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Incorporation of momentum gradients produced due to inertial motion of the lid

along with the presence of temperature differences in the configuration make the

physical problem more significant. The joint variation of momentum and thermal

diffusion in diversified natural liquids is recognized as mixed convection. Valuable

attentionhas been received by such aphenomenon in different areas of science and

technology such as in wind current–based solar receivers, electronic instruments,

control of emergency shutdown in reactors, thermal exchangers, oceanic currents,

control of atmospheric pollution, and so on. So, the main focus is to contemplate

hydrothermal characteristics of a power-law fluid contained in a square cavity with

themovement of the upper lid and being thermally adiabatic. The other extremities

are considered to be at rest, and the base wall is prescribed with uniform/non-

uniform temperature distributions. The governing formulation of the problem is

handled by executing a finite element approach. Hybrid meshing is performed for

domain discretization, and weak variational formulation is utilized for formulation

discretization. Second-degree polynomials are employed as the interpolation

function, providing information about velocity and temperature distributions at

boundary and intermediate nodes. The system of finalized non-linear equations

is resolved by using the Paradiso software. The results for velocity and temperature

distributions are attained comparatively for uniformly and non-uniformly heated

profiles. The kinetic energy and average Nusselt number are also computed against

flowconcerning variables. From theattainedgraphical and tabular data, it is deduced

that by increasing the Reynolds number, inertial forces dominate over buoyancy

forces and the effect of lid movement is prominent on flow characteristics. It is also

inferred that for the shear thickening case and for all values of the Reynolds number,

the average Nusselt number shows a constant behavior.
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1 Introduction

Buoyancy- and lid-driven flows inside confined

geometries have appealed the promising intent of

researchers. Representative fields of interest include flash

drying, liquid fuels combustion, food processing plants,

evaporation of cyclones, crystal growth, material separation

processes, and so on. In recent years, modern technologies

demand for combined (buoyancy- and lid-driven) diffusions

in different procedures. Considerable work has been

published on natural convection describing the role of

buoyancy forces. Unfortunately, the combination of free

and forced convection seldom arise in practice. Some

already published work from where the motivation for the

current effort has been taken is described here. Like, Lyican

et al. [1] performed numerical computations to interpret

hydrothermal characteristics of the natural convective flow

in a trapezoidal enclosure by considering adiabatic

extremities. Roy and Basak [2] made an outstanding effort

to examine heat transfer generated by the thermally driven

viscous liquid with a prescription of uniform heat

distribution. By measuring the influence of oscillation of

the flow and temperature propagation, the dual convective

flow of a viscous liquid with wavy boundaries was manifested

by Amiri et al. [3]. The impression of permeability on natural

convection generated in trapezium along with the production

of thermal convective potential with cold and heat parallel

boundaries was explicated by Varol et al. [4, 5]. Basak et al. [6]

explained flow attributes of the fluid along with heat transfer

in different zones of the enclosure by discussing the impact of

the flow controlling convection Rayleigh number on

momentum and temperature distributions via streamlines

FIGURE 1
Visualization of the enclosure with boundary constraints.

TABLE 1 Mesh statistics at different refinement levels.

Refinement level #E DOF Triangle Quad Edge element

Extremely coarse 192 580 128 64 32

Extra coarse 342 976 246 96 48

Coarser 538 1440 418 120 60

Coarse 1002 2560 818 184 92

Normal 1492 3684 1260 232 116

Fine 2516 5900 2228 288 144

Finer 6636 15124 6020 616 308

Extra fine 16952 37508 15752 1200 600

Extremely fine 26212 56028 25012 1200 600
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and isothermal contours, respectively. An innovative

approach known as the heat line approach was introduced

by Basak [7] to measure free convection in a trapezoidal

enclosure. The heat transmission mechanism produced by

uniform heat sources at boundaries by implementing the

computational approach was addressed by Oztop et al. [8].

