/∂β, where β =
x, y or z) for ys/h= 0.17 at three downstream locations and at two wall-normal locations.
Results from experiments (solid line) and DNS (dashed line) are reported.

is at a higher Reynolds number) is also unimodal, although of a shape that would be
consistent with a trimodal p.d.f. farther upstream. In addition, it is worth noting that
the quasi-exponential tails appear sooner for the near-wall line source than when the
line source is at the centreline.

To further study the evolution of the small-scale scalar field, figure 18 examines
the p.d.f.s of εθ for the centreline source in figure 18(a), and those of the near-wall
source in figure 18(b). We remark that we plot the p.d.f. of the natural logarithm of
εθ , ln(εθ), to verify whether the p.d.f.s of εθ exhibit a log-normal distribution, as has
been hypothesized (e.g. Gurvich & Yaglom 1967) and observed in situations where the
scalar is injected at large scales (e.g. Sreenivasan et al. 1977, Dahm & Buch 1989, Su
& Clemens 2003, Schumacher & Sreenivasan 2005, Sutton & Driscoll 2013), albeit
with small departures, which may or may not be significant (Holzer & Siggia 1994).
Plotting of the p.d.f.s in log-linear coordinates (i) renders log-normal distributions to
appear as concave-down parabolas and (ii) emphasizes the tails of the p.d.f.s. In the
most extreme case (closest to the source for ys/h = 1.0), the p.d.f. of εθ is clearly
not log-normal, having a distinct peak and tails for small values of εθ (i.e. their left
tails), which verge on exponential behaviour. As previously observed (e.g. Lavertu
& Mydlarski 2005), the centreline plume flaps more because (i) it is not bounded
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FIGURE 16. The p.d.f.s of the temperature derivatives (∂θ/∂β, where β = x, y or z) for
ys/h= 1.0 at three downstream locations and at two wall-normal locations. Experimental
and DNS results are respectively denoted by the filled symbols (∂θ/∂x (•), ∂θ/∂y (�)
and ∂θ/∂z (N)) and the empty symbols (∂θ/∂x (◦), ∂θ/∂y (�) and ∂θ/∂z (4)). The
curve for P((∂θ/∂x)/(∂θ/∂x)rms) is plotted normally, whereas the remaining curves are
offset downwards in increments of two decades.

on one side (by the wall) and (ii) the intensity of the turbulence (and therefore the
mixing) is lower at the centreline than it is near the wall, where urms increases due
to increased production of turbulent kinetic energy. Consequently, the possibility of
measuring small values of εθ for the plume generated by the centreline source is
increased due to (i) smaller measured temperature differences due to the increased
bulk motion of the plume and (ii) increased measurements made outside of the plume.
As t/tL (or equivalently x/h) increases, and as the wall is approached, the p.d.f.s of εθ
evolve, becoming more log-normal in nature, presumably due to the reduced flapping
of the plume (as it widens with increasing t/tL) and the more intense turbulent mixing
that occurs near the wall. Such variations in the shape of the p.d.f. of εθ need to be
accounted for to accurately model the scalar mixing process, such as the one occurring
in a combustion chamber where the fuel is injected at small scales. The assumption
of a constant shape (e.g. log-normal) of the p.d.f. of εθ would clearly be inaccurate

https:/www.cambridge.org/core/terms. https://doi.org/10.1017/jfm.2014.170
Downloaded from https:/www.cambridge.org/core. Open University Library, on 13 Feb 2017 at 11:44:00, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2014.170
https:/www.cambridge.org/core


Scalar dissipation downstream of a line source in turbulent channel flow 253

10–10

–10 –5 0 5 10

100

10–2

10–4

10–6

10–8

10–10

–10 –5 0 5 10

–10 –5 0 5 10 –10 –5 0 5 10

100

10–2

10–4

10–6

10–8

10–10

100

10–2

10–4

10–6

10–8

10–10

100

10–2

10–4

10–6

10–8

(a) (b)

(c) (d)

FIGURE 17. The p.d.f.s of the temperature derivatives (θβ ≡ ∂θ/∂β, where β = x, y
or z) for ys/h = 0.17 at three downstream locations and at two wall-normal locations.
Experimental and DNS results are respectively denoted by the filled symbols (∂θ/∂x (•),
∂θ/∂y (�) and ∂θ/∂z (N)) and the empty symbols (∂θ/∂x (◦), ∂θ/∂y (�) and ∂θ/∂z (4)).
The curve for P((∂θ/∂x)/(∂θ/∂x)rms) is plotted normally, whereas the remaining curves
are offset downwards in increments of two decades.

over significant regions of the flow in situations where a scalar is injected at small
scales.

7.3. The evolution of εθ
The instantaneous fields of the (total and three components of the) scalar dissipation
rate (i.e. εθ , εθx , εθy and εθz) are plotted in figure 19. These are presented to provide
qualitative insight into the scalar dissipation rate. In the analysis that follows, we
quantitatively discuss the evolution of εθ and its components by analyzing specific
statistics related to these quantities. For example, it is already evident from figure 19
that the largest contribution to εθ comes from εθy . However, one can also observe that
its relative contribution to εθ decreases with increasing downstream distance, as will
be elaborated upon below. We encourage the reader to refer back to these plots for
further insight in the course of the subsequent discussion.
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FIGURE 18. The p.d.f.s of (the natural logarithm of) εθ/〈εθ 〉 for two source locations and
for three downstream locations, t/tL= 0.08 (——), t/tL= 0.2 (- - - -) and t/tL= 0.4 (······).
Only DNS results are presented given that the three components of εθ are not measured
simultaneously.

