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Abstract—We present a complete, open-source framework for
rapid experimentation of Visual Sensor Networks (VSN) solu-
tions. From the software point of view, we base our architecture
on open-source and widely known C++ libraries to provide the
basic image processing and networking primitives. The resulting
system can be leveraged to create different types of VSN,
characterized by the presence of multiple cameras, relays and
cooperator nodes, and can be run on any Linux-based hardware
platform, such as the BeagleBone Black. To demonstrate the
flexibility of the proposed framework, we describe two different
application scenarios typical of VSNs, namely object recognition
and parking monitoring. The framework is then used to evaluate
the benefits of two complementary paradigms for networked vi-
sual analysis recently discussed in the literature. In the traditional
Compress-then-Analyze (CTA) paradigm, compressed images are
transmitted from camera nodes to a central controller, where
they are analyzed. In the novel Analyze-then-Compress (ATC)
paradigm, camera nodes extracts and compress local features
from the acquired images. Such features are transmitted to the
central controller and used to perform visual analysis. We show
that the ATC paradigm outperforms CTA from the consumed
energy point of view, at the same target analysis accuracy in
both the application scenarios.

Index Terms—Visual Sensor Networks, Testbed, Features Ex-
traction, Object Recognition, Parking Lot Monitoring

I. INTRODUCTION

In the last few years, Visual Sensor Networks (VSNs) have
gained a lot of attention within both the scientific commu-
nity and the industry. Composed of many low-cost, battery-
operated intelligent wireless cameras, VSNs are envisioned to
play a major role in the evolution of the Internet-of-Things
paradigm, supporting a vast range of applications such as
object detection, recognition and tracking, video surveillance,
assisted living, and many others. VSNs are particularly chal-
lenging from the research point of view. On the one hand
they are used for multimedia applications, which are typically
characterized by intense processing, high bandwidth usage and
considerable energy consumption. On the other hand, being
related to the more general Wireless Sensor Networks, VSNs
have tight constraints in terms of computational, communica-
tion and energy resources. Thus, a huge part of the research
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on VSNs has been committed to finding efficient software
solutions at every layer of the protocol stack, ranging from
low-level communication protocols [1], [2], to multimedia
compression schemes at the application layer [3], [4], [5].

The majority of such research studies consider a traditional
scenario in which visual sensor nodes acquire images, com-
press them relying on some sort of encoding algorithm (e.g.,
JPEG) and transmit the compressed bitstream to a remote
sink node, where the images are decoded. Often, some sort
of specialized analysis algorithm is applied to the received
images with the purpose of detecting, recognizing and tracking
objects of interests. Therefore, such a scenario is often referred
to as Compress-then-Analyze (CTA). Very recently, a paradigm
shift has been proposed: in the Analyze-then-Compress (ATC)
scenario, camera nodes analyze the acquired image content
and extract and transmit a set of visual features from it.
In a nutshell, a detector algorithm is run to identify salient
keypoints in the image. For each keypoint, a local feature is
produced, summarizing the patch surrounding the keypoint.
Since such features can be efficiently compressed and used
for automatic analysis, they constitute an excellent candidate
for enabling advanced visual tasks in energy- and bandwidth-
limited scenarios [6], [7], [8], [9].

Clearly, a detailed assessment of the benefits provided
by any VSN-specific solution, including the improvements
that the ATC paradigm is able to provide with respect to
CTA, cannot be done without a reference target platform.
In fact, since the very first research studies in the field of
VSNs, the importance of discovering a reliable VSN hardware
platform was highlighted [10]. While reliable motes for generic
Wireless Sensor Networks have been available for a decade,
the same is not true for VSN. Although several efforts to
propose VSN platforms have been done in the last few years,
many research studies at different layers of the protocol stack
for VSNs have been validated only through simulations. This
fact clearly represents an issue, given that critical VSN perfor-
mance parameters, power consumption first, are governed by
the hardware. Moreover, the lack of a reliable, easily accessible
and low-cost VSN platform makes it difficult to compare the
different solutions at the application, transport and network
layer that have been proposed so far.

In this paper we propose a novel open-source platform
tailored to easy, flexible and quick experimentation of software
solutions for VSNs. On the software level, we propose a flexi-
ble and efficient architecture based on widely accepted, open-
source standards which provides all the necessary processing
and transmission primitives needed for implementing a wide
class of applications. On the hardware level, the framework
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can be run on any Linux-based system: in particular, we test
our design on top of a low-cost and low-power BeagleBone
Black embedded computer.

The rest of the paper is structured as follows. In Section II,
we briefly review the state of the art in VSN platforms design,
focusing on the main requirements that a good platform
should have and the different approaches to VSN platforms
design. In Section III, we present and thoroughly detail the
proposed system at the software level, starting from a general
outlook and then focusing on the single building blocks and
how they can be interconnected in a flexible way to obtain
different VSN setups. In Section IV we focus on the hardware
used to build the VSN platform, giving particular attention
to its energy consumption and comparing it with another
similar commercially available hardware platform capable of
supporting the proposed software system. Section V presents
representative application scenarios that can be implemented
with the proposed framework. We give particular attention
to the CTA and ATC paradigms for object recognition and
parking monitoring, and evaluate their performance in terms
of achievable frame rate and consumed energy. Finally, Section
VI concludes the paper.

