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Abstract

A semi-Lagrangian method for parabolic problems is proposed, that extends previous
work by the authors to achieve a fully conservative, flux-form discretization of linear
and nonlinear diffusion equations. A basic consistency and stability analysis is proposed.
Numerical examples validate the proposed method and display its potential for consistent
semi-Lagrangian discretization of advection–diffusion and nonlinear parabolic problems.
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1. Introduction

Semi-Lagrangian (SL) schemes were developed, in their original formulation, for the
case of purely hyperbolic equations and do not guarantee conservation of mass. In re-
cent years, an increasing number of SL discretization approaches have been proposed to
circumvent these limitations.

While the “classical” technique is to treat in Eulerian form diffusion terms within SL
models, various generalizations of the SL strategy to second order, parabolic problems
have been proposed over the last two decades. We will refer here to selected works,
while a more comprehensive review can be found in [1]. A first example of SL method for
parabolic problems was proposed in [2], while fully probabilistic approaches were proposed
in [3], [4], [5]. Deterministic discretizations inspired by stochastic considerations have been
presented in [6] and [7].

In spite of the variety of applications involved, the common feature of these works is
to replace the computation of the solution at the foot of a characteristic with a weighted
average of values computed at multiple points. A rigorous derivation of these techniques
can be based on the Feynman–Kač representation formula, with stochastic trajectories in-
tegrated backward in time as in conventional SL schemes. However, due to their stochas-
tic origin, all these generalizations of the SL approach are based on the trace form of
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parabolic problems, and unsuitable for the divergence form

(1) ut = div (D∇u) ,

which is the most widely used in many applications, especially in computational fluid
dynamics on geophysical scales, for which SL methods for advective problems have proven
to be especially useful (see e.g. the review in [8]). In the previous paper [9], we have
proposed for the first time a SL method for parabolic problems in divergence form.
Numerical experiments reported therein show that the method, albeit formally only first-
order accurate in time, allows to compute remarkably accurate approximations of linear
and nonlinear parabolic problems, as well as to achieve easily higher order accuracy in
space also on nonuniform meshes.

On the other hand, the last two decades have witnessed an increasing interest in
conservative, flux-form SL (FFSL) schemes for various linear and nonlinear advective
problems. Some of the earliest and best known techniques of this kind were proposed in
a finite volume framework in [10], [11] for applications to numerical weather prediction
and climate modelling. Similar ideas have also been proposed in [12], [13], [14], for ap-
plications to plasma modelling and flow in porous media, while extensions of this ideas
to the Discontinuous Galerkin framework have been first proposed in [15] and later
also in [16], [17], [18]. All these methods are exactly mass conservative, as opposed to
methods based on upstream remapping of computational cells (also called inherently
conservative in the numerical weather prediction literature). Some early examples of the
latter are to be found in [19], [20], [21], [22], [23]. Extensions to spherical geometry were
proposed in [24], [25], [26]. An important representative of this class of techniques is
the so called SLICE method, proposed and analyzed in a series of papers by Met Office
researchers [27], [28], [29], [30].

The method proposed in [9], however, even though discretizing Equation (1) directly,
is not formulated in flux form at the discrete level and does not guarantee exact mass
conservation. In the present work, we try to fill the gap, by extending the approach of [9]
to achieve a fully conservative, flux form discretization of the diffusion equation (1). Along
the same lines as [9], we outline a consistency and stability analysis of the method in a
simplified setting, and perform several numerical simulations to validate the proposed
method.

The paper is structured as follows. In Section 2, our novel FFSL discretization is
introduced, while an analysis of its consistency and stability properties will be presented
in Sections 3 and 4. Section 5 treats the extensions of the scheme to problems in higher
dimensions. Finally, numerical results obtained with the proposed method for both linear
and nonlinear models will be presented in Section 6, while some conclusions on the
potential advantages of our approach will be drawn in Section 7.

2. Flux Form Semi-Lagrangian methods for second order prob-
lems

In order to sketch the basic ideas of the scheme, we restrict for the moment to the
approximation of the purely diffusive equation

(2) ut = (ν(x, t)ux)x

in a single space dimension, considered for simplicity on the whole real line. The extension
to advection–diffusion equations and to multiple dimensions will be discussed later in
this Section and in Section 5. Extension to bounded domains with flux conditions at the
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boundary can be performed by a suitable modification of the numerical fluxes, following
the same steps that would be taken in a standard finite volume scheme.

