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Abstract. We address the problem of stochastic simulation of soil particle-

size curves (PSCs) in heterogeneous aquifer systems. Unlike traditional ap-

proaches that focus solely on a few selected features of PSCs (e.g., selected

quantiles), our approach considers the entire particle size curves and can op-

tionally include conditioning on available data. We rely on our prior work

[Menafoglio et al, 2014,2015] to model PSCs as cumulative distribution func-

tions, and interpret their density functions as functional compositions. We

thus approximate the latter through an expansion over an appropriate ba-

sis of functions. This enables us to (a) effectively deal with the data dimen-

sionality and constraints, and (b) to develop a simulation method for PSCs

based upon a suitable and well defined projection procedure. The new the-

oretical framework allows representing and reproducing the complete infor-

mation content embedded in PSC data. As a first field application, we demon-

strate the quality of unconditional and conditional simulations obtained with

our methodology by considering a set of particle-size curves collected within

a shallow alluvial aquifer in the Neckar river valley, Germany.
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1. Introduction

Characterization of natural heterogeneity of aquifer bodies relies on diverse types of

observations. These include, for example, direct measurements/estimates of hydraulic

parameters such as hydraulic conductivity and porosity and data enabling us to infer a

classification of soil types. Merging all available information within a unique theoretical

and operational framework would form the basis for a robust system characterization. A

stochastic approach is nowadays recognized as a viable tool to quantify how uncertainty

propagates from incomplete knowledge of the properties of the host porous medium (in

terms of spatial distribution of geomaterials and associated parameters) to state variables

of interest (including, e.g, groundwater fluxes and chemical concentrations).

Here, we present a new way according to which the information content embedded in

particle-size curves (PSCs) can be employed to assist the stochastic characterization of

a natural aquifer. These types of data are routinely available in field studies performed

in diverse settings. They are usually obtained through relatively simple and inexpensive

methods, such as traditional grain sieve analysis, sedigraph or laser diffraction methods.

The information content which can be extracted from PSCs includes a set of represen-

tative particle diameters that are defined as average soil particle sizes corresponding to

given quantiles of the PSC. Representative diameters can then be employed within exist-

ing empirical formulations relating them to aquifer parameters such as porosity and/or

saturated hydraulic conductivity [e.g., Rosas et al., 2014; Vienken and Dietrich, 2011;

Vukovic and Soro, 1992]. In a few other cases [e.g., Rogiers et al., 2012] a site-specific

model is proposed to assess the possibility of estimating saturated hydraulic conductiv-
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ity from the complete dataset characterizing the PSCs. These can also be employed for

the purpose of soil textural classification, according to a variety of approaches [e.g., Riva

et al., 2006; Mart̀ın et al., 2005, and references therein]. In this sense, texture data con-

sisting in percentage values of sand, silt and clay (which can be inferred from PSCs) can

be employed together with other quantities, including e.g., bulk density of soil, as input

to pedotransfer functions to estimate soil hydraulic properties [e.g., Rawls et al., 1982;

Pachepsky et al., 2006; Schaap et al., 2001; Schaap, 2013, and references therein]. An

alternative approach is grounded on concepts of similar media scaling [e.g., Miller and

Miller , 1956; Vogel et al., 1991] to exploit the dependence of hydraulic properties on pore

size and key geometrical descriptors of the pore space. The latter approach enables one to

scale hydraulic properties of multiple soils to unique reference water retention curves and

partially saturated relative hydraulic conductivity functions [e.g., amongst others, Tuli

et al., 2001; Das et al., 2005; Nasta et al., 2013]

In this broad framework, hydrogeological investigations commonly employ a number of

discrete quantiles of an available PSC which are subject to geostatistical analysis and then

(a) mapped onto a spatial grid through Kriging or (b) employed in a numerical Monte

Carlo setting to generate multiple realizations of the spatial distribution of aquifer prop-

erties and/or textural composition [e.g., Riva et al., 2006, 2008, 2010; Hu et al., 2009;

Bianchi et al., 2011]. As recently pointed out by Menafoglio et al. [2014, 2015], these

standard approaches suffer from two major drawbacks: (a) they require the joint geosta-

tistical analysis of various characteristic particle diameters with an ordering constraint,

entailing, e.g., calibration of multiple variogram and cross-variogram models, and (b) they

do not fully exploit the richness of information associated with available PSCs.
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It is then clear that having at our disposal advanced techniques for generating

geostatistically-based Monte Carlo realizations of an entire particle-size distribution in-

stead of selected quantiles would dramatically improve our ability to represent and repro-

duce the complete information content embedded in PSC data. This technology has the

clear potential to yield improved characterizations of the spatial variability and uncer-

tainty associated with structural features of geomaterials forming natural aquifers, and

can thus effectively support studies of groundwater flow and chemical transport. To the

best of our knowledge, the challenging problem of performing geostatistical simulations

of random spatial fields of soil particle-size distributions has not yet been explored in the

literature.

The aim of this work is to provide the theoretical basis and the associated computational

algorithms to generate Monte Carlo realizations of spatial distributions of PSCs. These

can optionally be conditional on available observed PSCs at a set of discrete locations

in the system. We do so by advancing our previous work [Menafoglio et al., 2014, 2015],

within which we developed and applied a Functional Compositional Kriging predictor

model for interpolating PSC data. We demonstrate here our new stochastic simulation

approach through a field-scale analysis grounded on observed PSCs. We obtain (con-

ditional and unconditional) realizations of PSC maps, which can readily be included in

Monte Carlo simulations of groundwater flow and transport in randomly heterogeneous

aquifer systems.

We ground our theoretical developments on a non-parametric framework, which com-

bines the point of view of geostatistics [Chilès and Delfiner , 1999], Functional Data

Analysis [FDA, Ramsay and Silverman, 2005] and Compositional Data Analysis [CoDa,

D R A F T June 21, 2016, 12:38pm D R A F T



X - 6 MENAFOGLIO ET AL.: SIMULATION OF PARTICLE-SIZE CURVES

Pawlowsky-Glahn et al., 2015]. Consistent with the concepts first introduced by

Menafoglio et al. [2014, 2015], we model PSCs as cumulative distribution functions and

interpret their densities, termed particle-size densities (PSDs), as functional compositions

(FCs) belonging to a Bayes space [Egozcue et al., 2006]. FCs are positive functions con-

strained to integrate to a constant (e.g., probability density functions). They represent

the infinite-dimensional (i.e., functional) counterpart of compositional data. The latter

are positive multivariate data that represent proportions (or per cent amounts) of a total

(e.g., unity or 100). We ensure the associated constraints (positivity, integration to one),

through a log-ratio approach, which is well-established in the multivariate setting and

reflects the observation that the relevant information embedded in constant-sum objects

is conveyed by (log-)ratios among components, rather than by their absolute values (i.e.,

the concept of relative information, see, e.g.Aitchison [1986]). We treat our FCs in a

corresponding so-called Bayes space. The latter was designed to properly represent the

data constraints (e.g., positivity, constant sum), and generalizes the Aitchison geometry

to the functional case. In this context, we develop our stochastic simulation method for

PSDs by relying upon a suitable and well defined projection strategy for FCs in Bayes

spaces. This enables us to (a) reduce the dimensionality of the problem by guaranteeing

a high level of precision, and (b) characterize and simulate PSDs via an approximated

multivariate problem.

