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Abstract—Visual Sensor Networks (VSNs) have been recently

used for implementing automatic visual analysis tasks where

local image features, instead of images, are compressed and

transmitted to a central controller. Such features may also be

compressed in a multi-view fashion, exploiting the redundancy

between overlapping views. In this paper we analyze the problem

of multi-view coding and routing of features in VSNs. We

empirically analyze the relationship between the bitrate reduction

obtained with a practical multi-view local features encoder and

several geometry-based, image-based and feature-based predic-

tors. The purpose of this analysis is to identify the most accurate,

yet compact predictor of the achievable compression efficiency

when jointly encoding correlated streams of local features. Then,

we propose a robust optimization framework that exploits the

aforementioned predictors. The proposed mathematical problem

maximizes the amount of data extracted from the VSN by

properly routing the streams of features, subject to capacity,

interference and energy constraints, explicitly considering the

uncertainty in the compression efficiency estimation. Extensive

experiments on simulated VSNs show that multi-view coding

maximizes the amount of data extracted from camera nodes,

while the robust optimization approach provides significant

improvement in uncertain scenarios compared to the optimal

solution of a deterministic approach.

I. INTRODUCTION

Visual Sensor Networks (VSNs) are composed of many
low-cost, battery-operated wireless camera sensors with the
ability of acquiring, processing and transmitting visual data.
By extending the capabilities of traditional Wireless Sensor
Networks (WSNs), VSNs will play a major role in the evo-
lution of the Internet-of-Things (IoT) paradigm by enabling
visual data gathering, processing and analysis. Especially in
the scenario of smart cities, VSNs may be used to implement
several visual analysis applications such as traffic and infras-
tructure monitoring, vacant parking lot detection, surveillance
and many others. VSNs are particularly stimulating from the
research point of view as they pose additional challenges
compared to traditional WSN. Such challenges come from
the struggle between applications requirements and technology
constraints: on the one hand, applications based on visual
data generally require intense processing and high bandwidth
availability. On the other hand, VSNs are characterized by tight
energy, processing and bandwidth constraints, thus calling
for advanced solutions in the areas of data compression,
processing and networking.

Very recently, a new trend has emerged as a possible
solution to enable visual analysis in resource constrained

VSNs. The key tenet is that many analysis tasks are carried
out through the extraction of distinctive local features from the
image data [1]. Each local feature is composed by a keypoint,
i.e. a salient region of the image, and a descriptor, which sum-
marizes the photometric properties of the image area around
the keypoint. Being robust to several transformations (scale,
rotation, illumination, viewpoint, etc...) such local features are
particularly suited to performing analysis tasks such as object
detection, recognition, tracking and classification.

Recent studies have shown that this kind of features have
several interesting properties: first, they can be extracted very
efficiently even on low-power architectures; second, they are
able to summarize the salient parts of the visual content
with a much more compact representation than traditional
compressed image data; third, they can be further encoded
in a global representation known as Bag of Visual Words
(BoVW) which is extremely efficient for storage, transmission
and retrieval purposes.

These characteristics have paved the way for a novel
paradigm for visual analysis in wireless networked scenario:
instead of acquiring, compressing and transmitting images to a
central server for further analysis, camera nodes may extract,
compress and transmit features to the server, thus greatly
reducing the utilized bandwidth, yet without sacrificing the
performance of the analysis that follows. Such a paradigm has
been applied successfully to several networked scenarios, in-
cluding VSNs [2] and mobile visual search [3], and constitutes
the basis of the recently released MPEG-7 CDVS (Compact
Descriptors for Visual Search) standard [4].