Wall-normal profiles of the three components of the scalar dissipation rate are
reported in figure 20 for two downstream locations and two source locations, where
the scalar dissipation rate has been scaled by tL/〈1T〉2ref .

For ys/h= 1.0, figure 20 shows that the three components of the scalar dissipation
rate have approximately Gaussian profiles with maxima at the channel centreline.
Outside the plume, a plateau is observed in the experimental data due to the non-zero
ambient noise (i.e. noise measured by the cold-wire thermometer outside the thermal
plume, which includes (i) electronic noise, (ii) actual temperature fluctuations in
the free-stream flow, which is never perfectly isothermal, and (iii) a negligible
contamination by the velocity fluctuations being erroneously recorded as temperature
fluctuations). Small-scale anisotropy is observed near the source (t/tL = 0.08), where
εθy >εθz ≈ εθx . Farther downstream (t/tL= 0.4), the gap between the three components
of εθ is considerably reduced.

For ys/h = 0.17, figure 20 shows, first, that the experimental data appear to be
more isotropic, presumably due to their larger Reynolds number, whereas the DNS
data exhibit differences between the three components (εθy > εθz > εθx). Furthermore,
the peak of εθy (the largest component) measured from the DNS remains downstream
of the source location for all measurement locations presented herein, whereas the
peak of εθy measured in the experiments drifts towards the channel centreline. This
may be explained by the prominence in the DNS of the mechanism of production of
εθy due to mean velocity gradients (which, as previously mentioned, will be discussed
shortly). The movement in the peak of the scalar dissipation profile recalls the drift
observed in the r.m.s. profiles. It should be noted that in both the experiments and
the DNS, the peaks of the εθx and εθz profiles drift towards the centreline as t/tL

is increased (but the rate at which they do so is faster for the experiments). εθy

also remains the largest component. It should also be noted that if the scalar were
injected uniformly, one might expect that the scalar dissipation would peak near the
region of maximum shear. (It should be recalled that in a turbulent channel flow, the
turbulence intensity is maximum in the buffer layer, i.e. y+ ∈ [5, 30]. In the present
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FIGURE 19. Instantaneous scalar dissipation rate fields, total and individual components,
generated (by DNS) downstream of a line source at two wall-normal locations, ys/h= 1.0
(a), (c), (e) and (g), ys/h= 0.17 (b), (d), (f ) and (h). Here, α(∂θ/∂xi)

2 is given in (a) and
(b), α(∂θ/∂x)2 is given in (c) and (d), α(∂θ/∂y)2 is given in (e) and (f ), and α(∂θ/∂z)2
is given in (g) and (h); Reτ = 190; t+ = 2770 for the velocity field and t+ = 166 for
the scalar field (where, in the latter case, t+ = 0 corresponds to the time at which the
scalar is first injected into the flow). It should be noted that the scale bars correspond
to the instantaneous scalar dissipation rates non-dimensionalized by εθ (t/tL = 0.08, y/h=
1.0; ys/h = 1.0). Imagery produced by VAPOR (www.vapor.ucar.edu; see also Clyne &
Rast 2005, Clyne et al. 2007).
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FIGURE 20. Wall-normal evolutions of the three components of the scalar dissipation rate.
The experimental results are denoted by the filled symbols (εθx (•), εθy (�) and εθz (N))
and the numerical results are denoted by the empty symbols (εθx (◦), εθy (�) and εθz (4)).
The vertical line indicates the transverse location of the source.

flows, y+ = 15 corresponds to y/h= 0.03 and y/h= 0.08 in the experiments and the
DNS, respectively.)

The evolution of the peak of the dissipation profile is somewhat similar to the
evolution of the peak of the r.m.s. profile (see figure 4b). Previous researchers
have attempted to establish a parallel between the location of the maximum of
the dissipation and that of the maximum temperature fluctuations. For instance,
Lockwood & Moneib (1980) measured the fluctuating temperature in a heated round
turbulent free jet. They showed that the scalar dissipation rate of a turbulent jet
attains its maximum at the location of the maximum of the temperature fluctuation
intensity. However, this conclusion was contradicted by the observations of Antonia
& Mi (1993), who studied the temperature ‘jumps’ (relatively sudden increases in
temperature followed by gradual decreases, also known as ‘ramp–cliff’ structures) in
a heated turbulent jet and attempted to estimate their contributions to the temperature
dissipation. They showed that although the temperature ‘jumps’ contributed to an
increase in the temperature variance, their contribution to the scalar dissipation rate
was small.
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FIGURE 21. The downstream evolution of the total scalar dissipation rate for ys/h= 1.0
at two wall-normal locations. The experimental results are denoted by the filled symbols
and the numerical results are denoted by the empty symbols. The solid and dashed lines
are the best-fit power laws to the experimental and numerical data, respectively.