The work is organized as follows. Section 2 describes the field data that are employed

as a test bed to illustrate our methodology. Section 3 illustrates our stochastic simulation

strategy in the unconditional and conditional settings. Section 4 describes our results

obtained at the target field site. Section 5 concludes the work. The basic notions on
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Bayes space theory are given in Appendix A, and additional theoretical and algorithmic

details are provided in Appendix B and C.

2. Experimental site and available data

We consider here a dataset obtained at the Lauswiesen site, located in the Neckar river

valley near the city of Tübingen, Germany. The subsurface system in the area has been

characterized through extensive information obtained at a number of boreholes, which are

employed to perform sedimentological as well as hydraulic analyses. A relatively regular

upper clay layer with a thickness of 1 - 2 m overlies a conductive Quaternary sand and

gravel deposit. The latter rests on a layer of Keuper marl which is considered to define

an impervious bedrock boundary of the aquifer hosted in the Quaternary sand and gravel

system. The saturated thickness of the aquifer we are considering is approximately 5 m.

All boreholes penetrate the aquifer down to bedrock. Details of site hydrogeology are

given by Riva et al. [2006] and references therein. Available pumping test data have been

employed by Neuman et al. [2007] for the stochastic analysis of late-time drawdowns and

by Panzeri et al. [2015] for the application of data assimilation techniques based on the

concept of Moment Equation Ensemble Kalman Filter.

Of specific relevance to our study are the available 406 PSCs sampled along 12 fully

penetrating vertical boreholes. The dataset was employed by Riva et al. [2006, 2008, 2010];

Barahona-Palomo et al. [2011] and Riva et al. [2014] in the context of stochastic modeling

studies aimed at (a) providing a probabilistic analysis of solute residence times within

well capture zones, (b) interpreting an observed tracer test in a numerical Monte Carlo

framework, (c) assessing the link between the spatial covariance functions of the (natural)

logarithm of hydraulic conductivity and of soil particle representative diameters, and (d)

D R A F T June 21, 2016, 12:38pm D R A F T



X - 8 MENAFOGLIO ET AL.: SIMULATION OF PARTICLE-SIZE CURVES

characterizing the correlation between hydraulic conductivity values estimated through

impeller flowmeter downhole measurements and by way of empirical formulations based

on PSC representative diameters.

The available PSCs were measured on soil samples of characteristic length ranging from

5 to 26.5 cm. A number of 12 sieve diameters (i.e., 0.063, 0.125, 0.25, 0.50, 1.0, 2.0, 4.0,

8.0, 16.0, 31.5, 63.0 and 100.0 mm) were employed in the sieve analysis procedure. Figure

1c depicts a sketch of the borehole network and sampling locations at the site. Applying

traditional empirical relationships between characteristic soil diameters and permeability

indicates that the site is mainly constituted by heterogeneous and conducive deposits of

alluvial origin.

Particle size curves associated with one of the available boreholes (borehole B5 in Figure

1) have been employed by Menafoglio et al. [2014] to perform a geostatistical analysis of

PSCs through the corresponding densities, interpreted as Functional Compositions (FCs).

These authors embed this latter concept within the geostatistical framework of Menafoglio

et al. [2013] through which they provide Kriging estimates of the full PSC on a compu-

tational grid, together with the associated Kriging variance. The geostatistical setting

of Menafoglio et al. [2014] has been extended by Menafoglio et al. [2015] to characterize

the complete set of PSCs at the site and to properly account for the information content

related to the local occurrence of diverse soil types (or textural classes). The key result of

the authors is the formulation of an original theoretical framework according to which one

can take full advantage of the complete set of information embedded in measured PSCs

to (a) classify PSCs into clusters which represent the occurrence at a site of diverse soil

types, (b) characterize the spatial distribution of each identified textural class, and (c)
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provide Kriging estimates of the heterogeneous distribution of PSCs within each region

which contributes to form the internal architecture of the geological system.

Menafoglio et al. [2014] and Menafoglio et al. [2015] analyze available PSDs by resorting

to a smoothing procedure suitable for PSCs. This enabled them to obtain the smooth

estimates of PSDs from raw data (Figure 1a and b), and to embed these in their anal-

yses leading to Kriging predictors of the PSDs at unsampled locations. Note that data

considered in this work refer to the particle-size distribution within the domain of avail-

able observation, i.e., associated with the grain dimensions between the minimum and

the maximum sieve diameters. For the purpose of illustration, we here consider a subset

of the smoothed data of Menafoglio et al. [2015], as detailed in Section 4; the reader is

referred to Menafoglio et al. [2015] for further details on data preprocessing.

3. A projection strategy for the stochastic simulation of Particle-Size

Densities

This Section illustrates the theoretical elements underpinning our approach. The key

idea is to generate stochastic realizations of spatial functional data. We are not interested

in simulating on a computational grid only a discrete number of points of these functions

but rather the full function. We then ground our method on a projection of these func-

tions onto a suitable functional basis and develop generation algorithms that consider the

coefficient of such a basis expansion. For simplicity, we describe here the general points

of the approach and devote Appendix A, B, and C to the details of the mathematical

developments.
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3.1. Notation and background

We denote by D ⊂ R3 the three-dimensional aquifer domain. Let Xs be a (random)

particle-size curve, associated with location s in D: for any soil particle size t in the

closed interval T = [tmin, tmax], Xs(t) denotes the random proportion of particles having

size smaller than or equal to t. We denote by {Xs, s ∈ D} the random field of PSCs, that

is a collection of random functional elements (i.e., the PSCs), indexed by the continuous

spatial variable s in D. In this sense, {Xs, s ∈ D} is a functional random field.

Let s1, ..., sn be sampling/measurement locations in D. Given the observation of

Xs1 , ...,Xsn at these locations, our goal is to provide a collection of stochastic simula-

tions (or realizations) of the PSC Xs0 at a given location s0 in D. These simulations may

be either unconditional or conditional. The former are realizations sampled from the (es-

timated) distribution of the field {Xs, s ∈ D}, whereas the latter are realizations from the

(estimated) conditional distribution of {Xs, s ∈ D} given the observations Xs1 , ...,Xsn .