II. RELATED WORK

Giving a complete review of all the proposed VSN platforms
is out of the scope of this paper. The interested reader may
refer to the excellent survey papers from Abas et al. [11] or
Seema and Reisslein [12]. In particular, the latter identifies
the requirements for a good VSN platform and thoroughly
describe all the solutions proposed so far. The authors classify
existing VSN platforms in three main classes:

o General Purpose Architectures (e.g., [13], [14], [15]), are
designed similarly to a personal computer, attempting to
cover all possible functionalities and peripherals an applica-
tion may need. Such strategy allows to create application
prototypes very quickly, but typically suffers from high
power consumption, due to the overuse of standard inter-
faces (e.g., USB, UART, GPIO).

e Heavily Coupled Architectures (e.g., [16], [17]) are typically
designed for a particular application, and they can be opti-
mized with respect to that. On the down side, they are over-
customized and lack flexibility, thus not being well suited
for research purposes.

o Externally Dependent Architectures (e.g., [18], [19], [20])
are designed in a layered way, where external daughter
boards can be attached to the main board to achieve basic
functionalities. On the one hand, such a design allows
to easily customize the platform based on the application
requirements. On the other hand, a given main board can
usually interoperate only with daughter boards designed for
it, thus limiting flexibility. Also, such a design often results
in high power consumption, since basic circuitry is usually
duplicated on both the main board and the daughter boards.

Besides classifying the available VSN platforms, the work
in [12] provides a list of reasonable practical requirements for
a good VSN node, namely (i) low power consumption (0.5W
preferable - 2W maximum) and possibility of supporting

standby or sleep power modes (ii) high video throughput (up
to 15 frame per seconds at CIF resolution) and (iii) low-cost
(less than $50 USD). Also, the authors point out that it should
be possible to substitute key components (i.e., camera sensor,
radio module) based on competitive pricing/performance in
a modular manner. Finally, the ability to use extremely low-
power sensors (e.g., infrared, motion sensor) to trigger frame
acquisition further reducing power consumption, is considered
as a plus. The survey concludes that none of the existing
VSN designs meet the ideal requirements, as they all have
the shortcoming of either attempting to incorporate too many
components, resulting in inefficient, general-purpose architec-
tures, or attempting to be too application-specific, resulting in
architectures with very limited flexibility.

Besides such practical requirements, which are certainly
critical when it comes to deploy the VSN in a real-world
scenario, we believe that high flexibility constitutes itself
an important requirement, rather than a performance metric.
On the hardware level, such flexibility is required to easily
customize the platform subject to the application requirements,
e.g., by adding/removing key components as already pointed
out previously. On the software level, a good VSN platform
should provide the networking and computational primitives
on top of which any application involving transmission and
processing of multimedia data could be implemented. Ideally,
such software primitives should be based on well-accepted and
easily-usable standards.

Recently, a new class of small embedded computing de-
vices based on Linux has gained a lot of popularity among
researchers and developers: the Raspberry PI, the BeagleBone
Black, Arduino Yun and Intel Galileo are four of the most
famous Linux-based open-source development boards avail-
able nowadays. Referring to the aforementioned requirements,
such platforms are certainly good candidates for building
a VSN node. First, the possibility of running Linux gives
great flexibility on the software level and makes the develop-
ment, debugging and deployment processes easy. Second, such
platforms are generally equipped with several input/outputs
peripherals, thus giving high flexibility on the hardware level.
Third, they are all generally characterized by a low-power
consumption, and are able to be battery-operated. Last, but not
least, they are extremely cheap, being commercially available
for less than $100 USD.

In the following we introduce EZ-VSN, a flexible and open-
source VSN hardware/software framework, which fulfils all
the aforementioned requirements.

III. EZ-VSN SYSTEM ARCHITECTURE

This section provides a detailed description of the EZ-VSN
software framework. We start with a general description of
the proposed architecture, and how it can be used to create
different instances of Visual Sensor Networks. Then, we pro-
vide a detailed description of the software building blocks that
constitute the framework and how they can be interconnected
to obtain different functionalities. The presented framework
can be run on any Linux-based platform supporting OpenCV,
regardless of the type of processor (X86 or ARM). It also
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Fig. 1. EZ-VSN sample architecture. A Graphical User Interface is connected
to a sink node to control and receive visual data from camera nodes. One
or more relay nodes may be used to deliver the data between a camera
and the sink. Several cooperator nodes may be added to the VSN and
connected to camera nodes, to parallelize the computation of intense tasks.

supports different wireless communication technologies such
as IEEE 802.11 or IEEE 802.15.4. In case the latter is used,
the framework also provide support for TinyOS-compliant
transceivers'. Additional details on the tested hardware con-
figurations are given in Section IV.

A. EZ-VSN node

With reference to Figure 1, the proposed framework allows
the creation of different types of nodes in a Visual Sensor
Network:

e EZ-VSN camera: these types of nodes play the major role
in the VSN. Equipped with cameras and low power wireless
communication devices (either based on IEEE 802.11 or
IEEE 802.15.4 standards), such nodes acquire visual data
from the environment and deliver it remotely to a central
controller. Before transmission, the acquired images can
be compressed in the pixel-domain (i.e., using the CTA
paradigm), or processed to extract compact feature-based
data (i.e., using the ATC paradigm).

e EZ-VSN relay: data delivery from camera nodes to the
central controller can be performed either directly, or in a
multi hop fashion. In the latter case, visual data is routed
through one or more relay nodes. Again, such relay nodes
may support different technologies for communication, such
as IEEE 802.15.4 or IEEE 802.11.

o EZ-VSN sink: this node is responsible for collecting image
or features data from the camera nodes and forwarding it to
the central controller, where it can be displayed, stored or
analyzed.

e EZ-VSN cooperator: the proposed framework also pro-
vides the possibility of adding a special type of nodes
in the VSN, known as cooperators. Such nodes may not
be equipped with a camera, but can be still added to the
network to sense different kind of data (e.g., temperature,
humidity), or as backup nodes. Their purpose is to help
camera nodes in executing intense visual processing tasks,

ITinyOS is a lightweight operating system for 802.15.4 transceivers and it is
widely popular among WSN developers
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Fig. 2. EZ-VSN software architecture. On the left system components
communicating with messages: the Node Processyng System (NPS), the
Node Network System (NNS), the IP subsystem and the AM subsystem. On
the right the system pipeline in the ATC case.

leveraging recent results in the area of parallel computation

for VSN [21], [22].

