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Liquid relaxation: A new Parodi-like relation for nematic liquid crystals
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We put forward a hydrodynamic theory of nematic liquid crystals that includes both anisotropic elasticity
and dynamic relaxation. Liquid remodeling is encompassed through a continuous update of the shear-stress
free configuration. The low-frequency limit of the dynamical theory reproduces the classical Ericksen-Leslie
theory, but it predicts two independent identities between the six Leslie viscosity coefficients. One replicates
Parodi’s relation, while the other—which involves five Leslie viscosities in a nonlinear way—is new. We discuss
its significance, and we test its validity against evidence from physical experiments, independent theoretical
predictions, and molecular-dynamics simulations.
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I. INTRODUCTION

Liquids are unable to sustain any nonzero stationary shear
stress. In ordinary conditions—i.e., at small enough strain
rates—shear relaxation occurs exponentially fast, producing
a viscoelastic analog of the dielectric Debye relaxation. How-
ever, at the crossover between the characteristic shearing time
and the liquid relaxation time [1], distinctive solidlike features
become increasingly manifest [2]. Molecular rearrangements
are dramatically slowed down in confined ultrathin liquid films
(three to ten molecular dimensions thick), whose relaxation
times may be as large as tens to hundreds of milliseconds [3],
making the crossover more experimentally accessible. But
clear fingerprints of a smooth transition from liquidlike to
solidlike response manifest also in the acoustic properties of
nematic liquid crystals (NLCs) in the MHz–GHz frequency
range [4].

In this paper, we show how a fairly general contin-
uum theory of liquids may be established by allowing the
effective shear strain—i.e., the shear strain from an evolving
relaxed configuration—to enter the strain energy functional.
A dissipation principle governs the evolution of such a
configuration, and it takes into account the macroscopic effects
of microscopic rearrangements [5]. In a previous work [6], we
constructed such a theory for (slightly) compressible NLCs
and applied it, with fair success, to explain quantitatively the
anisotropy of sound velocity [7] and sound attenuation [8] in
N -(4-methoxybenzylidene)-4-butylaniline (MBBA) over the
range 2–14 MHz. The theory of nematic relaxation put forth
in [6] is characterized by (i) a neo-Hookean contribution to the
strain energy where the effective shear strain enters weighted
by an anisotropic shape tensor, and (ii) an isotropic gradient
flow dynamics for the relaxed configuration, parametrized by
a single viscosity modulus. Here we keep (i) as is, but we
revise and extend (ii) by taking a gradient flow with respect
to an anisotropic metric possessing the minimum symmetry
compatible with the liquid crystal. This theory covers the
whole range from low-frequency hydrodynamics to solidlike

high-frequency regimes [4]. In particular, the low-frequency
predictions reproduce the well-known Ericksen-Leslie [9,10]
dynamical theory, but they deliver in addition a new Parodi-
like relation between viscosity coefficients. Along with the
original Parodi relation [11]—which we also retrieve—this
result lowers to four the number of independent viscosities
for a nematic liquid crystal. Both conditions involve only
(some of) the six original Leslie coefficients, not the extra
three viscosities entering the extension of the Ericksen-Leslie
theory to compressible NLCs [12]. Accordingly, only the
theory for incompressible NLCs will be presented here,
and its predictions tested against experimental data, earlier
theoretical predictions, and results from molecular-dynamics
(MD) simulations. The discussion of the compressible case is
left to a future paper.

II. RELAXATIONAL DYNAMICS

We briefly sketch the theory that provides the equations of
motion for a NLC, under the combined effect of anisotropic
elasticity and anisotropic relaxation. Let F be the deformation
gradient from an arbitrarily selected reference configuration of
the NLC body. To account for relaxation, we factorize F into
a relaxing deformation G and an effective deformation Fe:

F = FeG, (1)

with G identifying the relaxed equilibrium configuration, and
the effective deformation Fe measuring the deviation from
equilibrium of the current deformation. Consequently, only the
effective deformation enters the strain energy. Since Fe =FG−1

maps from the relaxed to the current configuration, the strain
energy is properly defined, being independent of the arbitrarily
chosen reference. For an incompressible NLC, all factors in (1)
are isochoric, i.e., have unit determinant.