The downstream evolution of the centreline (y/h = 1.0) and the off-centreline
(y/h = 0.8) mean thermal dissipation is shown in figure 21 for ys/h = 1.0. At the
centreline, the experiments and DNS both exhibit a power-law decay of the form
εθ ∼ (t/tL)

n, where n varies between −2.2 and −2.0, with the experiments tending
to exhibit slightly more negative decay exponents. Away from the centreline, a
power-law decay is also observed, but only after a certain distance downstream
(t/tL & 0.2), which approximately corresponds to the point at which the plume is
wide enough so that the sensor (located at y/h = 0.8) no longer measures outside
of the plume as it flaps. Analogous plots for the near-wall source are also given
in figure 22. As for ys/h = 1.0, the dissipation is maximum in the vicinity of the
source and exhibits a power-law decay with similar values of the decay exponents,
with the experiments again tending to exhibit a slightly more rapid decay. Given the
larger values of εθ measured in the central region of the plume, one can furthermore
conclude that the efficiency in smearing the fluctuations in the scalar field is larger
behind the source than at the edges of the plume. However, at the farthest downstream
location, the difference between the two is smaller than 8 %, indicating that εθ tends
to become more uniform inside the plume as it expands, as observed in figure 20.
We also note that Rosset et al. (2001) found εθ ∼ x−2.5 downstream of a heated line
source placed in a turbulent boundary layer. Their decay exponent, albeit slightly
more negative, is quite similar to the values measured herein, despite the differences
in flow geometry, Reynolds number, line source location, etc.

To investigate the evolution of the components of the scalar dissipation rate and
their anisotropy, figures 23 and 24 plot the evolution of εθβ/εθγ , where the indices β
and γ can be x, y or z, and where β 6= γ . For a locally isotropic scalar field, this ratio
must be equal to 1. When the line source is at the centreline, both the experiments
and the DNS show that the anisotropy is reduced and the components of the scalar
dissipation rates converge towards an isotropic state. Near the source, however,
the dissipation is predominantly in the y direction due to the sharp temperature
gradients (∂θ/∂y) there that are associated with the plume boundary. The dissipations
in the other two directions (∂θ/∂x and ∂θ/∂z) are almost equal, indicative of the
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FIGURE 22. The downstream evolution of the total scalar dissipation rate for ys/h= 0.17
at two wall-normal locations. The experimental results are denoted by the filled symbols
and the numerical results are denoted by the empty symbols. The solid and dashed lines
are the best-fit power laws to the experimental and numerical data, respectively.

quasi-axisymmetric nature of the turbulence at that location. For the near-wall source,
figure 24 indicates that (i) the agreement between the experiments and the DNS is not
as good as it is for the centreline source, with the experiments being notably more
isotropic than the DNS. Furthermore, it is noted that the anisotropy is stronger when
measured at y/h = 0.17 than at y/h = 0.3, indicating that there exist regions in the
channel flow field that better lend themselves to returning to an isotropic state. We
will subsequently argue that the anisotropy is dependent on the presence of velocity
gradients (Antonia & Browne 1986; Gonzalez 2000), as well as the Reynolds number
of the flow. In this vein, we remark that the anisotropy measured in the experiments
is less strong than in the DNS, presumably due to its larger Reynolds numbers, which
(i) results from a more rapid elimination of the large-scale anisotropy associated with
the injection of the scalar and (ii) explains the discrepancies observed in figure 24.
Moreover, it can be noted that the flow is no longer (quasi-)homogeneous in the
regions plotted in figure 24, so the equal offset of the anisotropy of εθy by εθx and εθz

is not observed here (like in figure 23). Regarding these figures, we finally note that
the measured increase in anisotropy observed in figures 23(b) and 24 is presumably
due to experimental errors arising from the low signal-to-noise ratio at the farthest
downstream location (t/tL = 0.6).

The small-scale anisotropy of the scalar field can also be examined using third-order
statistics, most notably the skewness of the scalar derivative, which must be zero in
a locally isotropic flow. Figure 25 plots the transverse profiles of the skewness of
(∂θ/∂β), S∂θ/∂β ≡ 〈(∂θ/∂β)3〉/〈(∂θ/∂β)2〉3/2, where β is equal to x, y or z. When
ys/h = 1.0, we observe that S∂θ/∂x and S∂θ/∂z are close to zero in the inner core of
the plume, where the former is consistent with local isotropy, but the latter is simply
symptomatic of the homogeneity of the flow in the z direction. Here, S∂θ/∂y is an odd
function of y/h due to the underlying symmetries of the flow when ys/h = 1.0, and
changes sign depending on which side of the flapping plume the sensor is located.
Thus, its zero value at y/h= 1.0 does not result from local isotropy at that location,
but is rather a consequence of the underlying symmetries in this case. When ys/h=
0.17, persistent anisotropy in S∂θ/∂x and S∂θ/∂y is observed, although it is (i) lesser
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FIGURE 23. The downstream evolution of the ratios εθβ/εθγ (where β and γ = x, y or
z and β 6= γ ) for ys/h = 1.0 at two wall-normal locations. The experimental results are
denoted by the filled symbols (εθx/εθy (•), εθy/εθz (�) and εθx/εθz (N)) and the numerical
results are denoted by the empty symbols (εθx/εθy (◦), εθy/εθz (�) and εθx/εθz (4)).
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FIGURE 24. The downstream evolution of the ratios εθβ/εθγ (where β and γ = x, y or
z and β 6= γ ) for ys/h= 0.17 at two wall-normal locations. The experimental results are
denoted by the filled symbols (εθx/εθy (•), εθy/εθz (�) and εθx/εθz (N)) and the numerical
results are denoted by the empty symbols (εθx/εθy (◦), εθy/εθz (�) and εθx/εθz (4)).

in magnitude for the experimental data and (ii) more uniform over the extent of the
plume. However, S∂θ/∂z is zero in both cases once again, as expected.