Regardless of its role in the network, each node runs
the same software. With reference to Figure 2, the software
architecture is composed of two main components, namely (i)
the Node Processing System (NPS) and (ii) the Node Network
System (NNS). The NPS implements the logic which operates
each node in the VSN, together with several multimedia
processing and encoding functionalities while data reception
and transmission is managed by the NNS. Communication
among these two components, and between different EZ-VSN
nodes is based on Message objects.

In the following, we give a detailed description of each one
of the aforementioned components.

1) Messages: The basic container for any kind of commu-
nication in EZ-VSN is a message. Each message is made of
a header and a payload. The header, depicted in Figure 3,
is composed of 13 bytes and contains a sequential number,
the number of packets the message is made of, the packet
id, the message type, source and destination unique IDs,
the link technology the message is being transmitted with
and the payload size. The payload varies depending on the
message type. Message types defined in EZ-VSN are grouped
in 3 different sets: control messages, data messages and other
messages. New message types can be easily added following
the existing ones as reference.

Control messages:

1) START-CTA message. Sent from the GUI to a
camera through the sink, contains all the necessary
parameters to operate in CTA mode: image width and
height, JPEG quality factor, number of slices in which
the image should be split before being sent. The image
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Fig. 3. Message header format (in bytes). SN = sequential number, unique for
each message; NumPkts = number of packets a message is made of; Pktld =
packet id, between 0 and NumPkts-1; MT = message type; SId = source node
unique ID; DId = destination node unique ID; LT = link type identifying the
transmission technology used; PayloadSize = size, in bytes, of the message
payload.

can be split into slices due to the fact that the system
is able to work with unreliable transmission channels as
802.15.4. If a message gets corrupted only one slice is lost
and visual analysis can take place on the other available
slices.

2) START-ATC message. Sent from the GUI to a
camera through the sink, contains all the necessary pa-
rameters to operate in ATC mode: detector and descriptor
type, detection and description parameters, compression
parameters and number of features to be sent back in
a single message. As for image slices, features are sent
back to the sink divided in different messages, according
to the provided number of features for a single message.
In this way, if a message is corrupted only a subset of
the features is lost.

3) STOP message. Sent from the GUI to a camera
through the sink, tells the camera to stop the existing
processing tasks and flush any outgoing message.

Data messages:

1) DATA-CTA message. Sent from a camera to the GUI
through the sink, contains the JPEG bitstream of the
acquired image together with timing information about
encoding and transmission time.

2) DATA-ATC message. Sent from a camera to the
GUI through the sink, contains the bitstream of key-
points and their relative descriptors, together with timing
information about detection, extraction, encoding and
transmission time.

Other messages:

1) NODE-INFO message. Sent from a camera to the
sink and from a cooperator to a camera to notify
the sender existence in the network.

2) ACK message. Sent back from the receiver of a
DATA-CTA or DATA-ATC message to probe the appli-
cation bandwidth between the sender and the receiver.

2) Node Processing System: The NPS is the core of each
EZ-VSN node and it is implemented following an asyn-
chronous event-based fashion. In particular, the NPS reacts
to messages received from the NNS by performing different
actions. When a message is received it is first dispatched to
the Processing Queue or to the Service Queue, depending on
its type. The Processing Queue is devoted to the elaboration
of computationally intensive tasks, such as image acquisition,
keypoint detection, features extraction and coding. Conversely,
the Service Queue is filled with messages that do not require
intense computational resources, such as control messages. In

order to guarantee a fast response time, each queue is executed
in a separate thread (the Processing Thread and the Service
Thread, respectively). This allows to manage control messages
while executing intense processing tasks in background.

The behaviour of the Node Processing System strongly
depends on the “role” of the node in the VSN:

e A sink node basically acts as a router and forwards mes-
sages from camera nodes to the central controller, and vice-
versa. Since a sink node does not perform any processing,
its Processing Queue is always empty and all the incoming
messages are sent to the Service Queue.

e In a camera node the incoming START-CTA and
START-ATC messages trigger the acquisition and process-
ing of a new image. Therefore, such messages are delivered
to the Processing Queue. All other message types are
delivered to the Service Queue.

e A cooperator may receive a START-ATC and a
DATA-CTA from a camera node, containing the information
on how the cooperation should be performed and the chunk
of data to process. The former message is inserted in the
Service Queue, while the latter is managed by the Processing
Queue.

The image processing capabilities of EZ-VSN are imple-
mented in the NPS by relying on the open-source OpenCV?
24.11 C++ APIL which allows to easily perform image
acquisition and JPEG encoding/decoding. To maximize the
performance of the system when executed on ARM-based
platforms, we compiled OpenCV with libjpeg-turbo®, so as
to exploit parallelism offered by the NEON instruction set
available on ARM processors, which are typically used on
low-power architectures such as the BeagleBone Black or the
Raspberry PIL

The NPS Processing Thread is also responsible for extract-
ing and encoding local features from the acquired images.
For feature extraction, OpenCV allows to use several types of
extractors (including SIFT [23], SURF [24], and ORB [25]).
Furthermore, we implemented an optimized version of the
BRISK binary feature extractor, named BRISKOLA [26],
which exploits NEON instructions and is therefore tailored
to low-power ARM architectures. For what concerns features
encoding, we implemented several encoding schemes, ranging
from simple feature quantization and arithmetic encoding, to
advanced lossless coding schemes tailored to low-cost binary
features [27].