Let ∆t and ∆x denote the time and space discretization steps, respectively, with
tn = n∆t for n ∈ [0, T/∆t]. The space grid is supposed to be infinite and uniform, that
is, for i ∈ Z, xi = i∆x. We will also consider the intermediate points xi±1/2 = (i±1/2)∆x,
which will appear as endpoints of grid cells Ωi = [xi−1/2, xi+1/2]. We will denote the
numerical solutions at time tn by the vector V n = (vni )i∈Z. While in the nonconservative
form SL scheme these values should be understood as point values, in a FFSL scheme
they must be interpreted as cell averages.

We first provide a heuristic derivation of the proposed scheme, describing later in
detail its link to the non conservative method we proposed in [9]. A finite volume, flux
form approximation of Equation (2) can be written as a discrete mass balance

(3) ūi(tn+1) ≈ ūi(tn) +
1

∆x

(
Fni+1/2 −F

n
i−1/2

)
,

where the cell averages are defined as

ūi(t) ≈
1

∆x

∫
Ωi

u(x, t)dx.

Denoting by δ =
√

2∆t ν the spatial scale naturally associated to the given diffusion over
a time step ∆t, one can write

Fnk ≈ ∆t ν(xk, tn) ux(xk, tn) ≈ δ2

2
ux(xk, tn) ≈

≈ δ

2

(
u

(
xk +

δ

2
, tn

)
− u

(
xk −

δ

2
, tn

))
,

where the derivative has been approximated by a centered finite difference. Moreover, it
can be observed that, applying the midpoint quadrature rule, one has

δ u

(
xk +

δ

2
, tn

)
≈
∫ xk+δ

xk

u(x, tn)dx,

δ u

(
xk −

δ

2
, tn

)
≈
∫ xk

xk−δ
u(x, tn)dx,

so that one could define a mass flux as

(4) Fnk =
1

2

(∫ xk+δ

xk

u(x, tn)dx−
∫ xk

xk−δ
u(x, tn)dx

)
.

This definition is consistent with the physical interpretation of the diffusion process.
Indeed, Equation (2) is based implicitly on Fick’s law, according to which the effect of
diffusion is to move mass from regions with high density towards regions with low density.
The difference of integrals in (4) can interpreted as an approximation of the diffusive mass
balance. This motivates the definition of the flux Fnk in abstract form as

(5) Fnk =
1

2

(∫ xk+δk

xk

u(x, tn)dx−
∫ xk

xk−δk
u(x, tn)dx

)
for a properly defined δk.

The practical version of the scheme needs a further discretization in space for the
(approximate) computation of the integrals. In the space-discrete framework, the flux (5)
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is implemented with a numerically reconstructed function, so that the proposed FFSL
method for Equation (2) is defined as

(6) vn+1
i = vni +

1

∆x

(
Fni+1/2 − F

n
i−1/2

)
with a numerical flux given, for k = i± 1/2, by

(7) Fnk =
1

2

(∫ xk+δk

xk

Rq[V
n](x)dx−

∫ xk

xk−δk
Rq[V

n](x)dx

)
,

and with

(8) δk =
√

2∆t ν(xk, tn).

Here, given a sequence W = {wm}m∈Z of cell averages, the operator Rq[W ] is a polyno-
mial reconstruction of degree q which satisfies over each cell Ωm = [xm−1/2, xm+1/2] the
properties of having the required mean value

1

∆x

∫
Ωm

Rq[W ]dx = wm,

and reconstructing with high order a smooth solution. We refer to [31] for an in-depth
discussion of these theoretical issues, while in Sections 3–4 we will recall the main points
of interest for the purpose of a consistency and stability analysis of the proposed method.

It should be remarked that, in this case, it is not required to solve any equation to
obtain δk, in contrast to the approach that was necessary for the non conservative version
of [9]. Furthermore, notice that the method (6) (as well as the nonconservative version,
which will be recalled later) employs viscosity values frozen at the time level tn, so that
an extension to the nonlinear case is straightforward. Consistency (and its optimal rate)
will be proven in the next Section.

The proposed FFSL method can also be combined with analogous methods for the
flux form advection equation. Consider the advection-diffusion equation

(9) ut + (f(x, t)u)x = (ν(x, t)ux)x,

taken again for simplicity on the infinite real line. The combination of the FFSL methods
for advection and diffusion is obtained, for the purposes of this paper, by a simple operator
splitting approach. This combination results in a method that is first order accurate in
time, which is compatible with the time accuracy of the FFSL method for diffusion, as it
will be seen in Section 3. In a first step, any FFSL method for advection can be used. In
Section 6, we employ for concreteness a variant of the well-known FFSL method presented
in [11]. This method yields a numerical approximation ṽn+1

i of the cell averages of the
solution of (9) with ν = 0. An approximation of the solution of the complete Equation (9)
is then obtained by computation of formula (6) based on the intermediate values ṽn+1

i .