Impression of the transverse magnetic field on heat transport

in a naturally convective flow of the viscous liquid was

engrossed by Mahmoodi and Pour [9]. Convection in the

isothermal flow of the viscous liquid saturated in the Darcy

medium was accounted by Rehman et al. [10]. Jagadeesha

et al. [11, 12] explored the influence of tilt angle formed

between sloping sides of the parallelogram cavity on

convective transport by measuring flow patterns and

thermal fields. They incorporated Darcy’s law to depict the

impact of permeability on flow and thermal characteristics.

Sankar and his coresearchers [13–16] adumbrated convection

in the annular region by assuming different physical

constraints and by employing a magnetic field and

permeability aspects.

Polymeric natured fluids which exhibit both shear thinning

and thickening attributes possess marvelous real-world

applications. The characterization of such materials is

identified by a variation in apparent viscosity against the

magnitude of shearing rate. Intuitively, it is verified that

coupling of momentum and thermal fields of such liquids in

FIGURE 2
Domain discretization at the coarser level.

FIGURE 3
Representation of steps in the computational scheme.
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which viscosity changes point-wise has a more influential role

in measuring heat transfer characteristics. Overwhelming

fundamental significance of the described situations is found

in reduction in heat loss from storage tanks, production of

crude oil, reheating of food items, cooling of electronic

components, melting and heating of polymeric pallets, and

so forth. For a comprehensive mathematical disquisition of

the mentioned materials, an outstanding mathematical model

renowned as the power-law model is formulated. This model

predicts the behavior of polymeric materials at zero and infinite

stresses and describes the response of deformation rate. A

number of studies pertaining to the power-law material in

confined geometries with natural convection have been

discussed. For instance, the impact of the Prandtl number

and model parameter on thermal diffusion in the fluid along

with a change in heat flux was presented by Hartnett [17].

Khezzar et al. [18] demonstrated characteristics of the power-

law fluid with impersistent density by utilizing the Boussinesq

approximation in a 2D cavity against the Rayleigh number.

Sairamu and Chhabra [19] considered the quiescent power-law

fluid embedded in a laminar flow enclosed in an inclined

enclosure along with temperature-dependent density over a

range of kinematic conditions. Mishra and Chhabra [20]

executed analysis on a laminar convective flow of the power-

law liquid with differentially heated horizontal cylinders

aligned in the tandem direction. Some recent developments

on non-Newtonian fluids with multiple physical aspects and in

different flow generating domains are collected in Refs. [21–25].

Based on thorough review about the related literature, it

is explored that studies about the convectively driven flow in

FIGURE 4
Comparison of results with the outcome published by Basak et al. [6].
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different configurations are abundantly available. But as far

as the analysis of joint forced and free convection is

concerned, especially in case of non-viscous fluid has not

been done yet. So, to fill this gap, the present work is

communicated and two additional thermal distributions

are entertained in a comparative manner. So, to achieve

this task, governing equations are structured in view of

PDEs, and afterward, a finite element scheme is opted to

simulate results and interpret the influence of the flow

concerning on associated profiles. To the best of the

authors’ knowledge, they have hoped that this work will

fill the mentioned gap.

2 Mathematical modeling

The schematic representation of domain characterizing

hydrothermal attributes of the power-law fluid enclosed in a

square cavity is displayed in Figure 1. Temperature-dependent

density is assumed by incorporating the Boussinesq

approximation. Shear thinning and thickening aspects of the

power-law fluid against different magnitudes of the model

parameter are investigated for uniformly and non-uniformly

distributed thermal distribution.

The governing equations describing the tensorial

representation of the power law are as follows. [6]:

FIGURE 5
Influence of Gr on streamlines for the uniform heated case: (A) Gr � 103, (B) Gr � 104, and (C) Gr � 105.
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zu

zx
+ zv

zy
� 0 (1)

uux + vuy � −1
ρ
px + τxx( )x + τyx( )[ ] (2)

uvx + vvy � −1
ρ
py + τxy( )

x
+ τyy( )

y
[ ] + gβ T − TC( ) (3)

τ ij � 2μDij � 2μ ui( )xj + uj( )
xi

( ) (4)

μ � m 2 ux( )2 + vy( )2( ) + vx + uy( )2[ ] n−1( )
2 (5)

ρCp uTx + vTy( ) � k Txx + Tyy( ) (6)

Associated boundary constraints are as follows:

u x, L( ) � 1 (7)

at the top horizontal wall; u(x, 0) � u(0, y) � u(L, y) � 0 �
v(x, 0) � v(x, L) � v(0, Y) � v(L, y) at other walls; T(x, 0) � 1

or T(x, 0) � sin(πxL ) at the bottom horizontal wall;

T 0, y( ) � 0 � T L, y( ) (8)

at the side vertical walls; andTy(x, L) � 0 at the top horizontal wall.