3) Node Network System: The NNS implements the net-
working primitives needed for receiving and transmitting mes-
sages from/to other nodes in the VSN. Each EZ-VSN node is
identified by (up to) three addresses: a unique ID, an IP address
(if the node is equipped with Wi-Fi) and a 16-bit TinyOS
Active Message (AM) address (if equipped with a TinyOS-
copmliant transceiver). Low-level handling of the two different
wireless technologies is carried out by two specific compo-
nents, namely the IP subsystem and the AM subsystem. The
former is responsible for handling IP-based packets on the Wi-
Fi interface, and it is implemented relying on the Boost C++

Zhttp://opencv.org/
3http://libjpeg-turbo.virtualgl.org/
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libraries* for asynchronous input/output (Boost : :asio) and
message serialization (Boost::serialization). Con-
versely, the AM subsystem is responsible for handling packets
transmission/reception from the 802.15.4 transceiver. In this
case, a third-party serial driver is used to communicate with
the serial interface of the transceiver.

a) Transmitting Messages: When the NPS needs to
transmit a message on a particular radio interface, it sets
the LT (LinkType) field of the message header accordingly
and delegates the message to the NNS. Here, depending on
the chosen interface, the message is forwarded to one of
the two radio subsystems. In case IP-based communication
is requested, the message is first serialized using Boost and
the corresponding bitstream is transmitted to the destination
address. At the transport layer, we used TCP to provide reliable
communication between nodes in the network. However, other
IP-based transport protocols may be used easily (e.g., UDP).
Differently, if the message has to be transmitted on the
802.15.4 interface, the AM subsystem implements message
serialization and packetization according to the 802.15.4 MTU.
The resulting bitstream is then transmitted to the transceiver
through serial communication. On the 802.15.4 transceiver,
packets are forwarded from the serial to the radio interface by
an ad-hoc TinyOS application. At the lowest communication
layers, such a design allows again for great flexibility in the
routing/MAC protocols to be used. If IP-based communication
over Wi-Fi is used, it is possible to use directly the tools
provided by the Linux Kernel, e.g. iproute2, in order to modify
the routing/forwarding tables of a node. In case IEEE 802.15.4
communication is used, the transceiver may be loaded with a
specific TinyOS application implementing a particular protocol
at the MAC or routing layer. As an example, TinyOS already
contains implementation of CSMA-CA and TDMA access
protocols and several routing protocols tailored to wireless
sensor networks, such as RPL [28].

b) Receiving Messages: When an IP-based bitstream is
received, the IP subsystem deserializes it and produces a
message which is then passed from the NNS to the NPS.
In case the bitstream is received by the AM subsystem, the
single packets have to be ordered and re-assembled before the
message can be deserialized. We implemented a specific buffer
to store incoming packets and eliminate duplicates. The buffer
may be also used for identifying and requesting lost packets, so
as to provide a starting point for reliable transmission protocol
implementation.

B. Central Controller and GUI

The central controller implements all the logic needed
to control the VSN. In particular, it features a Graphical
User Interface (GUI) that allows to display and analyze the
information received from camera nodes, remotely modify the
VSN operational parameters and monitor the performance of
the VSN in real-time. The GUI is built upon QT5°, an open-
source, cross-platform framework that allows quick develop-

4www.boost.org

Shttp://www.qt.io/

ment and a powerful C++ support. With reference to Figure 4,
the GUI is composed of several graphical components:

1) Camera Settings (Figure 4 - D): The Camera settings
window allows to easily control each camera in the network
through a set of tabs. For each camera, it is possible to change
in real-time several operational parameters:

o Operative paradigm and Visual Task: each camera can work
according to either CTA (i.e., transmitting images) or ATC
(i.e., transmitting features) paradigm. For both operative
paradigms, several parameters can be changed in real-time.
Moreover, the data received by each camera (either images
or features) can be used to perform either object recognition
or parking monitoring. Additional details on the application
scenarios and the corresponding controllable parameters are
given in Section V.

o Transmission technology: each camera can be independently
set to work with either 802.11 or 802.15.4 wireless trans-
mission. In the former case, it is also possible to control
the maximum transmission rate of the wireless interface, so
as to mimick bandwidth constrained scenarios. The desired
transmission rate is set in a specific field of START-ATC
and START-CTA messages. On camera nodes, the maxi-
mum transmission rate is set according to the received value,
using the 7c Linux command for traffic shaping.

Finally for each camera a Start/Stop button is provided to
trigger the transmission of a START-ATC or a START-CTA
message. Upon reception of the corresponding DATA-ATC or
DATA-CTA message, another start message will be transmitted
automatically, unless the stop button is pressed.

2) Camera view (Figure 4 - A,B): The Camera view win-
dow shows the content received from camera nodes. If the
camera is set to work according to CTA, a VGA image is
shown (Figure 4 - A). Conversely, if the camera is working
in ATC mode, no pixel-domain image can be shown and local
features are drawn in the camera view (Figure 4 - B). Each
Camera view window also reports camera-specific informa-
tion, such as the estimated end-to-end application bandwidth,
the estimated residual energy and other information related to
the selected visual application (see Section V for additional
details).

3) Performance monitor (Figure 4 - C): This window
allows to monitor in real-time application-specific performance
and operational parameters. In particular, the following metrics
can be monitored:

o Application frame rate: a dedicated timer is started each
time a START-ATC or a START-CTA message is trans-
mitted from the GUI, and stopped once the corresponding
DATA-ATC or DATA-CTA message is received from the
camera. The elapsed time ¢¢, and the corresponding frame
rate Fy = 1/t is shown.

o Energy consumed per frame: as explained in Section III-Al,
each camera inserts in each DATA-CTA message the time
elapsed for image encoding ¢¢;* and in each DATA-ATC
message the time elapsed for features extraction and en-

coding tﬁguc. On the sink node, a dedicated timer is used

to estimate the transmission time of data messages from
camera nodes ty. The transmission and processing times
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Fig. 4. EZ-VSN GUI screenshot in a two camera setup. A) Camera view in CTA mode: the compressed image is displayed. B) Camera view in ATC mode:
keypoints are displayed. C) Performance monitor: in the upper part the energy consumption, in the lower part the framerate. D) Camera settings.

are forwarded from the sink node to the GUI, which
estimates the energy consumed per frame multiplying the
estimated times by the corresponding power consumptions,
e.g. Ef = ty - Px + tepu - Popu- Note that Py and P, are
obtained from Table II.
The Performance monitor is particularly useful to understand
the interplay between operational parameters and system per-
formance and to assess the benefits of a specific system
configuration from both the energy and application frame-
rate point of view, while varying the parameters in a real-time
fashion.