To account for anisotropic elasticity, we augment the
classical Oseen-Frank [13] free-energy density (per unit
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volume) with the anisotropic potential

ϒshr = 1
2μ tr(�−1Be − I), (2)

where μ is the shear modulus. The strain energy (2) simply
measures the deviation of the effective strain Be := FeF�

e from
the energetic shape tensor

� := a2(n ⊗ n) + a−1(I − n ⊗ n), (3)

parametrized by the aspect ratio a > 0, whose deviation from
1 gauges the degree and the type (prolate or oblate) of elastic
anisotropy with respect to the nematic director n [14]. The
shape tensor � is symmetric, positive-definite, and with unit
determinant. The potential ϒshr adds the following contribution
to the stress tensor [6,15]:

Tshr = μ dev(�−1Be). (4)

Clearly, Tshr vanishes if and only if Be = �, where ϒshr attains
its unique minimum.

We now proceed to derive an evolution equation for
the relaxing deformation G. Since Be = FHF�, with the
inverse relaxing strain defined as H := (G�G)−1, the strain
energy density (2) depends on the relaxing deformation G
only through H. Any relaxation dynamics necessarily obeys
a dissipation inequality, ensuring a non-negative entropy
production. In this case, such an inequality reads

(F��−1F) · Ḣ � 0 (5)

(see [6]). In terms of the co-deformational derivative

B�
e := Ḃe − (∇v) Be − Be(∇v)� = F

.

HF�, (6)

where v is the translational velocity field and ∇v = ḞF−1 is
its spatial gradient, inequality (5) takes the form

�−1 · B�
e < 0 unless B�

e = 0, (7)

made stricter by the presumption that relaxation does dissipate.
The simplest way to satisfy it is to assume that there is
an invertible dissipation tensor D whose symmetric part is
positive-definite, such that

DB�
e = −�−1 + λ B−1

e , (8)

where the Lagrange multiplier λ enforces the condition that the
relaxation process be isochoric. After introducing the mobility
tensor M := D−1, this yields the gradient-flow equation [16]

B�
e = −M

(
�−1 − (M�−1) · B−1

e

(MB−1
e ) · B−1

e
B−1

e

)
. (9)

Note that, contrary to H, the effective strain Be is independent
of the arbitrarily chosen reference. Hence, the relaxation
dynamics (9) is properly defined.

The most general dissipation tensorD sharing the symmetry
of the shape tensor (3) may be parametrized by six scalar
coefficients, τ1, . . . ,τ6, as [17]

DL = τ1L + τ2(tr L) I + τ3(�L + L�)

+ τ4[(tr L)� + (� ·L) I ] + τ5�L�

+ τ6[(tr L)� − (� ·L) I ] for all L ∈ Sym. (10)

It depends on the aspect ratio a via �, and possibly also
via the coefficients τ1, . . . ,τ6. Generically, D has two double

eigenvalues:

τ⊥ = τ1 + (a2+ a−1)τ3 + a τ5 > 0,

τ‖ = τ1 + 2 a−1 τ3 + a−2 τ5 > 0, (11)

associated, respectively, with the shearing modes in the plane
normal to n and the shearing modes that tilt the nematic
director. Their inverses measure how fast these modes relax.
On the (complementary) invariant subspace spanned by the
orthonormal pair [(

√
3/2) dev(n ⊗ n), (1/

√
3 )I], D acts as

follows:

[D] =
(

τ11 τ12

τ21 τ22

)
,

where

τ11 = τ1 + 4 a3 + 2

3 a
τ3 + 2 a6 + 1

3 a2
τ5,

τ22 = τ1 + 3 τ2 + 2
a3 + 2

3 a
τ3 + 2

a3 + 2

a
τ4 + a6 + 2

3 a2
τ5,

1

2
(τ12 + τ21) =

√
2

a3 − 1

3a2
[2 a τ2 + 3 a τ4 + (1 + a3) τ5],

1

2
(τ12 − τ21) =

√
2

a3 − 1

a
τ6

with

τ11τ22 − 1
4 (τ12 + τ21)2 > 0. (12)