The defined equations in Eqs. 2–4 are dimensionalized by the

mentioned transformation

FIGURE 6
Influence of Gr on temperature distribution for the uniform heating case: (A) Gr � 103, (B) Gr � 104, and (C) Gr � 105.
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X* � x

L
, Y* � y

L
, u* � u

U
, v* � v

U
, θ* � T − TC

Th − Tc
, and P* � P

ρU2

(9)

μ � U

L
( )n−1

μ*.

Eqs. 1–10 are reduced to non-dimensionalized

representation

uX*
* + vY*

* � 0 (10)

u*uX*
* + v*uY*

* � −PX*
* + 1

Re
2

z

zX*
μ*
m
uX*
*( ) + z

zY*
μ*
m

uY*
* + vX*

*( ){ }[ ]
(11)

u*vX*
* + v*vY*

* � −PY*
* + 1

Re
2

z

zY*
μ*
m

vY*
*( ){ } + z

zX*
μ* uY*

* + vX*
*( ){ }[ ]

+ Gr

Re2
θ*

(12)
u*θX*

* + v*θY*
* � 1

PrRe
θX*X*
* + θY*Y*

*( ). (13)

Boundary constraints in a dimensionless formare given as follows:

u*(X*, 1) � 1 at the top horizontal wall;

u* X*, 0( ) � u* 0, Y*( ) � u* 1, Y*( ) � 0 � v* X*, 0( ) � v* X*, 1( )
� v* 0, Y*( ) � v* 1, Y*( )

(14)

FIGURE 7
Influence of Re on streamlines for the uniform heating case: (A) Re � 1.000, (B) Re � 10.00, and (C) Re � 100.0.
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at all the solid walls; θ*(X*, 0) � 1 or θ*(X*, 0) � sin(πX*) at the
bottom horizontal wall;

θ* 0, Y*( ) � 0 � θ* 1, Y*( ) (15)
at the side vertical walls; And θY** (Y*, 1) � 0 at the top

horizontal wall.

The involved physical variables in the analysis are

represented as follows:

Re � ULid L

]
, Gr � gβ Th − Tc( )L3

]2
and Pr � ]

α
. (16)

Global quantity of interest named as the Nusselt number is

also computed as follows:

Nu � zθ

zn

∣∣∣∣∣∣∣wallandNuavg � 1
L
∫L

0
NudS. (17)

3 Computational procedure

Analytical methods are unable to solve the resultant model

differential equations attained for complex engineering

problems, especially in view of the mixed convection problem

discussed in the current study that contains non-linear

complexity in both momentum and temperature equations. In

addition, singularity is also generated at the boundary of the

domain. So, execution of computational approaches such as finite

FIGURE 8
Influence of Re on the temperature profile for the uniform heating case: (A) Re � 1.000, (B) Re � 10.00, and (C) Re � 100.0.
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volume, finite element, and finite difference are considered to be

the fittest to attain the approximate solution [26–29]. Among

this, the most flexible and rapid technique is the finite element

scheme. To resolve the complexly structured problem first,

discretization of the domain is performed by executing hp-

refinement. Since the current problem is in 2D, the completed

domain is distributed in the form triangular and rectangular

elements as shown in Figure 2 and Table 1. Afterward, by using

the Lagrange interpolation formula shape function, defining the

behavior of field variables at each node is obliged. Here, the

quadratic shape function consisting of piece-wise continuous

second-degree polynomial for velocity and temperature is opted,

whereas pressure is approximated by linear polynomial. After the

selection of suitable shape functions, discretization of the

governing differential system by employing a weak

formulation variational procedure is capitalized and element

level equations are formed. With the help of the decided

shape function, the construction of basic functions is

controlled. Afterward, the associated boundary conditions are

loaded in the governing equations and the system of non-linear

equations is developed. After that, Newton’s approach is used to

linearize non-linearized expressions, and the resulting linear

system of equations is solved directly using an elimination-

based method with a unique rearrangement of unknowns. The

calculations scheme is shown in Figure 3.