IV. HARDWARE ARCHITECTURE

As explained in Section III, the proposed software frame-
work can be potentially executed on any architecture, ranging
from standard workstations and laptops to low-power micro-
computers. Again, such flexibility on the platform used to
run the framework is extremely useful: the former class of
platforms may be easily used for development and debugging
purposes, while the latter is tailored to real-world VSN de-
ployments and testing. Since the source code of the framework
does not change between the two configurations, all phases of
development, testing and debugging are simplified.

In this Section, we give details on the hardware used for
implementing real-world VSN running the proposed soft-
ware. Although several options are available, in this paper
we focus on the BeagleBone Black Revision C embedded
microcomputer. Such platform features a 1| GHz ARM Cortex-
A8 processor, 512 MB of RAM memory, 4 GB of eMMC
flash memory and is capable of running Linux distributions
based on the 3.8+ kernel (e.g., Debian, Ubuntu and Android).
The Cortex-A8 processor provides excellent computational
capabilities, yet consuming less power than other similar
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platforms on the market. As an example, the ARM11 processor
mounted on the Raspberry PI, which may constitute another
viable option for implementing a VSN node, exhibits a lower
peak DMIPS/MHz value at a higher power consumption (see
Section IV-B).

The BeagleBone Black also features a great range of
peripherals connections including USB, Ethernet and two
46 pin expansion headers which expose several input/output
interfaces (analog, GPIO, SPI and 12C), thus making extremely
easy to connect external sensor devices and communication
modules. Several plug-in “capes” specifically designed for the
BeagleBone are also available, allowing developers to quickly
augment the board capabilities with additional functionalities
(camera, battery-power, inertial navigation, GSM/GPRS com-
munication and many others)®. Despite such powerful capa-
bilities, the BeagleBone Black has two fundamental features:
first, it is extremely cheap (available for less then $50USD).
Second, it is characterized by a power consumption of less than
2W (the instantaneous power consumption varies depending
on activity mode and processor speed) and may also leverage
the different power modes available for the ARM Cortex-A8
microprocessor (including standby and sleep modes). Further-
more, the credit-card size and the capability of being battery
operated make the BeagleBone Black a perfect candidate for
implementing low-power applications which require complex
processing, as it is the case of Visual Sensor Networks.

A. Image acquisition and wireless communication

In order to acquire images and videos, an EZ-VSN node
can be equipped either with any USB camera compatible with
Video4Linux Version 2 (V4L2), or with acquisition devices

Shttp://elinux.org/Beagleboard:BeagleBone_Capes
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TABLE I
COMPARISON OF POWER CONSUMPTION IN DIFFERENT POWER MODES

BeagleBone Black | Raspberry PI

@1000MHz @700MHz
Boot (Peak) [W] 2.28 2.31
Idle (Average) [W] 1.04 1.58
Active (Average) [W] 1.30 1.70
Sleep (Average) [W] 0.26 N/A

created on purpose for the BeagleBone Black, such as the
ultra low-power RadiumBoard HD Camera Cape’. Clearly, the
choice of the camera device depends on the application pixel
resolution and/or power consumption requirements. Similarly,
several options are available to provide an EZ-VSN node with
wireless communication capabilities. Both IEEE 802.15.4 or
IEEE 802.11 compliant USB dongles can be used, as well
as specifically designed add-on capes, again providing high
flexibility. In particular, VSN applications which require high-
bandwidth may leverage wireless communication based on the
IEEE 802.11 WiFi standard: this can be obtained on an EZ-
VSN node by connecting a low-power USB WiFi adapter such
as the Netgear WNA1100 or the Tp-Link TL-WN725N, at the
cost of increasing energy consumption. For those applications
where bandwidth can be traded off for energy, an EZ-VSN
node may support the use of IEEE 802.15.4-compliant devices
to achieve low-power wireless communication. Again, several
options are available in this case: here we use a MEMSIC
TelosB node, which can be easily attached to the BeagleBone’s
USB port. The reason for choosing the TelosB lies on the
fact that it supports many of the operating systems for WSNs
(TinyOS, Contiki, FreeRTOS), further increasing the degree
of flexibility of the entire system, and at the same time giving
the opportunity to reuse already existing code for networking
primitives and routing/transport protocols. In particular, we
relied on TinyOS for operating TelosBs coupled to EZ-VSN
nodes, due to its wide popularity among WSNs developers.

B. Energy profiling

To assess the energy performance of an EZ-VSN node,
we performed several experimental measurements coupling
the BeagleBone Black with different image acquisition and
wireless communication devices and analyzing the different
power modes available on the ARM Cortex-A8 microproces-
sor. All the power consumption tests were performed using
an Adafruit INA219 DC current sensor connected over 12C
to an Arduino Mega 2560. The power to the device under
test is provided by a third party 5V 3A external supply. The
0.1Q2 measurement resistor of the INA219 is placed in series
between the external power supply and the +5V pin of the
BeagleBone. The INA219 onboard ADC measures the dropout
voltage across the resistor and the voltage supplied to the
device under test, thus giving enough information to compute
the current drawn by the device and its power consumption.