Conditional simulations reproduce the actual data at the measurement locations.

If in each location in D we only considered a quantile (or the mean) of the distribution

(e.g., the median particle-size Xs of the PSC Xs) we would work with a real-valued random

field {Xs, s ∈ D}, for which multivariate geostatistical methods of analysis, estimation and

simulation are well-known [e.g., amongst others, de Marsily , 1986; Deutsch and Journel ,

1998; Chilès and Delfiner , 1999].

Stochastic simulations of the PSCs may rely on the discretization of each particle-

size distribution as a list of point evaluations of the PSC (Xs(t1), ...,Xs(tK)) (or a list

of quantiles). Accordingly, one can then produce either unconditional or conditional
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realizations of these quantities, by employing, for example, well-established Gaussian co-

simulation methods [e.g., Deutsch and Journel , 1998; Remy et al., 2009].

Note that refining the discretization (i.e., increasing the number of particle sizes at

which the PSC is evaluated), leads to improved approximations of the PSC through

the corresponding vector (Xs(t1), ...,Xs(tK)). Nevertheless, this approach suffers from

two critical drawbacks: (i) the so-called curse of dimensionality and (ii) the ordering

constraints. With reference to the former, we note that an increased refinement in the

discretization of a PSC is associated with a corresponding increase of the computational

burden to produce a random realization. Ideally, if one aimed at obtaining a realization

of the entire distribution function (i.e., of the entire PSC), co-simulation of an infinity of

point values would be needed. With reference to the latter point, it is clear that PSCs are

associated with an ordering relation, i.e., by definition, Xs(ti) < Xs(tj), for i < j. These

constraints should be properly considered to obtain admissible results. This is especially

critical when dealing with a fine grid of evaluation in the domain [tmin, tmax], since in

this case the violation of the ordering constraints is likely to take place, because of the

closeness of the values taken by the PSC at two consecutive points of evaluations, i.e., of

Xs(ti), Xs(ti+1), for i = 1, ..., K − 1.

Our approach is grounded on the idea that one can tackle the curse of dimensionality by

interpreting PSC data as functions that can be approximated as a combination of a low

number of functional components. The projection of the curves onto these components

allows reducing functions to vectors of coefficients (i.e., coordinates associated with the

basis expansion). The latter can be then analyzed via multivariate methods, including,

e.g., frequently used standard techniques for Gaussian co-simulation in a geostatistical
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framework. Constraints imposed by the nature of the data analyzed are treated by select-

ing a proper functional space, together with a suitable set of functional basis elements.

We tackle these challenges by following the approach of Menafoglio et al. [2014, 2015],

which is a generalization to the functional setting of the strategy of Tolosana-Delgado

et al. [2008]. These authors rely upon the so-called Aitchison geometry [Pawlowsky-Glahn

and Egozcue, 2001] to analyze spatial compositional data, i.e., vectors whose components

express proportions or percent amount of a whole (e.g., discrete probability density func-

tions). We work here within the theory of Bayes spaces [Egozcue et al., 2006; van den

Boogaart et al., 2014] through which the Aitchison geometry can be generalized to Func-

tional Compositions (FCs), i.e., positive functions integrating to a constant (e.g., proba-

bility density functions). Note that particle-size densities (PSDs) – i.e., the derivative of

PSCs – can be interpreted within this framework. From a mathematical viewpoint, func-

tional compositions are points in Bayes spaces, where proper notions of sum and product

by a constant, inner product and norm are defined, in agreement with the so-called prin-

ciples of compositional data analysis. For the purpose of our discussion, we do not present

the complex mathematical constructions involved in the introduction of Bayes spaces. We

limit our illustration to mention that it is possible to introduce a transformation based on

logarithms, that allows preserving the constraints of PSDs (i.e., positivity and integration

to 1). Let us denote by {Ys, s ∈ D} the random field whose generic element Ys is the

PSD associated with the PSC Xs (i.e., Ys is the derivative of Xs with respect to t). We

consider for each element Ys of this field its centered log-ratio (clr) transformation Zs

Zs(t) = clr(Ys)(t) = ln(Ys(t))−
1

tmax − tmin

∫ tmax

tmin

ln(Ys(τ))dτ , t ∈ T . (1)
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Transformation (1) enables us to overcome issues related to the data constraints by map-

ping the original constrained problem (PSDs must be positive and integrate to 1) to an

unconstrained problem (the clr-transformations can take arbitrary values). Note that pre-

serving the positivity constraint of the PSDs leads to honor the ordering relation among

quantiles (or evaluations) of the associated PSCs. From the mathematical viewpoint,

transformation (1) maps FCs from a particular Bayes space to the space L2(T ) of square

integrable functions on T , endowed with the usual notion of sum and product by a con-

stant, inner product and norm (see Appendix B for further details).

In the remaining part of this Section, we introduce the mathematical construction for

the field {Zs, s ∈ D} of curves in L2, obtained through the transformation in (1). We

show in Appendix B that it is possible to express the entire construction in the geometry

of the Bayes space, without necessarily invoking a clr-transformation.

3.2. Mathematical construction

We assume that {Zs, s ∈ D} is a stationary Gaussian random field of in L2, with

constant spatial mean m

m(t) = E[Zs(t)], t ∈ T , s ∈ D, (2)

and stationary cross-covariance operator C:

C(s1 − s2)x = E
[(∫

T
(Zs1(τ)−m(τ))x(τ)dτ

)
(Zs2 −m)

]
, x ∈ L2, s1, s2 ∈ D. (3)

For the field {Zs, s ∈ D}, we consider the following truncated expansion over an or-

thonormal functional basis {vk, k ≥ 0} (i.e., a basis of L2 such that
∫
T vj(τ)vk(τ)dτ = 1

if j = k, 0 otherwise)

ZKs = m+
K∑
k=1

ξk(s)vk, (4)
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where ξk(s) =
∫
T (Zs(τ)−m(τ))vk(τ)dτ is the (random) projection of ZKs onto the basis

function vk, and K is a given truncation order. In this setting, each element Zs can be

represented through a K-dimensional vector of coefficients ξ(s) = (ξ1(s), ..., ξK(s))T , with

respect to the truncated basis {vk, 1 ≤ k ≤ K}.

Given a truncation order K, we denote by {ZKs , s ∈ D} the random field whose elements

are given by (4). The distributional properties of this field are determined by m and by

those of the zero-mean multivariate random field {ξ(s), s ∈ D}. It is noted that: (a)

{ξ(s), s ∈ D} is a Gaussian random field in RK by virtue of the Gaussian assumption

on the field {Zs, s ∈ D}; (b) the covariance operator of the field ZKs can be expressed in

terms of the covariograms and cross-covariograms of the multivariate field of coordinates

{ξ(s), s ∈ D} (see Appendix B for details).