Under positivity conditions (11) and (12), D is invertible
regardless of the value of τ6. For a = 1 (a condition identifying
an isotropic liquid), τ⊥ and τ‖ collapse into τ11 = τ1+ 2 τ3 +
τ5 > 0 , τ12 = τ21 = 0 , and (10) reduces to

DL = τ11 dev L + τ22
1
3 (tr L)I,

with τ22 = τ11+ 3 (τ2 + 2 τ4) > 0 .

III. LOW-FREQUENCY LIMIT:
A NEW PARODI RELATION

Now that we have characterized both the elastic and the
relaxational material properties, we set up a perturbative
procedure fit to study the slow motions where the system is
expected to comply with the Ericksen-Leslie hydrodynamics.
The evolution equation (9) has only one stationary solution:
Be =�, which is globally attractive. Therefore, if the defor-
mation process is slow enough (on the time scale set by the
largest relaxation time characterizing D), the ensuing viscous
response is well described by linearizing the right side of (9)
about � and assuming the deformation gradient to be retarded
in the sense of [18]:

εFe(t) := F(0)
e (ε t) + ε F(1)

e (ε t) + o(ε)F(+)
e (ε t), (13)

implying that εḞe = ε Ḟ(0)
e + o(ε) and εB�

e = ε ��+ o(ε). Un-
der these assumptions, Eq. (9), trivially satisfied at O(1), at
O(ε) leads to

dev
(
�−1B(1)

e

) = − dev[(D��)�], (14)

which, substituted into (4), yields

T(1)
shr =−μ dev[(D��)�]. (15)
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The co-deformational derivative of the shape tensor (3) reads

�� := �̇ − (∇v) � − �(∇v)�

= 2(a2− a−1) sym[n̊ ⊗ n − (Dn) ⊗n] − 2 a−1D,

where n̊ := ṅ − Wn is the corotational derivative of the
nematic director, D := sym(∇v) is the (traceless) stretching,
and W := skw(∇v) is the spin.

We are now in a position to compare our result (15) with the
most general linear viscous stress compatible with the nematic
structure, as posited in [10], namely

α1n · (Dn)n ⊗ n + α2n̊ ⊗ n + α3n ⊗ n̊

+α4D + α5(Dn) ⊗ n + α6n ⊗ (Dn), (16)

whose traceless component matches (15) provided that the six
Leslie viscosities are identified as follows:

α1 = μa−3{2 (a3 − 1)2 [a7τ1 + a τ2 + 2 (a3 + 1) τ4]

+ a(4 a9 − a6 − 2 a3 − 1) τ⊥− 2 a (a12 − 1) τ‖},
α2 = −μ (a3− 1) a τ⊥,

α3 = −μ (a3− 1) a−2 τ⊥,

α4 = 2 μa−2 τ‖,

α5 = μ[(a3+ 1) a τ⊥ − 2 a−2 τ‖],

α6 = μ[(a3+ 1) a−2 τ⊥ − 2 a−2 τ‖]. (17)

These viscosity coefficients satisfy identically the well-known
Parodi relation [11]

α2 + α3 = α6 − α5. (18)

This should be expected, since τ6, the only coefficient breaking
the symmetry of D, does not enter equalities (17) [19]. A far
less obvious result is the new nonlinear relation involving all
Leslie viscosities but α1:

α2

α3
= α4 + α5

α4 + α6
, (19)

and the fact that the cubic root of the two ratios equated in (19)
equals the aspect ratio a:

α2

α3
= α4 + α5

α4 + α6
= a3. (20)

For a = 1 (implying � = I and an isotropic free-energy
density), all α’s vanish but α4 = 2 μτ11. The ratio α2/α3

is hence undefined. However, (19) and (20) still hold by
continuity. Parodi’s relation (18), stemming from a general
thermodynamic argument, is so well established that it is
simply taken for granted by experimentalists who identify
all of the six Leslie coefficients in the absence of data from
normal stress measurements [20]. The new relation (19), on the
contrary, is specific to the present theory of anisotropic nematic
relaxation. Checking (19) against evidence from independent
sources provides, therefore, a significant test of our theory.