3. Consistency

We have shown in [9] that (2) can be approximated via an abstract difference operator
in the form of a convex combination of point values. The results of this approach are
closely related to the FFSL scheme under consideration, so we recall them here.

In [9], the convex combination takes the specific, nonconservative form

(10) vn+1
i =

1

2
Ip[V n](xi + δ+

i ) +
1

2
Ip[V n](xi − δ−i ),
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where the point values are reconstructed by the interpolation operator (of degree p)
Ip[V n], while the displacements δ±i are given as solution of

(11) δ±i =
√

2∆t ν(xi ± δ±i , tn).

Notice that, in general, the interpolation operator Ip differs from the polynomial recon-
structions Rq[W ] introduced in Section 2, in that Ip employs as input data point values,
while Rq[W ] employs cell averages and provides a reconstruction that preserves cell av-
erages exactly. To fix ideas, we assume that Ip is in the form of a symmetric Lagrange
interpolation, for odd values of p. For example, if p = 3, the value I3[V ](x) is computed,
for x ∈ [xm, xm+1], by interpolating the values vm−1, . . . , vm+2. Equation (11) can be
solved either by bisection or (if ν is uniformly positive and Lipschitz continuous) by fixed
point iterations. In the case of a constant coefficient equation, it reduces to

δ =
√

2∆t ν,

i.e., the usual definition of δ used in schemes motivated by probabilistic considerations.
It turns out (see [9]) that the consistency error of the scheme (10) has the form:

L(∆x,∆t) = O

(
∆t+

∆xp+1

∆t

)
.

To prove a sharp consistency estimate for the flux form SL method (6), we will work
on cell averages, assuming as usual that both ν and u are smooth functions of x and t,
and that the grid is uniform and infinite. First, integrating (2) on the generic cell Ωi, we
get ∫

Ωi

utdx = ν(xi+1/2, t)ux(xi+1/2, t)− ν(xi−1/2, t)ux(xi−1/2, t).

Dividing now by ∆x to obtain the cell average, and using a first order Taylor expansion
in time, we have

ūi(tn+1) = ūi(tn) +
∆t

∆x

(
ν(xi+1/2, tn)ux(xi+1/2, tn)−(12)

−ν(xi−1/2, tn)ux(xi−1/2, tn)
)

+O(∆t2).

On the other hand, we can rewrite more precisely the abstract, time-discrete approxima-
tion (3) as

(13) ūi(tn+1) = ūi(tn) +
1

∆x

(
Fni+1/2 −F

n
i−1/2

)
+O(∆tr+1),

with r the associated consistency rate. Denoting by U(x, t) the primitive function (with
respect to x) of the solution u(x, t), we can recast the abstract flux Fnk as

Fnk =
1

2

(
U(xk + δk, tn)− 2U(xk, tn) + U(xk − δk, tn)

)
=(14)

=
δ2
k

2
Uxx(xk, tn) +

δ4
k

24
Uxxxx(xk, tn) +O(δ6

k) =

= ∆t ν(xk, tn)ux(xk, tn) +
∆t2ν2(xk, tn)

6
uxxx(xk, tn) +O(∆t3).

Using (14) in the right-hand side of (13) (for k = i± 1/2), we get

ūi(tn) +
1

∆x

(
Fni+1/2 −F

n
i−1/2

)
= ūi(tn) +

∆t

∆x

(
ν(xi+1/2, tn)ux(xi+1/2, tn)−(15)

−ν(xi−1/2, tn)ux(xi−1/2, tn)
)

+O(∆t2).
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In deriving (15), we have taken into account that

∆t2ν2(xi+1/2, tn)

6
uxxx(xi+1/2, tn)−

∆t2ν2(xi−1/2, tn)

6
uxxx(xi−1/2, tn) = O(∆t2∆x)

due to the Lipschitz continuity of ν and uxxx. Comparing now (15) with (12), we see
that (13) is satisfied up to an O(∆t2), which means a consistency of order r = 1 with
respect to ∆t.