Our strategy to obtain either conditional or unconditional simulations of the field

{Zs, s ∈ D} is to resort to approximation (4) for an appropriate order K and then

to perform simulations of the multivariate random field {ξ(s), s ∈ D}.

For any given tolerance, one can determine a truncation order K such that ZKs ap-

proximates Zs with a desired precision (in the mean square sense), uniformly in D (see

Appendix B for details). In principle, setting a large value for parameter K would be

preferable, to obtain improved approximations of Zs through ZKs . However, the value of

K has a dramatic effect on the computational cost which is required for the simulation

because it controls the dimensionality of the field {ξ(s), s ∈ D}. Thus, one needs to

consider a balance between limited computational power and accuracy.

We also note that the quality of a K-th order approximation in (4) varies according

to the basis {vk, k ≥ 1} which is employed. The best K-th order approximation (in the
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mean square sense) is attained when considering as a functional basis the set of the first

K eigenfunctions of C(0), w1, ..., wK (called Functional Principal Components, FPCs).

The latter are obtained by solving the eigen-equations

C(0)wk = λkwk, k = 1, 2, ... (5)

where λ1 > λ2 > ... > λK > ... are the eigenvalues of C(0). The eigenvalue λk

(k = 1, 2, ..., K) then represents the proportion of the total variability of the data which is

captured by projecting the data along direction wk. As in multivariate principal compo-

nent analysis, one can then set the truncation order K as the minimum order that allows

explaining a given amount of the total variability (e.g., 90% or 95%). Otherwise, depend-

ing on the case analyzed, K can be identified as the minimum order at which an elbow

starts to appear in the so-called scree plot, that displays the proportion of variability

explained by the first K eigenfunctions as a function of K.

In most studies, the zero-lag covariance operator is not known a priori. In this case, one

can apply an empirical version of the proposed strategy, i.e., (a) estimate from available

data the zero-lag covariance operator C(0) through the empirical estimator

S x =
1

n

n∑
i=1

[∫
T

(Zsi(τ)− m̂(τ))x(τ)dτ

]
(Zsi − m̂), x ∈ L2, (6)

m̂ = 1
n

∑n
i=1Zsi denoting the sample mean, (b) compute the eigen-pairs (λ̂k, ŵk), k =

1, ..., n−1, of this estimate, and (c) project the observations on the first K eigenfunctions

(or empirical functional principal components, EFPCs, Ramsay and Silverman [2005]) of

S to obtain the representation

Zsi ≈ m̂+
K∑
k=1

ξ̂k(si)ŵk. (7)
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Here ξ̂k(si) =
∫
T (Zsi(τ)− m̂(τ))ŵk(τ)dτ is called score and is the projection of (Zsi− m̂)

along the k-th EFPC ŵk. Note that the (Empirical) FPCA is the infinite-dimensional

counterpart of principal components analysis, which is widely employed in the multivariate

framework to perform optimal dimensionality reduction of a multivariate dataset. In

general, most of the techniques that are commonly employed in the multivariate framework

to identify and interpret principal components can be extended to the functional setting,

as shown by Ramsay and Silverman [2005]. We also remark that EFPCA is equivalent to

perform an empirical functional principal component analysis in the Bayes space, called

Simplicial Functional Principal Component Analysis [SFPCA, see Hron et al., 2016]. In

particular, the back transformation of the EFPCs ŵk via the inverse clr

ek(t) = clr−1(ŵk)(t) =
exp(ŵk(t))∫

T exp(ŵk(τ))dτ
, t ∈ T , k = 1, ..., K, (8)

defines the functional components upon which the PSDs are actually projected in the

Bayes space, and can be employed for interpretation purposes, as detailed in Section 4.

Given the optimal expansion (7), one can then employ multivariate techniques [e.g.,

Chilès and Delfiner , 1999; Mariethoz and Caers , 2015] to perform unconditional or con-

ditional (geostatistical) stochastic simulations of the K-dimensional vectors of scores

ξ̂(si) =
(
ξ̂1(si), ..., ξ̂K(si)

)T
. Here, we illustrate the application of our approach to a field

case by employing the multivariate Gaussian simulator available in the package gstat

[Pebesma, 2004] of software R [R Core Team, 2013]. Conditional simulations of Section

4.4 are based on the sequential Gaussian method of Abrahamsen and Benth [2001]. It is

remarked that any multivariate simulation method could be employed as well, without

substantial modifications to the overall strategy here proposed.
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The (random) realization Z∗s0 is obtained as

Z∗s0 = m̂+
K∑
k=1

ξ̂∗k(s0)ŵk, (9)

ξ̂∗k(s0) denoting the k-th element of a realization of vector ξ̂(s0). The realization Y∗s0 of

the PSD at a target location s0 is finally obtained by mapping back Z∗s0 to Y∗s0 FCs,

through the inverse of the clr transformation

Y∗s0(t) = clr−1(Z∗s0)(t) =
exp(Z∗s0(t))∫

T exp(Z∗s0(τ))dτ
, t ∈ T . (10)

4. Example of Application: Simulation of Particle-Size Densities at the

Lauswiesen test site

We illustrate here our methodology for the simulation of PSDs on the basis of field

data presented in Section 2. As a test bed, we consider the subset of the complete dataset

depicted in Figure 1, formed by 100 PSDs randomly sampled from the set of data belonging

to the second cluster singled out by Menafoglio et al. [2015]. As a first step, we transform

the data via the clr transformation (1) and obtain the curves depicted in Figure 1c. We

thus apply EFPCA to this data set in Subsection 4.1 and obtain the best empirical basis

for the representation of the (transformed) data. In the following Subsections we illustrate

the results of unconditional and conditional simulation at the site.

4.1. Functional Principal Component Analysis of PSDs at the field site

Following the approach based on clr transform described in Section 3, we perform

EFPCA of the dataset depicted in Figure 1c. For the sake of simplicity, we estimate

the mean m via the sample estimator m̂ = 1
n

∑n
i=1Zsi ; more refined estimates may be

employed [e.g., via generalized least squares Menafoglio et al., 2013, 2014]. Figure 2
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depicts the key results of the analysis. For ease of interpretation, in Figure 2e-h we depict

the results back-transformed to PSDs (i.e., to the Bayes space) through equation (8).