To do so, we have at our disposal both experimental and
theoretical results, along with numerical simulations. More
precisely, in what follows we analyze (i) an early paper [21]
on MD simulation of NLCs, inspired by the model molecular
theory put forward by Helfrich [22], and a relatively recent

one [23], based on the Gay-Berne potential; (ii) the experimen-
tal study [24] universally regarded as the standard reference
for the viscosities of MBBA between 20 and 44 ◦C; (iii) the
outcome of a study on nonequilibrium statistical mechanics
initiated by Osipov and Terentjev [25,26], extending previous
results by Kuzuu and Doi [27] (see, in particular, the recent
comprehensive review by Chan and Terentjev [25]).

In [21], Baals and Hess computed a complete set of
viscosity coefficients by running a series of nonequilibrium
MD simulations on a small system comprised of 128 particles,
interacting through either a Lennard-Jones ellipsoid or a
soft ellipsoid (purely repulsive) potential and subjected to
plane Couette flows with various shear rates and different
orientations relative to the uniform nematic direction, which
was kept fixed in all runs. Their results are immediately
comparable with the predictions of our theory, both having
been obtained for a perfectly aligned nematic fluid. The
coefficients in [21] may hence enter directly the left and right
sides of equality (19), which happens to be satisfied remarkably
well (see Table I).

All remaining data are obtained for partially oriented NCLs.
Nematic viscosities depend on the degree of nematic order
essentially through the scalar Maier-Saupe order parameter
S, ranging from 0 (isotropic state) to 1 (perfect alignment)
[25–28]. To compensate for the fact that our theory does not
account for partial order, we obtain a crude reconstruction of
the nominal values of nematic viscosities at S =1 from values
measured for partially ordered NLCs by replacing each n ⊗ n
term in the viscous stress (16) by the corresponding second-
moment tensor Sn ⊗ n [28] and taking into account that the
nematic contribution to the shear viscosity α4 is overshadowed
by a dominant isotropic contribution [24,26].

In [23], Wu, Qian, and Zhang performed nonequilibrium
MD simulations on a system of about 6000 molecules,
interacting via a Gay-Berne potential, for determining the
six Leslie coefficients for each of three different shear rates.
Their values, extrapolated from S = 0.75 to 1 through the
above-described reconstruction procedure, show a striking
agreement with relation (19) (see Table I).

In [24], Kneppe et al. provided a complete set of Leslie
coefficients for several temperature values ranging from 20
to 44 ◦C. Figure 1 shows that the measured values may be
satisfactorily fitted with our predictions (17), provided we
assume that the Leslie viscosities depend on the Maier-Saupe

TABLE I. LJE and SE stand, respectively, for Lennard-Jones (LJ)
ellipsoid and soft ellipsoid potentials, as used in [21]; the shear rates
used in [23] are given in LJ reduced units. The third column, relative
to Parodi’s relation (18), is provided as a term of comparison. The
scatter of the results from [21] is huge, due to the small size of the
molecular sample.

Source
α2

α3

/
α4 + α5

α4 + α6

α2 + α3

α6 − α5
a

[21] LJE 1.01 ± 0.59 0.91 ± 0.41 1.75 ± 0.62
[21] SE 1.01 ± 0.45 1.01 ± 0.39 1.78 ± 0.57
[23] 0.066 0.92 ± 0.24 1.01 ± 0.06 2.02 ± 0.09
[23] 0.044 0.98 ± 0.30 1.04 ± 0.08 1.96 ± 0.10
[23] 0.022 1.10 ± 0.73 1.10 ± 0.20 1.94 ± 0.21
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FIG. 1. Viscosity coefficients of nematic MBBA as a function
of temperature: our S-rescaled values (solid lines) vs experimental
data from [24] (dotted lines). Bottom x axis: inverse of absolute
temperature (mK−1); top x axis: temperature (◦C); y axis: logarithm
of the modulus of viscosities in Pa s (all of them negative, except α4

and α5).