In the second discretization step, we introduce the polynomial reconstruction Rq[V ]
to compute the fluxes in the numerical form (7). Then, the integrals in (7) are computed
with some given accuracy depending (only) on ∆x, so that adding this extra error term
we get a final consistency error L(∆x,∆t) of the form

(16) L(∆x,∆t) = O

(
∆t+

∆xs

∆t

)
.

The exponent s in (16) depends on the kind of space reconstruction used. A particular
choice which provides a stable scheme is obtained by defining the reconstruction Rq
(see [31] for more details and examples) according to the axioms

i) For x ∈ Ωm, Rq[W ](x) = Qm(x) for some polynomial Qm ∈ Pq, with q even;

ii) For x ∈ Ωm, Qm(x) depends on the values wk, with k = m− q/2, . . . ,m+ q/2,
and more precisely it satisfies the conditions

1

∆x

∫
Ωk

Qm(x)dx = wk (k = m− q/2, . . . ,m+ q/2).

With this definition, it is proven in [31] that

(17)
1

∆x

∫ x+∆x/2

x−∆x/2
Rq[W ](ξ)dξ = Ip[W ](x),

for p = q + 1 and Ip in the form of a symmetric Lagrange interpolation.
Equation (17) shows that the integral average over a cell (or part of a cell) is com-

puted with accuracy O(∆xq+2) for a smooth solution. To evaluate the effect of numerical
reconstruction on the computation of the integrals in (7), note that the domains of inte-
gration in the definition of the fluxes Fnk are [xk, xk + δk] or [xk − δk, xk]. In both cases,
the contribution to the integral of any cells Ωj which is fully included in the integra-
tion interval is exactly computed as ∆x vnj , and numerical errors in the computation of
the fluxes Fnk are associated to at most one incomplete cell in each integration domain.
Therefore,

1

∆x

(
Fnk − F

n
k

)
= O(∆xq+2),

and the estimate (16) holds for the truncation error L, with s = q + 2.

4. Stability

We briefly discuss the stability of the proposed scheme in the case of a constant
coefficients equation, while variable coefficient equations seem to require a deeper study.
First, we note that a well understood case is the construction of the nonconservative
scheme with Ip in the form of a symmetric Lagrange interpolation, for odd values of p.
In the pure advection case, this construction is known to be stable (see [32]).
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Consider now the problem (2) for a constant diffusivity ν, and define the space
reconstruction Rq as in the previous section. In this case, δi ≡ δ, so that, writing explicitly
the fully discrete scheme and using (17), we get

vn+1
i = vni +

1

∆x

(
Fni+1/2 − F

n
i−1/2

)
=

= vni +
1

2∆x

(∫ xi+1/2−δ

xi−1/2−δ
−
∫ xi+1/2

xi−1/2

+

∫ xi+1/2+δ

xi−1/2+δ
−
∫ xi+1/2

xi−1/2

)
Rq[V

n](x)dx =(18)

=
1

2

(
1

∆x

∫ xi+1/2−δ

xi−1/2−δ
+

1

∆x

∫ xi+1/2+δ

xi−1/2+δ

)
Rq[V

n](x)dx =

=
1

2
Ip[V n](x− δ) +

1

2
Ip[V n](x+ δ).

The scheme can then be recast as the convex combination

(19) V n+1 =
1

2
B+V n +

1

2
B−V n,

where the terms B±V n represent respectively the schemes written in extended form as

vn+1
i = Ip[V n](xi ± δ),

which (see [32]) are stable in the 2-norm for any δ and any odd p. This implies that∥∥∥B±∥∥∥
2
≤ 1,

and therefore that the complete scheme is also stable in the same norm, unconditionally
with respect to ∆x and ∆t.

This unconditional stability, however, comes at a price. The numerical domain of
dependence, as (19) shows, is made of two separate regions at a distance of about 2δ
(or 2δk for variable coefficient problems). In case of a strong diffusivity, the use of large
time steps may cause the small scales to be severely underresolved, especially in the first
steps of the scheme and for nonsmooth initial conditions, although the scheme remains
formally stable and consistent.

A qualitative evaluation of this phenomenon is carried out in [6]. The endpoint of
this analysis is a compatibility condition of the form

‖ν‖1/3∞ ∆t

T 2/3∆x2/3
� 1,

in which T is the time of interest for the approximation of the solution. Note that this
condition is less restrictive for large T and small ν, and is asymptotically satisfied under
hyperbolic-type CFL conditions (in particular, it is satisfied for all the space-time grids
of Section 6). An adaptive strategy of selection of the time step has also been proposed
in [33] for a similar scheme related to the equation of Mean Curvature Motion.