As a first test, we compared the energy performance of
the BeagleBone Black with the one of the Raspberry PI 1
Model B, a $20USD, credit-card-sized platform which features

TABLE I
EZ-VSN NODE POWER CONSUMPTION IN DIFFERENT HARDWARE
CONFIGURATION [W]

[ Attached Devices | Status [ 03GHz | 0.6GHz [ 1GHz |
None Idle 0.72 0.80 1.04
Active 0.79 0.95 1.30
Logitech QuickCam Idle 1.06 1.14 1.38
VGA camera Active 1.61 1.83 2.13
Logitech C170 Idle 0.94 1.02 1.26
720p camera Active 1.21 1.42 1.82
Logitech C310 Idle 1.24 1.32 1.56
720p camera Active 1.87 2.08 242
RadiumBoard Idle 1.24 1.32 1.56
HD camera cape Active 1.57 1.69 1.93

[ Memsic TelosB [ Active/Tx/Rx | 093 [ 1.01 | 125 |
Idle 0.88 0.96 1.20
Netgear WNA1100 Active 1.17 1.25 1.49
WiFi Adapter Tx 1.69 1.76 2.05
Rx 1.28 1.43 1.58
Idle 0.87 0.95 1.19
Tp-Link TL-WN725N Active 1.02 1.10 1.34
WiFi Adapter Tx 1.44 1.54 1.84
Rx 1.12 1.28 1.50
HD camera cape + Idle 1.43 1.51 1.75
Memsic Telosb Active 1.78 1.90 2.14
HD camera cape + Idle 1.68 1.76 2.00
WiFi Tp-Link Active 1.87 1.99 2.23

a 700MHz ARM microprocessor and may thus constitute
a viable alternative for being used as a basis for the EZ-
VSN node. Table I reports the average power consumption
for the two tested architectures, in different activity modes
when no external devices are attached. As one can see, the
BeagleBone Black is a clear winner for a number of reasons:
first, it exhibits lower power consumption in all activity modes;
second, differently from the Raspberry PI, it supports a sleep
mode where the power consumption is as low as 260 mW;
finally, it features a more powerful processor with tuneable
base-clock frequency.

Having said that, we provide in Table II a detailed analysis
of the BeagleBone Black power consumption when coupled
with different devices, and in different configurations of
microprocessor speed. The operating system running on the
BeagleBone Black during the tests was Linux Debian 3.8.138.
Columns 3 to 5 report the power consumption when increas-
ing the BeagleBone Black microprocessor speed: clearly, the
power consumption increases as the processor speed increases.
Rows 2 to 5 shows the power consumption when different
camera models are attached to the platform. We tested the
energy performance of EZ-VSN with four different camera
models, namely (i) a Logitech QuickCam VGA camera, (ii)
a Logitech C170 720p camera, (iii) a Logitech C310 720p
camera and (iv) a RadiumBoard HD Camera Cape. The first
three models use USB to communicate with the BeagleBone,
while the latter uses the custom 46 pin connectors. As one
can see from Table II, the different camera models are charac-
terized by very different power consumptions: as an example,
the QuickCam VGA camera requires more power than the
Logitech C170, even if the latter acquires images with a better
quality. This justifies the adoption of a flexible architecture

http://www.radiumboards.com/HD_Camera_Cape_for_BeagleBone_Black.php ®http://rcn-ee.net/deb/wheezy-armhf/v3.8.13-bone72/
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that can support different camera models, so that they can
be substituted based on the lowest cost/energy consumption.
Rows 6 to 8 report the power consumption of the BeagleBone
coupled with a 802.15.4 and two 802.11 communication
devices. As expected, 802.15.4 communication requires less
power than Wi-Fi, which can be extremely high especially
when transmitting data. Finally, the last two rows of Table
I show the total power consumption of a complete EZ-
VSN node, equipped with the RadiumBoard HD Camera
Cape and with (i) a Memsic TelosB for 802.15.4 low power
communication (row 8), and (ii) a Tp-Link TL-WN725N Wi-
Fi USB dongle. The power consumption in such configurations
varies from a minimum of 1.43 W to a maximum of 2.23 W.
We also tested the EZ-VSN node energy performance with
other operating systems, which are omitted here for space
reasons. The complete set of measurements is available at
WWwWw.greeneyesproject.eu.

V. APPLICATION SCENARIOS

The flexibility of the proposed framework can be leveraged
to implement several different VSN applications. In particular,
we focus on visual analysis applications, where the content
acquired by camera nodes is processed and analyzed to extract
high-level semantic concepts. In this section we provide two
representative examples that have been implemented using
the EZ-VSN framework: object recognition and parking lot
monitoring. In addition to describing how each application
scenario was implemented, we also exploit the framework to
assess and compare the performance of the novel Analyze-
then-Compress paradigm and the traditional Compress-then-
Analyze approach. Such comparison demonstrates the flexi-
bility of the proposed system in implementing and evaluating
practical solutions for VSNs. The following scenarios and
the corresponding performance evaluation have been carried
out with an EZ-VSN camera node in the configuration that
requires the lowest amount of energy, that is coupled with
the RadiumBoard HD Camera Cape and the IEEE 802.15.4
compliant TelosB dongle. On the latter, we relied on the
CSMA/CA protocol with data acknowledgment provided by
TinyOS at the MAC layer and a routing protocol with ad-hoc
static routes hard-coded on each node of the VSN.

A. Object recognition

Many monitoring applications for VSNs require to recog-
nize a particular object. Upon recognition other actions may be
performed, such as tracking the particular object or launching
an alarm. Object recognition is typically performed following
these steps: first, local visual features are extracted from
the image under processing. Such features are then matched
against a database of labeled features extracted from known
objects to find the most similar one. The particular type of
features to be used and how matching is performed can vary
from case to case, but the general process remains the same.
It is clear that, in the VSNs scenario, deciding where to
perform feature extraction plays a crucial role. In traditional
systems, the CTA paradigm is followed. That is, the acquired
image is first compressed relying on a proper algorithm (e.g.,

JPEG), and then transmitted wirelessly to a central controller
which performs feature extraction and matching. Conversely,
in the ATC paradigm, the camera node may directly perform
features extraction on the acquired image, and then transmit a
compressed version of such features to the central controller
for further matching. We implemented both the CTA and
ATC paradigms for object recognition using EZ-VSN. The
following paragraphs give details on the role of each node in
the VSN, depending on the chosen paradigm.