Based on the scree plot in Figure 2a and on the scores boxplots in Figure 2b, we set the

truncation order to K = 4. This choice enables us to explain 97% of the total variability of

the dataset. The firstK = 4 EFPCs {ŵ1, .., ŵ4} and their PSD counterparts {ê1, ..., ê4} are

depicted in Figure 2c and d, respectively. Figures 2e-h depict (in the space of densities) the

mean function plus/minus the eigenfunctions multiplied by twice the standard deviation

along the corresponding direction, i.e., m̂ ± 2

√
λ̂kŵk, k = 1, ..., 4. The curves in Figure

2e-h are representative of the patterns characterizing the observations presenting high/low

scores along the corresponding EFPCs, when compared with the mean m̂. In this sense,

the first EFPC, ŵ1 (or SFPC ê1), captures the variability in the position of the mode

and in the mass concentration around it. High scores along EFPC ŵ1 are represented

by the blue curve in Figure 2e, which depicts a PSD with larger mode and higher mass

concentration than the mean, the opposite behavior being depicted as a red curve in

Figure 2e. The second EFPC, ŵ2 (or SFPC ê2), is interpreted in terms of the modality

of the distribution (Figure 2f): high scores along the EFPC ŵ2 are registered for bimodal

densities (blue curve), whereas low scores are associated with unimodal distributions. A

correspondingly strong interpretation for the remaining EFPCs is not emerging as clearly

as for the first two EFPCs.

Figures 3a and b compare the original data and their approximation based on the

truncated expansion (7) with K = 4. Inspection of Figure 3 allows recognizing that the

approximated curves provide a viable reproduction of all the main features of the original

densities.
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Finally, Figure 4 depicts the scatter plot of the scores along the retained functional

components (colors are consistent with the curves in Figure 3).

4.2. Geostatistical modeling of the scores

Once the approximation (7) has been obtained, stochastic simulation of a PSD Ys0

at a target location s0 in D requires the geostatistical characterization of the vectors

of scores ξ̂(s1), ..., ξ̂(sn). Consistent with the assumption of Section 3, we consider

ξ̂(s1), ..., ξ̂(sn) to be a partial observation of a K-dimensional stationary Gaussian random

field {ξ̂(s), s ∈ D}. Following Menafoglio et al. [2015], we consider a geometric anisotropy

at the site, characterized by anisotropy ratio of R = 0.04 between the horizontal and ver-

tical directions. Thus, hereafter we refer all our estimates and simulated quantities to an

isotropic spatial domain obtained by dilation of the actual vertical coordinate by a factor

1/R = 25. In this context, omnidirectional variograms are estimated. Figure 5 depicts

the variograms and cross-variograms estimated from the scores ξ̂(s1), ..., ξ̂(sn). We fit a

valid model to these estimates by employing a Linear Model of Coregionalization [LMC,

e.g., Chilès and Delfiner , 1999] based on an exponential model with nugget. We note that

speed up of computations could be achieved upon employing simplifying assumptions on

the vector of scores, e.g., by modeling the fields {ξ̂k(s), s ∈ D}, k = 1, ..., K, as uncor-

related. This simplifying assumption might be considered as a viable approximation at

the site on the basis of the results depicted in Figure 5. For the sake of completeness, in

our application described in the following Subsections we prefer to consider the complete

LMC estimated as in Figure 5.

4.3. Unconditional simulation of PSDs
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We illustrate an example of unconditional simulation of PSDs by considering a two-

dimensional computational grid D0 ⊂ D which comprises 625 points, at a fixed elevation

of 300 m a.s.l. Based on the LMC estimated in Subsection 4.2, we perform unconditional

Gaussian co-simulation of the K-dimensional vectors ξ̂(s0), s0 ∈ D0. Figure 6 depicts a

selected realization simulated on the grid D0 according to the proposed methodology.

We test the quality of the simulation by generatingNMC = 1000 Monte Carlo replicates

of the field on D0. The CPU time required for the computations based on the R package

gstat, within R version 3.0.2 was approximately 70’55” (CPU time refers to an Intel R©

CoreTM i7-3517U CPU @ 1.90 GHz). We then compute the empirical variogram associated

with each realization as well as directional sample variograms based on the collection of

the NMC generated fields. Figure 7 depicts the generating variogram models together

with the NMC variograms associated with (i) the generated fields and (ii) the sample

variogram calculated along two mutually normal directions for a reference point located

at the center of the simulation domain. Visual inspection of the results suggests that the

generating variogram models are always fairly reproduced in an ensemble sense. Results

of corresponding quality are obtained for other reference points in the system (not shown).

As an additional test, we repeat the same analysis by considering the trace-

semivariogram of the field of (transformed) PSDs, defined in this setting as

γtr(‖si − sj‖) = E
[∫
T

(Zsi(τ)−Zsj(τ))2dτ

]
, si, sj ∈ D. (11)

The trace-semivariogram is a global measure of spatial dependence undertaking, in the

functional context, the same role as its finite-dimensional counterpart [see, e.g., Menafoglio

et al., 2013, 2014, and references therein].
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The quality of the results of this analysis depicted in Figure 8 further corroborates

our conclusions, thus imbuing us with confidence about the potential of the generation

method and results.

4.4. Conditional Simulation of Particle-Size Densities at the Lauswiesen field

site

Here, we illustrate an example of conditional simulation at the field site. For the

purpose of our illustration, we consider a one-dimensional grid D1 ⊂ D of 250 points

taken along borehole B5 at the site. Simulations are here performed conditional to the

set of approximated PSDs obtained in Subsection 4.1.

Figure 9 depicts a selected realization on grid D1, obtained by conditionally simulating

the K-dimensional vectors of scores ξ̂(s0), for s0 in D1, according to the LMC of Figure

5. The CPU time for the simulation based on the R package gstat, within R version

3.0.2 took approximately 21’53” (CPU time refers to an Intel R© CoreTM i7-3517U CPU

@ 1.90 GHz). It can be noted that, by construction, the simulation interpolates the

approximated clr-transform of PSDs (clr-PSDs for short), i.e., ZKs1 , ...,Z
K
sn , rather than

the observed clr-PSDs Zs1 , ...,Zsn . We refer to Appendix C for a strategy to honor the

original PSD data – i.e., those prior to EFPCA.

To assess the quality of the prediction, we perform 1000 simulations on the grid D1.

We notice that, for each s0 ∈ D1, the ensemble average of the simulations at s0, i.e.,∑1000
j=1 Z

(j)
s0 , should approximate the conditional expectation E[ZKs0 |Z

K
s1
, ...,ZKsn ], as simula-

tions Z(j)
s0 , j = 1, ..., 1000, are draws from the (approximated) conditional distribution of

ZKs0 given ZKs1 , ...,Z
K
sn . The conditional expectation E[ZKs0 |Z

K
s1
, ...,ZKsn ] can be estimated
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from available (transformed) smoothed data ZKs1 , ...,Z
K
sn as

Z∗Ks0 = m̂+
K∑
k=1

ξ̂∗k(s0)ŵk (12)

where ξ̂
∗
(s0) = (ξ̂∗1(s0), ..., ξ̂

∗
K(s0))

T is the Simple Cokriging prediction of the score vec-

tor at s0, based on ξ̂
∗
(s1), ..., ξ̂

∗
(sn) [see, e.g., Menafoglio and Petris , 2016]. Note that

the same argument can be formulated directly for the PSDs (i.e., in the Bayes space).