5. Multiple space dimensions

In this Section, we discuss the extension of the proposed approach to the d-
dimensional case. The extension is straightforward in the case of a structured orthogonal
grid and diagonal diffusivity matrix

(20) Λ(x, t) = diag(ν1(x, t), . . . , νd(x, t)),
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and in particular, for a variable but isotropic diffusion (for which ν1(x, t) = · · · = νd(x, t)).
Then, the diffusion equation reads

ut = div(Λ(x, t)∇u) =

=

d∑
j=1

(νj(x, t)uxj )xj .

By a first-order expansion of the solution with respect to time, we get

u(x, t+ ∆t) = u(x, t) +
1

d

d∑
j=1

[
∆t(dνjuxj )xj (x, t)

]
+O(∆t2),

which shows that, up to first-order accuracy, the d-dimensional version can be obtained by
averaging the diffusion operators in each direction, with the only modification of scaling
each one-dimensional diffusivity by a factor d. This allows to split the diffusion along
each of the variables. For example, the 2-dimensional equation

ut = (ν1(x, t)ux1)x1
+ (ν2(x, t)ux2)x2

would be approximated by the scheme (written with an obvious notation at the node
xi = (xi1 , xi2))

(21) vn+1
i = vni +

1

∆x2

(
Fni1+1/2,i2 − F

n
i1−1/2,i2 + Fni1,i2+1/2 − F

n
i1,i2+1/2

)
,

in which, for example, the flux Fni1+1/2,i2
would be given by

Fni1+1/2,i2 =
1

4

(∫ xi2+1/2

xi2−1/2

∫ xi1+1/2+δi1+1/2,i2

xi1+1/2

R[V n](x)dx−(22)

−
∫ xi2+1/2

xi2−1/2

∫ xi1+1/2

xi1+1/2−δi1+1/2,i2

R[V n](x)dx

)
,

and the displacement δi1+1/2,i2 defined, at the centers of E and W facets of a square cell,
by

δi1+1/2,i2 =
√

4∆t ν1(xi1+1/2,i2 , tn).

Note that the integrals appearing in all the fluxes of the form (22) have an integration
domain consisting of a row (or column) of grid cells, among which at most one cell is
incomplete (see the remark at the end of Section 3).

6. Numerical experiments

Several numerical experiments have been carried out with simple implementations of
the FFSL method proposed above, in order to assess its accuracy and stability features
also in cases more complex than those allowing a complete theoretical analysis. The
accuracy of the proposed discretization has been evaluated against analytic solutions or
reference solutions obtained by alternative discretizations in space and time. Due to the
close relationship between the methods proposed here and those in [9], the choice of the
test cases follows closely the outline in our previous paper, in order to allow for a clear
comparison between the conservative and nonconservative SL discretizations.
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6.1. Constant coefficient case

In a first set of numerical experiments, the constant coefficient diffusion equation

ut = νuxx x ∈ [0, L]

was considered, on an interval [0, L] with L = 20. Periodic boundary conditions were
assumed and a Gaussian profile centered at L/2 was considered as the initial condition.
In this case, the exact solution can be computed up to machine accuracy by separation of
variables and computation of its Fourier coefficients on a discrete mesh of N points with
spacing ∆x = L/N. We consider the FFSL method described in the previous Sections on
a time interval [0, T ] with T = 2, with time steps defined as ∆t = T/M. The stability
parameter of standard explicit discretizations of the diffusion operator is defined as µ =
ν∆t/∆x2. We consider the case with ν = 0.05 first, whose relative errors are reported
in Table 1, as computed in the l2 norm (l∞ norm errors have an entirely analogous
behaviour). The parallel results for the advection diffusion case

ut + aux = νuxx x ∈ [0, L]

with a = 1.5, ν = 0.05 are reported in Table 2 (also in this case, l∞ norm errors are
very similar). Here, the Courant number is defined as C = a∆t/∆x and the advective
flux was computed along the lines of the well known method [11], using the same Rq
reconstruction employed for the diffusive flux (and defined in Section 3), with q = 0 and
q = 2, respectively.

Table 1. Relative errors for the constant coefficient pure diffusion case in
the l2-norm, nonconservative (SL) and conservative (FFSL) scheme, first
and third order space discretizations.