1) Compress-then-Analyze: Upon receiving a START-CTA
command from the central controller, a camera node acquires
a new image and compresses it with JPEG. The bitstream
generated by the JPEG encoder is then encapsulated in either
802.11 or 802.15.4 frames (depending on the communication
technology chosen from the GUI) and transmitted to the sink
node in a DATA-CTA message. Note that several application
parameters, such as the image resolution, the JPEG com-
pression quality factor and the wireless technology to adopt
for image transmission are all contained in the START-CTA
message and can therefore be changed in real-time from the
GUI Upon receiving the DATA-CTA message, the sink node
forwards it to the central controller. Here, the received image
is displayed on the GUI and an object recognition algorithm
is executed. In particular, SIFT features are extracted from the
image and matched with the ones extracted from a database of
labeled images. Features matching is performed following the
best practices in the area of object recognition, using the ratio-
test and removing outliers through a geometric consistency
check with RANSAC. This allows to rank the images in the
database, with the most similar ones at the top of the list.
The label corresponding to the majority of objects in the first
ten positions of the ranked list is returned as the recognized
object, as shown in Figure 4 - A.

2) Analyze-then-Compress: If the ATC mode is selected,
the central controller transmits a START-ATC message to
a camera node. Upon reception, the camera node acquires
an image and extracts local visual features from it. For
feature extraction, we used an optimized version of the
BRISK algorithm [26], tailored to low-power NEON-enabled
ARM architectures. Optionally, the extracted features can be
compressed with an ad-hoc arithmetic encoder, specifically
designed to exploit the redundancy between the elements of
each feature [27]. Similarly to the CTA case, the START-ATC
message contains several parameters, such as the type of
feature extractor algorithm to be executed, the feature de-
tection threshold, the maximum number of features to be
transmitted and if such features should be compressed or not.
Features data is then encapsulated in a DATA-ATC message
which is then transmitted back to the sink. Here, the received
features are decoded and matched with the ones contained in
the database, as done for CTA. Since in this case it is not
possible to display the received image, as the pixel-domain
information is not transmitted in ATC, the received features
are represented as black circles with a radius proportional to
their scale parameter, as shown in Figure 4 - B. Additionally,
an approximation of the image starting from the knowledge
of the visual features only can be computed and shown. In
particular, we followed the approach presented in [29], where
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Fig. 5. Power consumption of the proposed VSN for object recognition in CTA mode (a) and ATC mode (b) at a target application mAP of 0.58. For CTA,
this corresponds to a JPEG quality factor equal to 1. The same accuracy is reached in ATC with the transmission of 100 BRISK descriptors, reducing the
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Fig. 6. Camera view representing the same sample object in CTA mode (a), ATC mode (b) and the image reconstructed from local features (c)
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Fig. 7. Object recognition application. Mean Average Precision vs Energy
in ATC and CTA mode. The energy is measured integrating power over time
during acquisition, extraction (ATC only), coding and transmission phases.
For the ATC case 20, 40, 60, 80, 100, 150, 200 BRISKOLA features are
used. For the CTA-SIFT case and the CTA-BRISK case the JPEG quality
factor was varied in the range 1,3,5,7,10,20,30,40.

the image is reconstructed as a composition of image patches,
whose local features match the ones received from the camera
node. Figure 6 shows an example of image reconstruction from
features.

3) Performance evaluation: We used the EZ-VSN frame-
work to assess the performance of CTA and ATC paradigms
for object recognition. We focus in particular on two perfor-
mance measures:
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e Energy consumed per image: with the same measuring
setup described in Section IV, we measured the energy
spent by a camera node in the acquisition, processing and
transmission phases for both the CTA and ATC paradigms.
Figure 5(a) and 5(b) show the measured instantaneous power
consumption in two particular cases. Note that the total
energy spent per image can be obtained by integrating the
power consumption over one duty cycle.

e Accuracy of object recognition: we relied on the ZuBuD’
dataset, which consists of 1005 color images of 201 build-
ings of the city of Zurich. Each building has five VGA
images (640x480), taken at random arbitrary view points
under different seasons, weather conditions and by two
different cameras. A separate archive containing 115 query
images of the same buildings is available as query dataset.
Such query images, or the features extracted from them,
are used as queries and transmitted to the sink from a
camera node. As usual in evaluating the performance of
object recognition / image retrieval systems, we use the
Mean of Average Precision (MAP) to measure the quality
of the ranked list obtained on the central controller after
feature matching.

In the case of CTA, we repeated the test several times, each

time changing the JPEG quality factor and consequently the

amount of data to be delivered and the energy spent in the
transmission process. At the central controller, we evaluated
the MAP using both SIFT and BRISK features. The former
allows to obtain the best accuracy performance at the cost of
time-consuming processing. The latter is a faster alternative

http://www.vision.ee.ethz.ch/showroom/zubud/index.en.html
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that trades off accuracy for computational time [30]. For
what concerns ATC, we repeated the test several times, each
time changing the number of features to be transmitted from
the camera to the sink node. Figure 7 shows the energy-
accuracy performance of CTA and ATC. As one can see,
ATC allows to spend less energy with respect to CTA, at
the same target accuracy. The energy savings vary from a
minimum of 25% at a MAP of 0.7 to a maximum of about
50% at a MAP of 0.37. Clearly, if the energy constraints
are not tight, transmitting a JPEG encoded image allows to
use sophisticated feature extraction algorithms at the sink
node, thus maximizing the application accuracy. As mentioned
above, even if ATC is used a reconstruction of the original
image may be obtained. The quality of the reconstructed image
increases as the number of features received from the camera
node and the size of the database of patches increase. As a
rule of thumb, 100 descriptors are enough to obtain a “good”
image reconstruction [31]. Considering the ZuBuD dataset and
the results in Figure 7, this translates to a MAP higher than
0.55 for acceptable reconstruction.