order parameter S as discussed above, and S itself depends
on temperature as in Table II. A remarkable exception is
provided by the Leslie coefficient α3, which deserves special
attention. In fact, in [24] the authors themselves raise a warning
concerning this coefficient, which they derive as the difference
of two nearly equal quantities, to the point that they hope
for alternative measuring techniques. In particular, one of the
striking peculiarities of the experimental α3 estimate in [24] is
that, at variance with all other viscosities, it appears to increase
when the degree of orientation decreases. On the contrary, our
theory predicts a consistent temperature dependence for all
nematic viscosities.

A third and final test for our theoretical predictions comes
from the nonequilibrium Fokker-Planck analysis developed
in [25–27]. This mean-field theory deals exclusively with the
relaxational dynamics of the orientational degrees of freedom
of anisotropic molecules to the exclusion of the translational
relaxation associated with shear flow. Consequently, it does not
provide reliable predictions for the shear viscosity coefficient
α4, and therefore it cannot be used as a direct test for the
new Parodi-like relation (19). Moreover, this theory delivers
an explicit universal representation only for the symmetric part

TABLE II. Values of the Maier-Saupe order parameter S identi-
fied by a best fit between experimental MBBA viscosities in [24] and
our theory (see text for details). Note that the temperature dependence
we obtain for S is consistent with a weakly first-order nematic-
isotropic phase transition, with a critical temperature TNI 	 49 ◦C.

T (◦C) 20 25 30 35 40 42 44

S 0.92 0.66 0.48 0.34 0.23 0.19 0.14

of the stress tensor, while the rotational viscosity γ1 = α3 − α2

(and hence the complete set of Leslie viscosities) depends on
the specific form of the assumed mean-field potential. That
having been said, results in [25–27] are in good qualitative
agreement with our formulas (17)—with the obvious exception
of α4.

Equality (20) further allows us to establish a direct link
between the aspect ratio a—playing a key role in the present
theory of nematic relaxation but not directly observable—and
quantities amenable to experimental and numerical determi-
nation. The values obtained from data in [21,23] are collected
in the fourth column of Table I.

IV. DISCUSSION

We have presented a hydrodynamic theory that accounts for
both elastic and relaxational effects, based only on material
symmetry requirements. When applied to NLCs in the low-
frequency regime, this theory predicts another relation beyond
Parodi’s linking the six Leslie viscosities, thus lowering to
four the number of independent nematic viscosities. Our
predictions are in remarkable quantitative accord with ex-
perimental measures on MBBA and MD simulations, and in
fair qualitative agreement with earlier theoretical predictions.
The basic tenet of our theory is the separation between
equilibrium properties, encoded in the free-energy functional,
and nonequilibrium properties, encoded in the relaxation
dynamics. Correspondingly, the distinction between “solid”
and “liquid” rests on the activated relaxation mechanisms,
and not on the underlying energetics. In fact, the strain energy
functional characterizing anisotropic (visco)elastic solids such
as nematic elastomers and the anisotropic potential (2) we use
for nematic liquid crystals are formally alike.

NLCs may be classified into two groups: flow-aligning
(such as MBBA and 5CB) and tumbling (such as HBAB and
8CB) [29], characterized, respectively, by a positive or negative
value of the tumbling parameter,

λ = 1 + α3/α2

1 − α3/α2
. (21)

Since a is intrinsically positive and reasonably greater than
1, (19) implies 0 < α3/α2 < 1 ⇔ λ > 0. Therefore, our the-
ory covers only flow-aligning NLCs. While narrowing its
scope, this limitation makes it more specific. The hidden link
between assumption (2) and flow alignment surely deserves
further study, as does a proper incorporation of the degree
of nematic order. A separate issue we intend to address
is removing the incompressibility constraint, paying due
attention to the possible role of τ6 [19], in order to reconsider
the nematoacoustic problem we tackled in [6].
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