Figure 10a-b displays, in the space of densities, the ensemble average of the 1000 simu-

lated clr-PSDs and the Kriging prediction based on the variography previously estimated,

respectively. From the graphical inspection of Figure 10a-b one can appreciate the high

quality of our simulations. This is also confirmed by Figure 10c, which represents, for

J = 1, ..., K, the minimum, maximum and mean, over s0 ∈ D1, of the squared distance

d(s0; J)2 = ‖
∑J

j=1Z
(j)
s0 − Z∗Ks0 ‖

2 of the partial ensemble averages
∑J

j=1Z
(j)
s0 from the

Simple Kriging prediction Z∗Ks0 .

5. Conclusions and further research

The theoretical and application-oriented contributions of our work lead to the following

key conclusions.

1. A novel strategy has been proposed to address the problem of stochastic simulation

of particle-size curves (PSCs) and associated densities (PSDs). The latter constitute a

set of (infinite-dimensional) functional data and treating them as functional compositions

(i.e., as elements of the Bayes space) is a key feature of the procedure. Our theoretical

framework enables us to (a) formulate a Gaussian model for the infinite-dimensional field

of PSDs; (b) project the available data onto a truncated orthonormal basis to obtain a

finite-dimensional approximation of the (otherwise infinite-dimensional) PSDs via a set
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of multivariate vectors of coefficients; and (c) perform either unconditional or conditional

stochastic simulation, based on the multivariate random field of coefficients. The latter

step can be addressed through the use of any of the available techniques for multivariate

stochastic simulation (including, e.g., sequential Gaussian co-simulation).

2. We study the way one can set the dimension of the approximating problem and the

functional basis onto which these types of functional data can be projected. Our results

suggest that an optimal solution is provided upon relying on a simplicial functional princi-

pal component analysis (SFPCA). In this context, one may need to set the dimensionality

of the approximated problem according to the available computational resources. As such,

key challenges associated with future direct implementation of the approach to field scale

settings are related to improving the computational efficiency required for the simulation

of the spatial field of coefficients, a step which still appears to be quite costly.

3. The stochastic simulation procedure has been demonstrated through an extensive

Monte Carlo study based on a set of particle-size curves collected within a shallow alluvial

heterogeneous aquifer system. The quality of our results appear to be quite satisfactory

in all tested scenarios. While we employ a stationary assumption for the purpose of our

demonstration, it is possible to extend the technique to nonstationary settings of the kind

arising, e.g., when an aquifer is conceptualized as a composite medium, where diverse non-

overlapping materials form its internal architecture. Work in this direction is currently

under way [Menafoglio et al., 2015]. With reference to practical applications, we note

that, in contrast to common approaches relying solely on a few features of PSCs (e.g.,

selected quantiles), our approach yields collections of stochastic realizations of the spatial

distribution of the entire PSC, thus contributing to a key improvement of one’s ability to
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characterize the complete information content embedded in PSC data. In this sense, future

extensions will consider embedding the approach in the context of site characterization

procedures whereas PSCs carry information about the spatial distribution of geomaterials,

as well indications on geochemical and hydraulic attributes of soil samples. Having at our

disposal rigorous and efficient techniques to project estimates of PSCs on a computational

grid via Kriging and/or generate a collection of stochastic realizations of PSCs can also

assist inverse modeling of subsurface flow and chemical transport and/or improve the

effectiveness of data assimilation techniques such as those based, e.g., on Ensemble Kalman

Filter and its variants.

Appendix A: Density functions as elements of a Bayes space

A proper (geo)statistical analysis and simulation of PSDs should account for the pecu-

liar nature of this kind of constrained (compositional) data. The log-ratio approach for

the statistical analysis of multivariate compositions was pioneered by Aitchison [1986];

Pawlowsky-Glahn and Egozcue [2001] and is well established in the statistical literature.

It is based on the key observation that constant-sum objects convey only relative infor-

mation. Indeed, one can readily see that a component (or part) of a compositional vector

does not provide information per se, but relative to the measure of the whole – i.e., the

constant they sum up to – and to the remaining parts of the composition. The Aitchison

geometry then yields a proper setting to perform the statistical analysis, by accounting

for the data constraints via the log-ratio approach.

In this setting, density functions, such as PSDs, can be viewed as Functional Compo-

sitions (FCs), i.e., compositional vectors with infinitely-many parts, that are constrained

to be positive and to integrate to a constant. As such, they inherit the key properties of
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multivariate compositions. Recent works of Egozcue et al. [2006, 2013]; van den Boogaart

et al. [2010] and van den Boogaart et al. [2014] extend the Aitchison geometry to the

infinite-dimensional setting through the theory of Bayes spaces, with the aim of providing

the space of FCs with a geometrical structure consistent with the key properties of compo-

sitions and allowing for their statistical analysis. As in Menafoglio et al. [2014, 2015], the

focus of this work is on continuous FCs defined on the closed interval T = [tmin, tmax]. Two

FCs f, g are considered equivalent if they are proportional, i.e., f = c · g, for c > 0. This

equivalence relation reflects the so-called scale invariance property of FCs upon which the

log-ratio approach is grounded: proportional FCs convey the same set of relative informa-

tion, i.e., the measure of the whole is of no interest in a compositional analysis. Here, we

always consider as representative of an equivalence class of FCs its element integrating to

1.

Call A2(T ) (or A2 for short) the space of (equivalence classes of) FCs on T , whose

logarithms are squared integrable, i.e.,

A2 =

{
f : T → (0,+∞),

∫
T

log2(f(τ))dτ < +∞
}
. (A1)

The space A2 can be equipped with the operations of perturbation ⊕ and powering �

[Egozcue et al., 2006; van den Boogaart et al., 2014]

f ⊕ g = C(fg); α� f = C(fα), f, g ∈ A2, α ∈ R, (A2)

where C(f) =
∫
T f is the called closure operation, and maps a FC in the representative

of its equivalence class that integrates to 1. The neutral elements of perturbation and

powering (i.e., those playing the role of 0 in the sum and 1 in the product) are 0⊕ ≡ 1/|T |,

with |T | the length of T , and 1, respectively. Egozcue et al. [2006] prove that (A2,⊕,�)
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is a vector space, perturbation and powering playing the role of sum and product by a

constant, respectively. In this setting, we denote by f 	 g the difference, in the geometry

of A2, between f and g, namely the perturbation of f with the reciprocal of g, i.e.,

f 	 g = C[f ⊕ 1/g], for f, g in A2.