Resolution l2 rel. error (SL) l2 rel. error (FFSL)

N M µ I1 I3 R0 R2

400 12 3.3 1.50 · 10−3 1.52 · 10−4 1.56 · 10−3 1.49 · 10−4

800 25 6.4 8.1 · 10−4 7.14 · 10−5 8.1 · 10−4 7.1 · 10−5

400 25 1.6 2.1 · 10−3 8.02 · 10−5 2.1 · 10−3 7.21 · 10−5

800 50 3.2 1.56 · 10−3 3.61 · 10−5 1.56 · 10−3 3.56 · 10−5

400 50 0.8 4.78 · 10−3 3.45 · 10−5 4.78 · 10−3 3.83 · 10−5

800 100 1.6 2.06 · 10−3 1.72 · 10−3 2.06 · 10−3 1.80 · 10−5

400 100 0.4 4.63 · 10−3 4.17 · 10−5 4.63 · 10−3 2.04 · 10−5

800 200 0.8 4.76 · 10−3 8.58 · 10−6 4.76 · 10−3 9.56 · 10−6

400 200 0.2 2.21 · 10−2 1.19 · 10−4 2.21 · 10−2 2.31 · 10−5

800 400 0.4 4.62 · 10−3 1.1 · 10−5 4.62 · 10−3 5.09 · 10−6

According to the estimate (16), the consistency rate of the proposed method is at most
one, due to predominance of time truncation errors. This behaviour is apparent when
large values of the ‘parabolic CFL parameter’ µ are reached. In the opposite situation,
when really many time steps are computed, the accumulation of space discretization
errors kicks in, causing an increase of the second term in (16) and ultimately slowing
down convergence – error tables thus confirm that the best performance of the scheme
is achieved at intermediate Courant numbers. On the other hand, even at large Courant
numbers the errors are comparable (or smaller, see the tests in the previous paper [9])

61



Bonaventura, Ferretti

Table 2. Relative errors for the constant coefficient advection–diffusion case in
the l2-norm, nonconservative (SL) and conservative (FFSL) scheme, first and third
order space discretizations.

Resolution l2 rel. error (SL) l2 rel. error (FFSL)

N M µ C I1 I3 R0 R2

400 12 3.3 5 1.56 · 10−3 1.52 · 10−4 1.56 · 10−3 1.50 · 10−4

800 25 6.4 4.8 6.88 · 10−4 7.16 · 10−5 1.3 · 10−3 7.21 · 10−5

400 25 1.6 2.4 2.45 · 10−3 7.14 · 10−5 5.03 · 10−3 7.4 · 10−5

800 50 3.2 2.4 5.78 · 10−4 3.7 · 10−5 3.02 · 10−3 4.24 · 10−5

400 50 0.8 1.2 3.81 · 10−3 4.27 · 10−5 8.64 · 10−3 4.07 · 10−5

800 100 1.6 1.2 1.57 · 10−3 1.94 · 10−5 4.0 · 10−3 1.83 · 10−5

400 100 0.4 0.6 1.11 · 10−2 1.11 · 10−4 1.61 · 10−2 2.78 · 10−5

800 200 0.8 0.6 4.2 · 10−3 1.43 · 10−5 1.05 · 10−2 1.06 · 10−5

400 200 0.2 0.3 1.37 · 10−2 3.41 · 10−4 4.1 · 10−2 3.59 · 10−5

800 400 0.4 0.3 9.65 · 10−3 9.25 · 10−5 1.47 · 10−2 6.7 · 10−6

to those of unconditionally stable Eulerian schemes, but obtained at a much smaller
computational cost, since no global linear algebraic problem is being solved here.

It can be observed that, in the linear case, the errors obtained by the SL and FFSL
methods are in general of the same order of magnitude. Indeed, as a result of the analysis
in [32], the SL and FFSL methods should give exactly identical results in the constant
coefficient case, provided that the centered Ip interpolation and the Rp−1 reconstructions
are employed, respectively. The slight differences in Tables 1 and 2 are due to the fact that,
for simplicity of the present implementation, for the SL method the default MATLAB
cubic interpolator was used, which implements a shape preserving cubic interpolator that
is equivalent in accuracy, but not exactly identical to the centered I3 interpolator.

As expected, both methods have much smaller errors with cubic than with linear
interpolation and the errors do not suffer from larger time step sizes, as typical with SL
schemes, while it has been verified that mass conservation is respected up to machine
accuracy.