From figures 23 and 24, one observes that the end of the period of isotropization
occurs within a few tenths of tL(≡ h/urms). It is therefore of interest to see how
this time scale relates to the mechanical or thermal time scales of the flow. To this
end, figure 26 plots the transverse profiles of both the (experimental and numerical)
mechanical and thermal time scales normalized by tL, (k/ε)/tL and (〈θ 2〉/εθ)/tL,
respectively. The latter are plotted at three downstream locations (t/tL = 0.08, 0.2
and 0.4), whereas the former is the same for all downstream distances in this fully
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FIGURE 25. Transverse profiles of the skewness of the scalar derivative, S∂θ/∂β ≡
〈(∂θ/∂β)3〉/〈(∂θ/∂β)2〉3/2, where β is equal to x, y or z. Experiments (filled symbols) and
DNS (empty symbols) are reported. Here, S∂θ/∂x is shown by • and ◦, S∂θ/∂y is shown
by � and �, and S∂θ/∂z is shown by N and 4. The vertical line indicates the transverse
location of the source.
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FIGURE 26. Transverse profiles of the mechanical and thermal time scales normalized by
tL. The lines are DNS results and the symbols are experimental ones. Here, (k/ε)/tL is
shown by a solid line or �, (〈θ 2〉/εθ )/tL at t/tL = 0.08 is shown by a dotted line or •,
(〈θ 2〉/εθ )/tL at t/tL= 0.2 is shown by a dot-dashed line or N and (〈θ 2〉/εθ )/tL at t/tL= 0.4
is shown by a dashed line or �.

developed flow. We first remark that tL is directly related to the mechanical time
scale, k/ε ≡ 1/2〈uiui〉/2v〈sijsij〉 ≈ 3/2u2

rms/(u
3
rms/`) ∼ `/urms ∼ h/urms = tL. Thus, it

is reasonable for k/ε and tL to be of the same order, which we observe (quite
closely for the experiments, and within a factor of ∼1.5 for the simulations). This
difference is due to the fact that, in the above approximation, Cε(≡ ε/(u3

rms/`)) is
not a constant but a decreasing function of the Reynolds number – in the range
of moderate Reynolds numbers characterizing the present work, Sreenivasan (1984),
Donzis, Sreenivasan & Yeung (2005) – such that k/ε ∼ CεtL before Cε has reached
its asymptotic value.
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Given this, one can conclude that isotropization of the scalar field occurs, more or
less, within a few tenths of the mechanical time scale, implying that it may not be the
most relevant scale. With respect to the thermal time scale, we remark that because
tL ≈ k/ε, (〈θ 2〉/εθ)/tL can be interpreted as a thermal-to-mechanical time scale ratio.
In the present work, we observe that the thermal time scale is initially notably smaller
than the mechanical one, of the same order as the return-to-isotropy time scale, namely
tenths of tL. It then increases with downstream distance, tending towards (k/ε)/tL,
except near the wall in the simulations. In the other cases, the increase in (〈θ 2〉/εθ)/tL
is consistent with a plume injected at small scales, which proceeds to grow and,
ultimately, occupy the entire cross-section of the channel, taking on a time scale
similar to that of the hydrodynamic field. However, near the wall for the simulations,
which are at a lower Reynolds number than the experiments, we observe (〈θ 2〉/εθ)/tL
to be roughly independent of t/tL. This observation is consistent with the notion
that close to the wall, at low Reynolds numbers, another phenomenon is dictating the
mixing process. As we shall argue shortly, it is most likely that this phenomenon is the
production of εθy due to the mean velocity gradient, which is presumably controlling
the thermal time scale and may explain why (〈θ 2〉/εθ)/tL is not evolving with the
downstream distance (t/tL) in that region. However, when isotropization occurs,
(〈θ 2〉/εθ)/tL appears to increase, possibly asymptoting to (k/ε)/tL. We also note that
Rosset et al. (2001) and Gonzalez & Paranthoën (2003) argued that the thermal time
scale may be more relevant to the mixing/isotropization process than the mechanical
one. Furthermore, Gonzalez & Paranthoën (2003) noted that (〈θ 2〉/εθ) ∼ (`θ/k1/2

θ ),
where kθ represents the kinetic energy of the flow structures of size `θ , which, in this
case, falls between the Kolmogorov and integral length scales. Thus, `θ/k

1/2
θ can also

be interpreted as a time scale related to the (inverse of the) vorticity at the scale `θ .
Lastly, we observe a reasonable agreement between the experimental and numerical
results for the thermal time scale in the case of the results for the centreline source.
Near the wall, the difference may be due to the larger effect (in this region) of the
difference in Reynolds numbers between the two sets of data, as already noted.