4 Results and interpretation

The effect of flow controlling parameters on velocity and

temperature distributions in view of the streamline and

isotherm representation is discussed in this portion. Since,

FIGURE 9
Influence of Pr on streamlines for the uniform heating case: (A) Pr � 0.015, (B) Pr � 0.7, and (C) Pr � 10.
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in the present problem, a mixed convection is assumed, which

is produced by the motion of the upper wall and uniformly/

non-uniformly heated base wall, it is analyzed against the

Reynolds number (Ra) and Grashof number. In addition,

different cases of the power-law index (n) are taken into

account which represents shear thinning and thickening

properties of the fluid.

4.1 Program validation and comparison
test

To assure the accuracy and credibility of the implemented

computation scheme, it is validated with results published by

Basak et al. [6] by restricting the present problem to a

Newtonian case for n = 1 as shown in Figure 4. Here,

streamlines and isotherms are generated by fixing

Pr � 0.7, Re � 1.0, and Gr � 103. From the displayed

sketches, a complete match of results is seen, which develops

the trust of readers to consider the present study as a reference.

The effectiveness of the Grashof number (Gr) on

momentum distribution is given by considering vast range

varying from 103 to 105 and providing other parameters with

fixed values such as Pr � 0.015, Re � 1.0, and n � 0.8. From

the illustrated sketch (in Figures 5A–C), it is noticed that due

to the increase in Gr, velocity change in the domain is

dependent on buoyancy forces. In addition, Re is assumed

to be 1 which shows no influence of inertial forces. It is also

observed that at Gr = 103 and 104, two primary vortices are

formed in which fluids are moving in clockwise and anti-clock

FIGURE 10
Influence of Pr on temperature distribution for the uniform heating case: (A) Pr � 0.015, (B) Pr � 0.700, and (C) Pr � 10.00.
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wise directions. However, at Gr = 105, the secondary vortex

disappears and the fluid starts moving in a single circular

vortex. The reason behind this impact is that by increasing Gr,

viscosity of the fluid decreases due to which the movement of

particles raises, which is evident from the mathematical

relation, that is, Gr � gβ(Th−Tc)L3
]2 .

Change in the temperature profile versus the Grashof

number (Gr) in view of isothermal patterns is addressed in

Figures 6A–C. During the simulations, Gr is varied between 103

and 105 and other concerning parameters are fixed at Pr �
0.015, Re � 1.000, and n � 0.8. An important direction to

observe is that in the case of uniform heating, thermal

singularity is generated at the left and right most corners of

the cavity due to the provision of a uniform heat source.

Symmetric aptitude of the isotherm is adhered to in the case

of Gr = 103 and 104, whereas the deviation in the pattern is

attained at Gr = 105 in the middle line. The reason behind this

behavior is that at Gr = 105, the production of the temperature

gradient exemplifies due to which the transmission of heat from

the hotter zone to the colder one increases and the symmetricity

is disturbed.

The dominating role of the Reynolds number (Re) in

controlling lid-driven forces and in managing the

phenomenon of mixed convection is explicated in Figures

7A–C. In this sketch, streamlines are represented against

variation in (Re) from 1 to 100 and with fixation of Pr �
0.015 and Gr � 103. It is seen that at Re = 1, the impact of

natural convection dominates over forced convection due to

FIGURE 11
Influence of Gr on streamlines for the non-uniform heating case: (A) Gr � 103, (B) Gr � 104, and (C) Gr � 105.
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which circulations are generated in the flow domain. But by

increasing the magnitude of Re from 10 to 100, the effectiveness

of inertial forces is dominated due to which the movement of the

fluid near the upper lid is generated. Maximum velocity of the

fluid is attained near the upper wall due to the movement of the

wall and only primary vortex are generated. In the case of Re =

100, the role of inertial forces dominates over buoyancy forces

due to which again a similar trend is observed as in the case of

Re = 10.