To endow A2 with a Hilbert space structure, Egozcue et al. [2006] equip the vector space

(A2,⊕,�) with the inner product

〈f, g〉A2 =

∫
T

[log(f(τ)) log(g(τ))]− 1

|T |

∫
T

log(f(τ))dτ

∫
T

log(g(τ))dτ, f, g ∈ A2. (A3)

Egozcue et al. [2006] prove that (A2,⊕,�, 〈·, ·〉A2) is a Hilbert space, which is called Bayes

(Hilbert) space.

The clr-transformation defined in (1) provides an isometric isomorphism (i.e., a bijective

relation preserving distances) between the space A2(T ) and the space L2(T ) of (equiv-

alence classes of) square-integrable functions on T . From the computational viewpoint,

the use of clr-transforms is convenient, as it allows mapping problems in A2 into problems

in L2, where most methods of FDA can be applied. Further, one has

clr(f ⊕ g) = clr(f) + clr(g), clr(α� f) = α · clr(f), 〈f, g〉A2 = 〈clr(f), clr(g)〉L2 . (A4)

The Hilbert space geometry of the space (A2,⊕,�, 〈·, ·〉A2) together with the properties

of the clr-transformation allows formulating the method devised in Section 3 equivalently

in the Bayes (Hilbert) space geometry.

Appendix B: A mathematical framework in Bayes spaces for the stochastic

simulation of PSDs

For any s in D, we denote by µs the Fréchet mean of Ys, i.e. [Fréchet , 1948]

µs = E[Ys] = arginf
Y∈A2(T )

E[‖Ys 	 Y‖2A2 ]. (B1)
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We assume {Ys, s ∈ D} to be a stationary Gaussian random field in A2 [Bogachev , 1998;

Bosq , 2000]. This implies that the mean function µs = µ is spatially constant. We indicate

with C the covariance function of the field {Ys, s ∈ D}, that maps any pair of locations

s1, s2 in D into the cross-covariance operator C(s1− s2) between the elements of the field

at such locations, i.e.,

C(s1 − s2)x = E[〈Ys1 	 µ, x〉A2 � (Ys2 	 µ)], x ∈ A2. (B2)

We consider for each s ∈ D the expansion

Ys = µ⊕
+∞⊕
k=1

ξk(s)� uk, (B3)

where {uk, k ≥ 1} is a given orthonormal basis of A2, and ξk(s) = 〈Ys 	 µ, uk〉A2 . The

basis {uk, k ≥ 1} and the expansion (B3) are well defined by virtue of the Hilbert space

structure of the space A2. Note that random coefficients ξk(s), k = 1, ..., K coincide with

those in (4), provided that vk = clr(uk), due to the properties of the clr transformation.

If we could jointly simulate random realizations of all the real (random) coefficients

{ξk(s0)}k≥1, we would obtain a random realization of Ys0 through (B3). However, this

is practically unaffordable because the effort required to simulate a multivariate random

field increases with its dimensionality. We circumvent this issue by considering, for s in

D, the sequence of truncated expansions (equivalent to (4))

YKs = µ⊕
K⊕
k=1

ξk(s)� uk, K ≥ 1. (B4)

The element YKs associated with a truncation order K yields an approximation of Ys such

that

E[‖YKs 	 Ys‖2A2 ] =
+∞∑

k=K+1

E[|ξk(s)|2] =
+∞∑

k=K+1

〈C(0)uk, uk〉, (B5)
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which approaches 0 as K increases to infinity. Note that the term at the right hand side

of (B5) does not depend on the spatial index s in D. Thus, for any given tolerance, one

can determine a truncation order K such that YKs approximates Ys (in the mean square

sense) with a desired precision, uniformly in D.

Given a truncation order K, a random field {YKs , s ∈ D} in A2 whose elements are

given by (B4) can be defined. The distributional properties of such a field are deter-

mined by µ and by those of the zero-mean multivariate random field {ξ(s), s ∈ D},

ξ(s) indicating the K-dimensional coefficient vector of the basis expansion (B4) in s, i.e.,

ξ(s) = (ξ1(s), ..., ξK(s))T . Note that both YKs and ξ(s) are Gaussian random fields (in

A2 and RK , respectively) by virtue of the Gaussian assumption on the field {Ys, s ∈ D}.

Additionally, the element YKs has mean µKs = µ by virtue of (B4), and the following

matrix representation of the covariance function CK of the field {YKs , s ∈ D} holds

CK(h)x =
K⊕
j=1

K⊕
k=1

(Cjkxj)� uk, (B6)

where xj = 〈x, uj〉A2 and Cjk = 〈C(h)uj, uk〉A2 = E[ξj(s)ξk(s)].

The quality of a K-th order approximation of the kind (B4) varies according to the

basis {uk, k ≥ 1} employed. Given K ≥ 1, the mean square error of approximating Ys

through the projection (B4) over the first K elements of the basis {uk, k ≥ 1} is bounded

below by [see, e.g., Horváth and Kokoszka, 2012, Theorem 3.2]

E[‖YKs 	 Ys‖2A2 ] ≥
+∞∑

k=K+1

λk, (B7)

where (λk, ek), k ≥ 1, represent the eigenpairs of C(0), with eigenvalues ordered in decreas-

ing order λ1 ≥ λ2 ≥ ... . Given K, the basis should be chosen as to attain a mean square

error of approximation as close as possible to the lower bound (B7). It can be proved
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[e.g., Horváth and Kokoszka, 2012, Theorem 3.2] that the bound in (B7) is reached when

considering u1, ..., uK to be precisely the set of the first K eigenfunctions of C(0), i.e.,

e1, ..., eK .

If the zero-lag covariance operator is not known a priori, one can apply the Simplicial

Functional Principal Component Analysis (SFPCA) of Hron et al. [2016] to (a) estimate

from available data the zero-lag covariance operator C(0) through the empirical estimator

Sx =
1

n

n⊕
i=1

〈Ysi 	 µ̂, x〉A2(Ysi 	 µ̂), x ∈ A2, (B8)

µ̂ = 1
n

⊕n
i=1 Ysi denoting the sample mean, (b) compute the eigen-pairs (λ̂k, êk), k =

1, ..., n−1, of this estimate, and (c) project the observations on the first K eigenfunctions

(or simplicial functional principal components, SFPCs) of S to obtain the representation

Ysi ≈ µ̂⊕
K⊕
k=1

ξ̂k(si)� êk, (B9)

which is the equivalent, in the Bayes space A2, of (7). The computation of the SFPCs and

expansion (B9) can rely on the centered log-ratio (clr) transformation, as shown in Section

3 and Appendix A. Note that the basis coefficients ξ̂k(s) appearing in (B9) coincide with

those in (7), as 〈YKs 	 µ̂, êk〉A2 = 〈ZKs − m̂, ŵk〉L2 , i.e., the scores computed in L2 are the

same as those in A2.