To further study the return to isotropy (or the lack of a return, in the case of the
simulations of the plume emitted from a near-wall source), we consider the evolution
equation of the scalar dissipation rate, given by

∂εθ

∂t
+ 〈Uj〉∂εθ

∂xj
=

P︷ ︸︸ ︷
−2α

∂〈Uj〉
∂xi

〈
∂θ

∂xi

∂θ

∂xj

〉
−2α

∂〈T〉
∂xj

〈
∂uj

∂xi

∂θ

∂xi

〉
− 2α

〈
uj
∂θ

∂xi

〉
∂2〈T〉
∂xi∂xj

− 2α
〈
∂uj

∂xi

∂θ

∂xi

∂θ

∂xj

〉
+ ∂

∂xj

(
α
∂〈εθ 〉
∂xj
− 〈ujεθ 〉

)
− 2α2

〈
∂2θ

∂xi∂xj

∂2θ

∂xi∂xj

〉
︸ ︷︷ ︸

Γ

, (7.1)

where repeated indices imply Einstein’s summation convention. In the limit of
large Reynolds and Péclet numbers, it is hypothesized (Corrsin 1953; Tennekes
& Lumley 1972) that the above equation simplifies to a balance between the
production of εθ due to stretching of the scalar gradients by the turbulent strain
rate (2α〈(∂uj/∂xi)(∂θ/∂xi)(∂θ/∂xj)〉) and the destruction of εθ by molecular processes
(Γ = 2α2〈(∂2θ/∂xi∂xj)(∂

2θ/∂xi∂xj)〉). However, at finite Reynolds and Péclet numbers,
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other terms may be relevant. To investigate and explain the previously observed
anisotropy, we focus on the two terms P (=Px+Py+Pz) and Γ (=Γx+Γy+Γz).
The former is the production of εθ by mean velocity gradients and the latter quantifies
the dissipation of εθ by molecular processes, as just noted. For channel flow, the
components of these two terms are P = Py = −2α∂〈U〉/∂y〈(∂θ/∂y)(∂θ/∂x)〉
with Px = Pz = 0 and Γx = 2α2[〈(∂2θ/∂x2)2〉 + 〈(∂2θ/∂x∂y)2〉 + 〈(∂2θ/∂x∂z)2〉],
Γy= 2α2[〈(∂2θ/∂y∂x)2〉 + 〈(∂2θ/∂y2)2〉 + 〈(∂2θ/∂y∂z)2〉] and Γz= 2α2[〈(∂2θ/∂z∂x)2〉 +
〈(∂2θ/∂z∂y)2〉 + 〈(∂2θ/∂z2)2〉]. Figure 27 shows the wall-normal profiles of the three
components of Γ and Py for the two source locations (ys/h = 1.0 and 0.17) at
two downstream positions (t/tL = 0.08 and 0.4). It should be noted that the y and
z components of Γ were not accessible experimentally as ∂θ/∂y and ∂θ/∂z were
not simultaneously measured. Furthermore, combined statistical moments of both
the velocity and temperature derivatives were not computed due to the fact that
the velocity and temperature field were not calculated or measured simultaneously
in the present approach. This thus precludes any comparison of P with the other
leading-order term in (7.1).

The mean velocity gradient that only exists in the wall-normal direction contributes
to the production of εθ (in the y direction). The relative importance of this production
depends on the wall-normal location within the channel. As the mean velocity gradient
(∂〈U〉/∂y) is small in the centre of the channel, there is very little production of scalar
dissipation by the mean velocity field in the central region (and none at the channel
midplane, by symmetry). However, the contribution of Py to εθy is not negligible
in the near-wall region, as the velocity gradients are large there. In fact, figure 27
showsthat the production of dissipation in the wall-normal direction is of the same
order of magnitude as Γy near the walls. The figure also shows that Py does not
contribute to the evolution of εθy (or εθ ) when the source is at the centreline, as
expected. Lastly, this production of εθ due to mean velocity gradients now explains
the aforementioned (i) persistent anisotropies for the near-wall scalar fields (figure 24)
and (ii) persistence of a maximum in εθy near the wall (figure 20). In addition, it
may possibly explain the constancy of the thermal time scale near the wall, when
ys/h = 0.17, as observed in figure 26(b). Johansson & Wikström (1999) performed
DNS of turbulent channel flow with an imposed mean scalar gradient. In the near-wall
region, they showed that the two mean gradient production terms (i.e. the first and
second terms on the right-hand side of (7.1)) as well as the term that is the scalar-field
analogue to the vortex-stretching term in the turbulent enstrophy budget (i.e. the fourth
term on the right-hand side of (7.1)) contribute the most to the production of εθ . These
results agree with those presented herein.