The description of the thermal distribution against the

Reynolds number (Re) with Pr � 0.015 and Gr � 103 is

evaluated in Figure 8 for uniform heating. No obvious

change in isotherms is depicted at each magnitude of Re.

This justifies the fact that for the production of convection

in the domain, the role of the Prandtl number cannot be

neglected.

The effect of incrementing magnitude of the Prandtl

number (Pr) on velocity distribution is seen in Figures

9A–C. Here, Gr � 103, Re � 1, and n = 0.8 are managed and

the situation of uniform heating is accounted. Since the Prandtl

number (Pr) shows the significant ratio of momentum to

thermal diffusivities and plays a vital role in diffusion

FIGURE 12
Influence of Gr on temperature with non-uniform heating: (A) Gr � 103, (B) Gr � 104, and (C) Gr � 105.
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control, this figure is displayed. From the exhibited graphs, it is

observed that vortices squeeze at Pr = 10 due to the huge

production of momentum diffusivity.

Discussion about the impact of Pr on the thermal profile

for uniform heat distribution through isothermal plots is

addressed in Figures 10A–C. It is revealed that

symmetricity of lines is immensely disturbed when the

Prandtl number increases from 0.015 to 10. At lower

magnitude of Pr, that is, at 0.015, the thermal diffusion is

maximum and heat generated from the bottom wall due to

uniform heat supply. In addition, it is seen that the magnitude

of heat transferred in the case of Pr = 10 is more due to uplift

in momentum diffusivity, due to which the kinetic energy of

particles increases. Attachment of isotherms with boundaries

is seen at a larger magnitude of Pr.

The velocity distribution in assistance with the streamline

pattern against the Grashof number (Gr) is probed in Figures

11A–C. A wide range of Gr is selected from 103 to 105, Re is

fixed at 1, and the power-law index (n) is kept constant at 0.5.

Unlike the variation in the velocity profile against Gr in the

FIGURE 13
Influence of Re on streamlines for the non-uniform heating case: (A) Re � 1, (B) Re � 10, and (C) Re � 100.
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case of uniform heating, here, the behavior is quite different.

Here, it is revealed that primary and secondary vortices

remain intact and move toward the upper wall. It shows

that even at Re = 1, the role of inertial forces is also

present, which seems to be neglected in the case of uniform

heating. It adheres that buoyancy forces are still dominant

over inertial forces with an increase in Gr. This fact is proved

by the reason that an increment in Gr causes the viscosity to

reduce and less resistance will be offered to the molecules.

The temperature distribution againstGr by employing a non-

uniform heating situation is evaluated in Figures 12A–C for Re =

1, n = 0.8, and Pr = 0.015. It is found that isotherm intensity is

indicated atGr = 105, due to the production of thermal convective

potential in different zones of the enclosure, which is justified by

the deviation in isotherms displayed in the figure. It is also

manifested that thermal singularity is removed in the case of

non-uniform heating, which is produced in the situation of

uniform heating. The perfect parabolic behavior of isotherms

is attained at Gr � 103 and 104, which discloses that heat

propagated in a parabolic form from the base wall to the

upper boundary.

The deviation in velocity distribution against the Reynolds

number (Re) is manipulated in Figures 13A–C. During the

evaluation of this sketch, three different magnitudes of Re are

taken, which shows the dominance of different regimes. At Re =

1, the forced and free convection balances each other’s effects and

FIGURE 14
Influence of Re on the temperature profile for the non-uniform heating case. (A) Re � 1, (B) Re � 10, (C) Re � 100.

Frontiers in Physics frontiersin.org14

Bilal et al. 10.3389/fphy.2022.1079641

R
ET

R
A

C
T

ED

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.1079641


no one dominates the other, whereas at Re = 10, the impact of

natural convection dominates over forced convection, but in the

case of Re = 100, forced convection effects on flow characteristics

are more than the free convection regime. From the plots, it is

seen that maximum velocity in the flow is attained near the

moved wall and zero velocity is found where no slip conditions

are applied.