6.2. Linear diffusion with variable coefficients

The diffusion equation

ut = (ν(x, t)ux)x x ∈ [0, L]

was then considered on a space interval [0, L] and time interval [0, T ] with L = 10 and
with T = 4, with time steps defined as ∆t = T/M. Periodic boundary conditions were
assumed and a Gaussian profile centered at L/5 was considered as the initial condition.
The diffusivity field was given by

ν(x, t) =
1

20
+

1

5
ξ(x) sin

(
2πt

T

)2

,

respectively, where ξ(x) denotes the characteristic function of the interval [0.5L, 0.8L].
This choice highlights the possibility to use the proposed method seamlessly also with
strongly varying diffusion coefficients. In this case, no exact solution is available and
reference solutions were computed using the finite difference method described in the
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previous section with a four times higher spatial resolution, coupled to a high order
multistep stiff solver in which a small tolerance and maximum time step value were
enforced. A plot of the numerical solutions obtained at the final time T are displayed in
Figures 1-2, for the FFSL and SL method, respectively.
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Figure 1. One-dimensional case with variable coefficients: reference solution (continuous
line) versus numerical solution by FFSL method (circles) with first-order (a) and third-
order (b) reconstruction.
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Figure 2. One-dimensional case with variable coefficients: reference solution (continuous
line) versus numerical solution by SL method (circles) with linear (a) and cubic (b)
interpolation.

A more quantitative assessment of the FFSL solution accuracy can be gathered from
Table 3. It can be observed that the FFSL method has always slightly smaller error than
the corresponding SL variant at equivalent resolution. In all these computations, FFSL
maintains mass conservation up to machine accuracy by construction, while the average
conservation error of the SL method is of the order of 10−3 times the total initial mass.
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Table 3. Relative errors for the variable coefficient pure diffusion case in
the l2-norm, nonconservative (SL) and conservative (FFSL) scheme, first
and third order space discretizations.

Resolution l2 rel. error (SL) l2 rel. error (FFSL)

N M µ I1 I3 R0 R2

50 50 0.1 1.34 · 10−1 1.10 · 10−3 1.30 · 10−1 7.31 · 10−3

100 100 0.2 7.26 · 10−2 4.21 · 10−3 7.21 · 10−2 3.52 · 10−3

100 25 0.8 2.10 · 10−2 5.74 · 10−3 2.10 · 10−2 4.75 · 10−3

200 50 1.6 1.02 · 10−2 4.68 · 10−3 9.57 · 10−3 3.00 · 10−3

6.3. Gas flow in porous media

We reconsider the nonlinear example, already treated in [9], of the one-dimensional
equation of gases in porous media,

(23) ut =
(
mum−1ux

)
x
,

focusing in particular on the so-called Barenblatt–Pattle self-similar solutions (see,
e.g., [34]), which can be written in the form

(24) u(x, t) = (t+ t0)−k
(
A2 − k(m− 1)|x|2

2m(t+ t0)2k

) 1
m−1

+

where t0 > 0, A is an arbitrary nonzero constant and k = 1/(m+ 1).
In order to adapt the FFSL scheme to this case, we recall what has been already

observed for the nonconservative scheme in [9]: since the solution (and hence, the diffu-
sivity) may have a bounded support, a straightforward extension of (11) in the linearized
form

(25) δ±i =

√
2∆t ν

(
I[V n](xi ± δ±i )

)
(where in our case ν(u) = mum−1) might cause an improper behaviour of the scheme.
In fact, for xi out of the support but in its neighbourhood, (25) could have multiple
solutions, the smallest being δ±i = 0. In order to ensure a correct propagation of the

solution, δ±i should be selected to be the largest of such values, either starting the iter-
ative computation from an initial guess exceeding all candidate solutions, or working by
bisection.

A similar caution should be applied in extending the definition (8), which would only
provide the value δk = 0 when outside of the support of the solution (note that this is
not in contrast with the analysis of Section 3 which works for linear equations and under
stronger assumptions). A possible answer in this respect is to compute the δ±k via (25),
then define

(26) δk =
δ+
k + δ−k

2
,

where, of course, xk is now a cell interface. This means that in this case the FFSL scheme
requires again to solve the scalar equation (25) at each node; however, as we will show,
it turns out to be more accurate than the nonconservative scheme.
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We prove now that (26) is a consistent definition of δk. By a Taylor expansion of the
square root and some minor manipulation, we have

δ±k =
√

2∆t ν(xk)

(
1± νx(xk)

2ν(xk)
δ±k +O(∆t),

)
so that

δ+
k + δ−k

2
=
√

2∆t ν(xk)

(
1 +

νx(xk)

4ν(xk)

(
δ+
k − δ

−
k

)
+O(∆t),

)
.