Anisotropy-invariant maps for εθ (Antonia & Kim 1994) are plotted in figures 28–
30, where the three solid lines are (often referred to as) the Lumley triangle (Lumley
1978). This triangle is delimited by the following three curves (in the (III, −II)
plane):

III = − II
3 − 1

27 , (7.2)

III = −2
(

II
3

)3/2
, (7.3)

III = 2
(

II
3

)3/2
. (7.4)
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FIGURE 27. The wall-normal evolution of the y-component of the production of εθ
by the mean velocity gradient and the three components of the dissipation of εθ .
The experimental results are denoted by the filled symbols (−2α2

(〈(∂2θ/∂x2)2〉 +
〈(∂2θ/∂x∂y)2〉 + 〈(∂2θ/∂x∂z)2〉) (•)) and the numerical results are denoted by
the empty symbols (−2α2[〈(∂2θ/∂x2)2〉 + 〈(∂2θ/∂x∂y)2〉 + 〈(∂2θ/∂x∂z)2〉] (◦),
−2α2[〈(∂2θ/∂y∂x)2〉+ 〈(∂2θ/∂y2)2〉+ 〈(∂2θ/∂y∂z)2〉] (�) and −2α2[〈(∂2θ/∂z∂x)2〉+ 〈(∂2θ/
∂z∂y)2〉 + 〈(∂2θ/∂z2)2〉] (4)). The production of dissipation −2α〈U〉y〈(∂θ/∂y)(∂θ/∂x)〉 is
also reported for the experiments (×) and the DNS (+).

Here, II and III are the second and third invariants of the scalar dissipation rate
anisotropy tensor defined as

tij = α

〈
∂θ

∂xi

∂θ

∂xj

〉
〈εθ 〉 − 1

3
δij, (7.5)

where δij is the Kronecker delta. The second and third invariants are given by

II = − 1
2 tijtji, (7.6)

III = 1
3 tijtjktki. (7.7)
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FIGURE 28. Anisotropy-invariant map of εθ for ys/h = 1.0 (a) and ys/h = 0.17 (b).
Statistics were computed at t/tL = 0.02 (◦), 0.08 (�), 0.2 (4) and 0.4 (×) and for
y/h ∈ [0.8, 1.2] (a) and y/h ∈ [0.0, 0.4] (b).

The plot of −II versus III represents all the possible states that characterize the tensor
tij. Curves (7.3) and (7.4) are respectively the right and left ‘axisymmetric’ boundaries
of the anisotropy-invariant map. The vertex II= III= 0 characterizes the isotropic state.
The top right vertex of the line given by (7.2) represents the one-component state and
the bottom left vertex represents the two-component state.

The return to isotropy behind a centreline source (figure 28a) is (i) clearly
axisymmetric, consistent with the previous results of figure 23, and (ii) more rapid
than that of the scalar field behind the near-wall source. The axisymmetry of the
scalar field behind the centreline line source is more clearly observed in figure 29,
which shows a very large level of axisymmetry at y/h = 1.0, but a slightly smaller
degree of axisymmetry at y/h = 0.8. These results should be contrasted with those
of figure 30, which depicts the anisotropy-invariant maps for different wall-normal
locations for the scalar field generated by the near-wall source. Of particular interest
is the evolution from a one-dimensional state very close to the wall (Antonia & Kim
1994) in figure 30(c) to an almost axisymmetric state farther away from the wall in
figure 30(d).

7.4. Conditional statistics
To gain further insight into the dependence of the scalar dissipation rate, εθ , on the
scalar fluctuations, θ , which is of particular use in p.d.f. models of scalar mixing,
we examine the expectation of εθβ conditioned on individual values of θ , i.e. 〈εθβ |θ〉,
where εθβ is the β-component of the scalar dissipation (β = x, y or z). Theoretical
work has shown that the form of the conditional expectation profiles, 〈εθ |θ〉, depends
on the p.d.f. of the scalar fluctuation, θ (Pope & Ching 1993). A Gaussian p.d.f. of
θ is associated with εθ and θ being independent. In this case, 〈εθ |θ〉 is found to be a
constant (e.g. Anselmet, Djeridi & Fulachier 1994, figure 9b). A super-Gaussian p.d.f.
of the scalar is associated with a rounded concave-up V-shape for the profile (Sinai
& Yakhot 1989; Jayesh & Warhaft 1992), whereas a sub-Gaussian p.d.f. is associated
with a rounded concave-down V-shape for the profile (Mydlarski 2003).

In figure 31(a,c) the expected values of the various components of the scalar
dissipation rate conditioned on the temperature fluctuations are plotted for ys/h= 1.0.
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FIGURE 29. Anisotropy-invariant maps of εθ . A close-up of figure (a) is presented in
figure (b). A close-up of figure (c) is presented in figure (d). Statistics were computed
from t/tL = 0.02 to 0.48.

In the present work, the scalar dissipation rate conditioned on the scalar fluctuation
exhibits a concave-down rounded V-shape. Such a shape indicates that large values
of the scalar fluctuation are associated with low values of the scalar dissipation. Each
plot begins with an approximately linear departure from θ/θrms ≈−1.5, increasing to
a maximum, after which the conditional expectation begins to decrease. The double
peaks of 〈εθy |θ〉 measured in the experiments in the vicinity of the source disappear
farther downstream. These may be related to the previously discussed p.d.f.s of ∂θ/∂y,
which were shown to be bi- or trimodal near the source (see figure 16).