B. Parking monitoring

In the context of Smart Cities, parking lot monitoring
(also known as smart parking) has recently gained a lot of
attentions from both the scientific community and the industry
[32]. By combining data from parking lots with web based
services and intelligent displays, smart parking allows drivers
to find vacant parking lots near their destinations quickly
and easily. This provides several benefits, such as fewer Cco?
emissions from cars, reduced traffic congestion and finally,
less stressed and happier citizens. VSNs constitute a natural
choice for the scenario of parking lot monitoring, as one single
camera can cover several parking lots, thus making the system
scalable. Similarly to the case of object recognition, assessing
if a parking lot is vacant or not is usually accomplished
by extracting local features from the acquired image and
processing them with a specialized classification algorithm.
Again, such features may be extracted at the central controller
after image transmission (CTA) or directly at the camera nodes
(ATC).

1) Compress-then-analyze: In CTA, a camera acquires an
image covering several parking lots, compresses it with JPEG
and transmits it to a central controller in a DATA-CTA
message. Such process is triggered by the central controller
with a START-CTA message. Here, the image is processed
according to the following steps:

« Parking space detection: let C' be the number of parking
spaces present in the image. Since the camera is likely to
be statically deployed, we assume to know a-priori, for each
parking space, the pixel coordinates of its center x., together
with its width w. and height h., with c=1...C.

« Feature extraction: for each parking space, a square subre-
gion of size min(we, h.) centered in x. is extracted from
the image. Each subregion is converted from RGB to HSV
colorspace, and the hue component is used to populate a
histogram h. (see Figure 8). Such histograms are used as
local features to determine whether or not a parking space
is vacant.

¢ ¢ Available
4
E> ,’g: . |:> parking
/' ) lot
Hue histogram Linear SVM

Fig. 8. Parking Lot monitoring: a feature vector is computed by means of
a histogram of pixel hue values. A linear SVM is employed to classify each
parking lot as either vacant or occupied.
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Fig. 9. Camera view in Parking Lot monitoring mode for (a) the CTA
paradigm and (b) the ATC paradigm.

« Parking space classification: a linear SVM classifier is
trained with normalized hue-histograms and regularization
constant K = 100. The classifier is then used to decide if
a particular parking space is vacant or not (Figure 9(a))

2) Analyze-then-compress: From the GUI, the operation
of the VSN can be changed in real-time by issuing a
START-ATC message. In this case, the camera node will pro-
cess the acquired image by extracting the hue-histograms. The
location and size of each parking space, the number of bins to
use in each histogram feature and the quantization parameters
(i.e., the number of bits to be used for representing the value
of each histogram bin) are all contained in the START-ATC
message. Upon computation of the histogram features, the
camera node transmits them to the central controller using
a DATA-ATC message. There, the SVM classifier is used to
infer the occupancy of each parking lot (Figure 9(b)).

3) Performance evaluation: Similarly to the case of ob-
ject recognition, we evaluated the performance of the two
paradigms from both the energy and accuracy points of view
also for the scenario of parking monitoring. The energy con-
sumed per image is measured with the same setup used before,
while the accuracy evaluation has been carried out by relying
on the Pk-lot dataset provided in [33], which contains images
of parking lots under different weather conditions (overcast,
sunny and rainy periods), divided in three different datasets
(UFPR0O4, UFPRO5, PUCPR, containing respectively 28, 37
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Fig. 10. Parkinglot monitoring application. Accuracy vs Energy in ATC
and CTA mode. The energy is measured integrating power over time during
acquisition, extraction (ATC only), coding and transmission phases. For the
ATC case 6, 12, 23, 45, 90 and 180 bins are used. For the CTA case JPEG
quality factor is set to 7,10,20,30 and 40

and 100 parking lots). Each image in the datasets is labeled
with information on the vacant/occupied parking lots and each
dataset is divided in a training and testing set. We used the
training set to train the SVM classifier, and all experiments
were then performed on the testing sets. We pre-loaded images
from the datasets on the camera nodes and resized them at
VGA resolution. As done for the object recognition scenario,
for CTA we varied each time the JPEG quality factor in the
range {7,10,20,30,40,}. For ATC, we used hue histograms with
increasing number of bins in the range {6,12,23,45,90,180}.
This allowed to draw different curves in the energy-accuracy
plane, which are illustrated in Figure 10. As one can see,
also in this case ATC outperforms CTA for all the tested
datasets. In particular, at the maximum achievable accuracy
ATC consumes just one quarter of the energy needed for CTA.
Again, a clear tradeoff between energy consumption and task
accuracy is evident. Note also that the SVM classifier used
here was trained with images captured with different lighting
and weather conditions. Multiple classifiers, specific to the
particular lighting and weather condition, may be trained and
used to boost the accuracy performance.

VI. CONCLUSIONS

Reliable architectures for testing VSN solutions are key to
the success and the dissemination of such technology. In this
paper, we have presented EZ-VSN, a complete and flexible
framework to allow quick experimentation in the field of
visual sensor networks. The proposed system is composed
of (i) a low-cost, low-power hardware platform supporting
both IEEE 802.11 and IEEE 802.15.4 wireless technology,
(ii) the software needed to operate the hardware platform,
including a set of image processing and networking primitives
based on widely accepted and open-source C++ standards and
(iii) a cross-platform Graphical User Interface to control in
real-time the performance of the visual sensor network. We
have demonstrated the flexibility of EZ-VSN implementing
two different application scenarios and evaluating the benefits
of the novel ATC paradigm compared to the traditional CTA

one. The complete framework is made publicly available
for research purposed at www.greeneyesproject.eu. As future
research directions, we plan to use the framework to test in
a real-life scenario several recently proposed solutions in the
field of visual sensor networks, including distributed extraction
of visual features from overlapping fields of view, and joint
optimized multi-view encoding and routing of local features.
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