No significant change in the temperature distribution

evidenced against the Reynolds number (Re) in spite of

providing non-uniform heating at the base wall is

illustrated in Figures 14A–C. This behavior is similar to

the case of uniform heating. This figure shows that

consideration of high Pr in the case of temperature

diffusion is more valuable. Since Pr is taken as

0.015 which is much lower in magnitude, no change is

observed.

Streamline patterns showing change in the momentum

profile against Pr is elaborated in Figures 15A–C. It is seen

that at Pr = 0.015 and 7, two vortices are formed, whereas at Pr =

10, the left primary vortex squeezes and merges into the other. It

is seen that maximum velocity is attained at a lower magnitude of

Pr because by increasing Pr, viscosity of the fluid increases, due to

which viscous force causes the fluid particles to move with less

velocity.

Transmission of heat in an enclosure by providing non-

uniform heating at the base wall was divulged against Pr in

FIGURE 15
Influence of Pr on streamlines for the non-uniform heating case: (A) Pr � 0.015, (B) Pr � 0.7, and (C) Pr � 10.
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Figures 16A–C. An increment in Pr tends to produce more

heat flux in the domain as an outcome of temperature

profile upsurge. In addition, it is because of the reason that

by increasing Pr, momentum diffusivity rises due to which

the average kinetic energy mounts and causes a positive

effect on temperature. It is worthwhile to mention that in

the case of non-uniform heating, thermal discontinuity is

removed.

The measurement of the heat flux coefficient against the

Reynolds number (Re) for n = 0.8, 1, and 1.2 and Pr = 0.015 and

10 is discussed in Figure 17. It is seen that for all magnitudes of

Re and for n = 1.2, no significant change in heat flux is attained,

whereas at Re > 10 and for n = 1, elevation in heat flux is found.

The reason behind this behavior is that by increasing Re,

viscosity of the fluid decreases due to which the kinetic

energy of molecules lifts and the associated heat energy also

elevates.

Plotting of the average Nusselt number against Re for n <
1 and n > 1 along with fixation of Pr = 0.015 and 10 is

displayed in Figure 18. It is observed that the heat flux

coefficient in the case of n = 1 is more than that for shear

thickening situation (n > 1). In addition, it is seen that for

all values of n, the average Nusselt number intensifies

against Re.

FIGURE 16
Influence of Pr on temperature distribution for the non-uniform heating case: (A) Pr � 0.015, (B) Pr � 0.700, and (C) Pr � 10.00.
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Variation in the kinetic energy along the vertical cutline

against Re is shown in Figure 19 for each case of n. When we

increase the value of (Re) from 1 to 100, we can observe thatK.E

increases abruptly. It is due to the fact that an increment in the

Reynolds number (Re) causes the viscosity to reduce, and as a

result, the energy due to the motion of fluid increases gradually.

FIGURE 17
Variation in the local Nusselt number (NuLocal) against the Reynolds number (Re).

FIGURE 18
Variation in the average Nusselt number (NuAvg) against the Reynolds number (Re).
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5 Conclusion

In this article, the authors have dedicated their efforts to

investigate hydrothermal attributes of the power-law liquid in a

square enclosure by incorporating the aspects of inertial and

buoyancy forces. The formulation of the problem conceding the

aspects of mixed convection in the non-Newtonian model is

attained in the form of complex PDEs. Finite element

computations are performed to resolve the coupled system of

equations. The results are drawn in a graphical manner to

disclose the impact of flow concerning parameters. Some key

findings are itemized as follows:

1) Thermal singularity is removed in the case of non-uniform

heating and retained in uniform heating.

2) At Re = 1, the inertial forces and buoyancy forces balance each

other, whereas in the case of Re = 100, forced convection

dominates over natural convection.

3) The local and global heat flux coefficient increases against

uplift in Re.

4) The kinetic energy of the fluid depreciated against Re.

5) At a low magnitude of Pr, no significant effect of Re on the

temperature distribution is seen in both cases.

6) In the case of a high Prandtl number (Pr), the movement of

the fluid squeezes due to the uplift in the viscous diffusion.
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