In figure 31(b,d) the conditional expectation 〈εθβ |θ/θrms〉/〈εθβ 〉 is plotted when the
line source is near the wall (ys/h=0.17). The general form of the profiles is somewhat
different from that with the centreline line source. In contrast to the DNS profiles,
the experimental profiles increase near the upper limits of the range of temperature
fluctuation. This increase also appears when the source is at the centreline but with
a (relatively) smaller magnitude. It should be noted that figure 31(d) has been plotted
with different axis ranges due to large rare excursions in this part of the flow, where
some measurements are outside the plume and the others in its outer edges.
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FIGURE 30. Anisotropy-invariant maps of εθ . A close-up of figure (a) is presented in
figure (b). Statistics were computed from t/tL = 0.02 to 0.48.

Kailasnath, Sreenivasan & Saylor (1993) investigated the conditional scalar
dissipation rate in three different shear flows, wakes, jets and the atmospheric
surface layer. They also found that the ‘hot side’ of the conditional expectation
〈εθ |θ〉 increased with θ . They concluded that the very hot events associated with very
high intermittent dissipation rates were non-universal. In addition, they mentioned
that the low-temperature events may also be non-universal but their contribution to
the conditional expectation is small because the dissipation in the cold fluid is small.
These observations are consistent with the present results.

Independently of the source location, figure 31 shows a tendency to isotropic
behaviour as the downstream distance from the source increases. At low θ/θrms, the
experiments and DNS agree relatively well. However, the discrepancies at large θ/θrms

may be due to the fact that large positive fluctuations of θ are rare and may suffer
from a reduced level of statistical convergence.

The expectations of the components of the dissipation conditioned upon individual
values of the temperature derivatives, 〈εθβ |∂θ/∂x〉, where β = x, y or z, are plotted in
figure 32 for the two line source locations presented herein. These figures show that
larger magnitudes of ∂θ/∂x lead to higher values of εθx consistent with the definition
εθx ≡ α〈(∂θ/∂x)2〉. In addition, εθy and εθz do not directly depend on ∂θ/∂x, which
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FIGURE 31. The expectation of the components of the temperature dissipation conditioned
on the temperature fluctuations. The experimental results are denoted by the filled symbols
(〈εθx |θ〉 (•), 〈εθy |θ〉 (�) and 〈εθz |θ〉 (N)) and the numerical results are denoted by the
empty symbols (〈εθx |θ〉 (◦), 〈εθy |θ〉 (�) and 〈εθz |θ〉 (4)).

explains the flatter profiles obtained for 〈εθy |∂θ/∂x〉 and 〈εθz |∂θ/∂x〉. That being said,
they are clearly not independent, especially farther downstream. Overall, a good
agreement between experiments and DNS is observed.

Figures 33 and 34 compare the expectations of εθβ conditioned upon individual
values of ∂θ/∂x, ∂θ/∂y and ∂θ/∂z. The figures show consistent results for all three
components, where (i) the correlation is highest when considering the component of εθ
and the derivative of θ measured in the same direction and (ii) a reduced, but clearly
non-zero, correlation is observed for the expectations conditioned on the temperature
derivative in a different direction.

8. Conclusions

In the present work, the dissipation rate of a scalar (temperature) emitted from a
concentrated line source in a fully developed turbulent channel flow was studied by
means of both experiments and numerical simulations. The aim was to investigate the
evolution of the small scales of the scalar field by measuring the (three components
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FIGURE 32. The expectation of the components of the temperature dissipation conditioned
on the x partial derivative of the temperature fluctuations. The experimental results are
denoted by the filled symbols (〈εθx |∂θ/∂x〉 (•), 〈εθy |∂θ/∂x〉 (�) and 〈εθz |∂θ/∂x〉 (N)) and
the numerical results are denoted by the empty symbols (〈εθx |∂θ/∂x〉 (◦), 〈εθy |∂θ/∂x〉 (�)
and 〈εθz |∂θ/∂x〉 (4)).

of the) scalar dissipation rate, εθ , at several downstream and wall-normal locations.
The scalar was injected in a highly anisotropic manner and an examination of the
downstream evolution of εθ permitted an investigation of the return to isotropy of the
small scales of the scalar field.

The large- and small-scale statistics of the scalar field were reported for two
different source locations (ys/h= 1.0 and 0.17), with an emphasis on the small-scale
ones, given the nature of this study. Overall, a good agreement between the
experimental and numerical data was obtained, confirming that the DNS is capable of
resolving the experimentally measured dissipative scales. Some discrepancies between
the two were, however, observed. These were attributed to the differences in the
Reynolds number between the experiments (Reτ = 520) and the DNS (Reτ = 190).

The principal contribution of this work is a detailed description of the downstream
and transverse evolutions of the small-scale statistics of the scalar field (with an
emphasis on the scalar dissipation rate), as well as their dependence on the source
location. The effect of the source location is a critical aspect of the present work, as
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FIGURE 33. The expectation of the components of the temperature dissipation conditioned
on the x, y and z partial derivatives of the temperature fluctuations for ys/h = 1.0 at
t/tL = 0.4 and y/h= 1.0. The experimental results are denoted by the filled symbols and
the numerical results are denoted by the empty symbols. (a) 〈εθβ |∂θ/∂x〉. (b) 〈εθβ |∂θ/∂y〉.
(c) 〈εθβ |∂θ/∂z〉. Here, β = x (circles), β = y (squares) and β = z (triangles).
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FIGURE 34. The expectation of the components of the temperature dissipation conditioned
on the x, y and z partial derivatives of the temperature fluctuations for ys/h = 0.17 at
t/tL= 0.4 and y/h= 0.17. The experimental results are denoted by the filled symbols and
the numerical results are denoted by the empty symbols. (a) 〈εθβ |∂θ/∂x〉. (b) 〈εθβ |∂θ/∂y〉.
(c) 〈εθβ |∂θ/∂z〉. Here, β = x (circles), β = y (squares) and β = z (triangles).

it is an essential parameter that is only present in inhomogeneous flows, a category
into which all practical flows fall. The present work provides insight into the effect
of source location on the small-scale statistics of the scalar field, which, until now,
had not been explicitly studied.