On the other hand, it is proved in [9] that δ+
k − δ

−
k = O(∆t), and this implies that

δ+
k + δ−k

2
=
√

2∆t ν(xk)(1 +O(∆t)),

i.e., that the definition (26), while allowing for nonzero values outside of the support of
the solution, leaves the scheme consistent.

Figure 3 compares the exact and approximate evolution of the Barenblatt–Pattle
solution for (23), with m = 3, A = 1 and t0 = 1. Approximate solutions have been com-
puted with the nonconservative (left) and the conservative (right) scheme at T = 1, 4, 16
on a mesh composed of 50 nodes with ∆t = 0.05, using cubic interpolation and quadratic
reconstruction, respectively. Note that the mass conservation constraint apparently im-
proves the accuracy of the scheme, especially for larger simulation times.

This behaviour is confirmed, in terms of both relative error and convergence rate, by
Table 4, which shows the numerical errors for the two schemes in the 2-norm, at T = 16,
under a linear refinement law. SL scheme has been tested with linear (I1) and cubic
(I3) interpolation, whereas FFSL scheme with piecewise constant (R0) and piecewise
quadratic (R2) reconstruction. When computed on the extreme discretizations of the
table, the convergence rates are between 0.35 and 0.4 for the nonconservative scheme,
and roughly doubled for the conservative scheme. Higher order space discretizations result
in a similar convergence rate, but lower error.

The maximum values for the stability parameter µ are also displayed, showing that
the scheme works well far beyond the time step prescribed according to a “parabolic
CFL” condition.

(a) (b)

Figure 3. Evolution of the exact (continuous line) versus numerical (circles) Barenblatt–
Pattle solution for T = 1, 4, 16, nonconservative (a) and conservative (b) scheme.
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Table 4. Relative errors for the Barenblatt–Pattle solution in the
2-norm, nonconservative (SL) and conservative (FFSL) scheme, first and
third order space discretizations.

Resolution l2 rel. error (SL) l2 rel. error (FFSL)

N M µ I1 I3 R0 R2

50 320 0.94 0.316 8.69 · 10−2 0.270 2.67 · 10−2

100 640 1.9 0.212 4.76 · 10−2 0.156 1.65 · 10−2

200 1280 3.8 0.171 4.84 · 10−2 9.85 · 10−2 1.09 · 10−2

400 2560 7.5 0.135 4.49 · 10−2 6.03 · 10−2 2.69 · 10−3

800 5120 15.0 0.107 3.22 · 10−2 3.72 · 10−2 2.79 · 10−3

6.4. Variable coefficient case in two space dimensions

As a two-dimensional test, we consider the equation

ut = div(ν(x)∇u)

on Ω = [−3, 3]2 with periodic boundary conditions. The initial condition given by the
characteristic function of the square Σ = [−1.5, 1.5]2. The isotropic diffusivity ν is given
by

ν(x) = e−5|x−x0|2 ,

where x0 = (1.5,−1.5). The diffusion is therefore concentrated in a corner on the bound-
ary of the set Σ. The effect of this diffusion is to move mass from the interior of Σ to the
exterior, in the neighbourhood of the point x0. Figure 4 shows the numerical solution
along with its level curves at T = 2, computed on a 50 × 50 space grid using R0 recon-
struction and time step ∆t = 0.05. Note that, despite being conceptually obtained by
directional splitting, the two-dimensional scheme (21) does not suffer from anisotropies
induced by grid orientation.

7. Conclusions

We have extended the SL approach of [9] to achieve a fully conservative, flux form
discretization for linear and nonlinear parabolic problems. The resulting method is sim-
pler to implement than the original non conservative variant, since the computation of
the diffusive displacements δ±i is explicit and does not require the solution of a nonlin-
ear equation. A consistency and stability analysis of the method has also been presented,
along with a strategy to couple the FFSL discretizations of advection and diffusion terms.
Various numerical simulations validate the proposed method, showing that it is equivalent
in accuracy to its nonconservative variant, while allowing to maintain mass conservation
at machine accuracy. The proposed method could represent an important tool to treat
diffusive terms in combination with the many conservative, flux-form semi-Lagrangian
schemes for advection terms proposed in the literature, with the advantage of going be-
yond CFL restrictions at a lower cost than implicit methods.

Future developments will focus on the application of the proposed approach to con-
servation laws with nonlinear parabolic terms, such as e.g. the Richards equation, and to
the extension of this technique to high order discontinuous finite elements discretizations
such as those proposed in [15], [35], [36].
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Figure 4. Variable isotropic diffusion, graph (a) and level curves (b) of the solutions.
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