Appendix C: Reproducing the observations in conditional simulations

By construction, the conditional simulations obtained through the projection strategy

of Section 3 are based on the approximated PSDs YKs1 , ...,Y
K
sn , YKsi = clr−1(Zsi), rather

than the observed PSDs Ys1 , ...,Ysn . Here, we illustrate a strategy to obtain simulations

that honor the actual observations at locations where these are collected.
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We call YKs0 the simulated PSD at a target location s0 ∈ D, and denote by εKsi = Ysi 	

YKsi , i = 1, ..., n, the residuals of SFPCA. These residuals are neglected when analyzing

and simulating PSDs via approximation (B9) (or (7)). One can embed these in the

(conditional) simulation procedure by interpolating them through an appropriate notion

of Kriging, and then sum the result to the simulated realization YKs0 . In this Appendix,

we introduce an extension of the method illustrated in Section 3 and Appendix B, by

using the notation of the Bayes (Hilbert) space A2. Note that one could work in L2, by

replacing the operations in A2 (⊕,�), with those in L2 (+, ·), and working with the Z

instead of the Y variables.

Menafoglio et al. [2014] introduce the notion of Functional Compositional Kriging

(FCK), that allows obtaining the best linear unbiased prediction in the sense of linear

combination of the data in A2. We call ε∗Ks0 the FCK prediction of the residual at s0. This

prediction is obtained as the linear combination ε∗Ks0 =
⊕n

i=1 ϑ
∗
i � εKsi of the residuals εKsi ,

i = 1, ..., n, whose weights minimize the prediction mean square error (MSE). Note that

no unbiasedness constraint needs to be imposed, as the residuals εKsi are zero mean by

construction. Taking advantage of the work of Menafoglio et al. [2013, 2014], it is possible

to show that minimization of the MSE is tantamount to solving the FCK system

Γεϑ = γε0, (C1)

where Γεi,j = E[‖εKsi	ε
K
sj
‖2A2 ], i, j = 1, ..., n, ϑ = (ϑ1, ..., ϑn)T ∈ Rn, (γ0)i = E[‖εKsi	ε

K
s0
‖2A2 ],

i = 1, ..., n. Note that (C1) is a Simple Kriging system, consistent with the observation

that residuals are zero-mean.

Having computed the prediction ε∗Ks0 , one can finally obtain the desired simulation as

YKs0 ⊕ ε
∗K
s0

.
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Figure 1. Smoothed conditional (a) PSCs (b) PSDs (c) and centered log-ratio transform

of PSD used to perform computations (colored curves are associated with the sub-sample

employed for our demonstration); (d) sketch of the sampling scheme at the site and

smoothed conditional PSDs along boreholes B5, F2, and F5. In panel (d), x coordinates

range in [3508459, 3508712], y coordinates in [5377622, 5377779], z coordinates in [300.331,

308.924].
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Figure 2. Results of EFPCA on the dataset of PSDs. Panels (d) to (g): the solid black

curve indicates the mean function, the red and blue curves respectively indicate the mean

plus or minus the EFPCs multiplied by the square root of the corresponding eigenvalue.
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Figure 3. Original smoothed dataset and approximated PSDs obtained via (7).
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Figure 4. Scores along the estimated EFPCs, ŵ1, ..., ŵ4. Colors of the symbols are

consistent with those of the curves in Figure 3.
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Figure 5. Omnidirectional variogram and cross-variograms estimated from the scores

ξ̂s1 , ..., ξ̂sn .
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Figure 6. An example of unconditional realization of spatially dependent PSDs (left)

and the simulation grid (right).

D R A F T June 21, 2016, 12:38pm D R A F T



MENAFOGLIO ET AL.: SIMULATION OF PARTICLE-SIZE CURVES X - 43

0 40 80 120

−0.15
−0.10
−0.05

0.00
0.05
0.10
0.15
0.20

distance [m]

se
m

iv
ar

ia
nc

e

0 40 80 120

−0.10
−0.05

0.00
0.05
0.10
0.15

distance [m]

se
m

iv
ar

ia
nc

e

0 40 80 120

−0.10

−0.05

0.00

0.05

0.10

distance [m]

se
m

iv
ar

ia
nc

e

0 40 80 120

0.00

0.05

0.10

0.15

distance [m]

se
m

iv
ar

ia
nc

e

0 40 80 120

−0.3
−0.2
−0.1

0.0
0.1
0.2

distance [m]

se
m

iv
ar

ia
nc

e

0 40 80 120

−0.15
−0.10
−0.05

0.00
0.05
0.10
0.15
0.20

distance [m]

se
m

iv
ar

ia
nc

e

0 40 80 120

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35

distance [m]

se
m

iv
ar

ia
nc

e

0 40 80 120

−0.3
−0.2
−0.1

0.0
0.1
0.2
0.3

distance [m]

se
m

iv
ar

ia
nc

e

0 40 80 120

0.0
0.1
0.2
0.3
0.4
0.5

distance [m]

se
m

iv
ar

ia
nc

e

0 40 80 120

0.0

0.5

1.0

1.5

distance [m]

se
m

iv
ar

ia
nc

e

Figure 7. Generating LMC (blue lines), estimated omnidirectional variograms and

cross-variogram in 1000 Monte Carlo simulations (grey curves), average over 1000 simu-

lation of the variogram estimated at the central point in direction x (red symbols) and y

(green symbols).
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Figure 8. Generating model (blue curves), estimated (omnidirectional) trace-

semivariograms in 1000 simulations (grey curves), average over the collection of 1000

simulation of the (omnidirectional) trace-semivariogram estimated at the central point in

direction x (red symbols) and y (green symbols).
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Figure 9. Conditional realization of PSDs at borehole B5 of the investigated field

site. Vertical coordinates correspond to the sample/target locations. Elevation is given

in meters above sea level (m a.s.l.). Simulated PSDs are plotted as colored curves, data

as grey curves.
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Figure 10. Assessment of the quality of conditional simulations at borehole B5 of

Lauswiesen field site. (a) Average of 1000 conditional simulations of PSDs; (b) Sim-

ple Kriging prediction of PSDs; (c) squared distance between partial ensemble averages∑J
j=1Z

(j)
s0 and Simple Kriging prediction Z∗Ks0 . In panels (a) and (b), vertical coordinates

correspond to the sample/target locations. Elevation is given in m a.s.l.. Simulated PSDs

are plotted as colored curves, data as grey curves.
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