To this end, the downstream and transverse evolutions of the spectra and p.d.f.s
of the scalar gradients (∂θ/∂xβ), εθx , εθy , εθz and εθ , as well as their dependence on
the source location, were analysed. For the case of the centreline source, a tendency
for these statistics to return to isotropy was always observed. When the source
was located near the wall, the tendency to return to isotropy was not as evident,
given that the production of εθy due to the mean velocity gradient, which was
most evident in plots of εθβ/εθγ , may be non-negligible at lower Reynolds numbers,
such as those which characterized our numerical simulations. Because the near-wall
region has characteristics that both reduce the anisotropy (e.g. higher degrees of
mixing, due to the more intense nature of the turbulence therein) and increase the
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anisotropy (e.g. production of εθy by mean velocity gradients), the dependence of
the return to isotropy on the source location is complex, in addition to possibly
being dependent on the Reynolds number, the Schmidt number (e.g. Yeung, Xu &
Sreenivasan 2002; Brethouwer, Hunt & Nieuwstadt 2003), etc. We have also argued
that when the production of εθy by mean velocity gradients is non-negligible, a return
to isotropy is inhibited by this mechanism, which possibly maintains the thermal
time scale at a fixed value, unlike what was observed when small-scale isotropy
of the scalar field was recovered. The return to isotropy of the scalar field was
also quantified using anisotropy-invariant maps for the scalar dissipation rate, which
highlighted, downstream of the centreline source, (i) the axisymmetric nature of
the scalar dissipation rate and (ii) an improved tendency towards isotropy of the
small scales. The nature of the anisotropy-invariant maps was, however, distinctly
different in the near-wall region, varying from a one-dimensional state very close
to the wall towards an axisymmetric state as the centreline was approached. Lastly,
the conditional expectations of the three components of εθ were presented, which, in
addition to providing insight into the structure of the scalar field, should be of benefit
to those developing mixing models for p.d.f. methods.

The more rapid return to isotropy of certain statistics (e.g. both the spectra and
p.d.f.s of the scalar gradients, the p.d.f.s of εθ , etc.) in the near-wall region is
consistent with the scalar field undergoing increased mixing in regions of more intense
turbulence (i.e. regions of locally higher turbulent Reynolds numbers). However, in the
current flow, the increased values of urms are associated with the larger contribution
of the production of turbulent kinetic energy by mean velocity gradients, which, as
previously noted, also serves to produce anisotropy. Increased mixing in regions or
more intense turbulence is consistent with the arguments of Rosset et al. (2001) and
Gonzalez & Paranthoën (2003), as increased levels of turbulence can be associated
with increased vorticity. Rosset et al. (2001) hypothesized that the return to isotropy
in a flow in which the scalar field is injected at small scales is caused by both
molecular dissipation and stretching, in which the latter is effected by both strain and
rotation, with rotation serving to reorient the scalar gradients and thus ‘isotropizing’
the scalar field. Gonzalez & Paranthoën (2003) further analysed the work of Rosset
et al. (2001) and suggested that the return to isotropy was ‘governed by vorticity at
scales of the order of the instantaneous scalar sheet thickness’, arguing that vorticity
at smaller scales could not significantly distort the plume, whereas that at large
scales would be able to rotate the plume, but would be weaker (assuming typical
Kolmogorov arguments for the dependence of the vorticity on the length scale).

In addition to the above, it is worth reiterating the comments of Rosset et al.
(2001) and Gonzalez & Paranthoën (2003), who emphasized that flows in which
the scalar is injected at small scales are notably different from those in which the
scalar is injected at large scales (i.e. by way of a mean scalar gradient). In the
latter class of flows, anisotropy is continually generated by the large-scale anisotropic
injection mechanism. In the current case of small-scale injection by a line (or point)
source, the small-scale anisotropy does not originate from large-scale anisotropy being
transferred to smaller scales, because it originates at small scales, and the mean scalar
gradients, which are the source of the anisotropy, become smaller and smaller as the
plume is increasingly well mixed, thus also promoting, in part, a return to isotropy.
Nevertheless, the exact nature of the return to isotropy of a scalar field injected
at small scales merits additional investigation, such as (i) investigation that might
focus on the effect of the intensity of the turbulence/local Reynolds number, without
compounding the results with a change in the mean velocity gradient/production of
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turbulent kinetic energy, (ii) further investigation of the effect of the Schmidt number
or (iii) numerical simulations in which simultaneous small-scale velocity and scalar
statistics can be recorded, because experimental measurement of all three scalar
gradients and all nine velocity ones remains an exceedingly difficult task.
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