In VSNs, it often happens that multiple camera sensors are
deployed in the same area and it is likely that their fields of
view (FoVs) overlap. This redundancy is typically enforced
to increase the robustness of monitoring (e.g, ensuring visual
coverage even in case of camera failures) or its accuracy
(e.g., avoiding occlusion). As a consequence, the visual data
acquired by cameras with overlapping FoVs may exhibit a
high degree of correlation, regardless of the paradigm chosen
for visual data transmission (i.e., image-based or feature-
based). Since bandwidth is generally constrained in VSNs, it is
imperative to find an efficient way to remove the redundancy
before data transmission. Several works in the past have
addressed the problem of compressing correlated image data
in networked scenarios. Exploiting recent advances in the
fields of multi-view coding (MVC) [5] and distributed video
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coding (DVC) [6], such works generally aim at maximizing the
overall compression efficiency following a two steps approach:
first, the correlation existing between different cameras is
predicted using either geometric [7] or content-dependent
information [8]; then, based on this prediction, routing in the
network is optimized so as to maximize different performance
metrics (e.g., lifetime [9], [10] or quality-of-service [11]). Still,
to the best of our knowledge, very limited work has been
done for what concerns the compression and transmission
of correlated streams of visual features, as previous works
focused only on image/video data. In this paper we propose a
robust optimization framework to jointly encode and transmit
correlated streams of features in resource-constrained VSNs.
In particular, the novel contribution of this paper is twofold:

1) We analyze empirically the relationship between the
bitrate reduction obtained with a practical multi-view
local feature encoder and several predictors. We con-
sider different types of predictors, including topology-
based, image-based, feature-based and mixed ones. The
purpose of the analysis is to identify the most accurate,
yet compact, predictor of the achievable compression
efficiency when jointly encoding correlated streams of
local features.

2) We propose a joint multi-view coding and routing robust
optimization framework that exploits the aforementioned
predictor. We introduce a mathematical formulation that
seeks the optimal routing such that the amount of data
extracted from the VSN is maximized. The formulation
explicitly takes into account the uncertainty in the esti-
mation of the compression efficiency, as well as network-
related constraints (e.g., capacity and interference) and
the energy costs of compressing and transmitting visual
features, which are obtained through measurements on a
real VSN testbed.

The rest of this paper is organized as follows: Section II
discusses the related works in the area of compression and
routing of correlated visual data in VSNs. In Section III
we present an empirical analysis aimed at selecting the best
predictor of the achievable multi-view feature compression
efficiency. The resulting predictor is leveraged in Section IV
to formulate a joint multi-view coding and routing robust
optimization problem. Section V provides an extensive exper-
imental evaluation of the proposed framework, while Section
VI concludes the paper.

II. RELATED WORK

Several solutions for joint compression and routing of
correlated images in visual sensor networks are available in
the literature. As mentioned earlier, such works follow a two
steps approach: in the first step, an estimation process is
performed to predict the possible gain resulting from the joint
compression of images acquired by two or more cameras
with overlapping FoVs. In the second step, the prediction
is leveraged to perform network-related optimizations. In [7]
a spatial correlation model is proposed to describe the re-
dundancy existing between multiple homogeneous cameras

(i.e., with the same focal length). The proposed model uses
geometrical information of the cameras (e.g., their locations
and sensing directions) to estimate a correlation coefficient
between them. The correlation coefficient is used in [12]
to predict the compression efficiency of H.264 with MVC
extension, and to partition a VSN into a set of coding clusters
such that the global coding gain is maximized. In [9], the
correlation coefficient between cameras is leveraged to set
up three different network optimization problems targeting (i)
the placement of multimedia processing hubs to collect and
encode correlated images in a VSN, (ii) the maximization of
the global compression gain and (iii) the maximization of the
VSN lifetime. In [13], a correlation-aware quality-of-service
routing algorithm is proposed in order to minimize energy
consumption in the network subject to delay and reliability
constraint. The work in [10] proposes a joint coding/routing
optimization problem which maximizes the lifetime of a VSN
subject to image distortion and rate constraints. Again, the key
parameter in evaluating the rate-distortion function of each
camera is an inter-view spatial correlation coefficient, which
is assumed inversely proportional to the distance between two
cameras. Clearly, providing an accurate modeling of the rela-
tion between camera correlation and multi-view compression
efficiency is of key importance in such works. Therefore,
several efforts have been made to improve such a modeling,
either taking into account camera heterogeneity [14], or depart-
ing from a geometric/spatial approach and taking a different
approach which explicitly takes into account the visual content
of the different views. In [8], the common sensed area (CSA)
between different camera views is defined and used as a
predictor for the compression efficiency of multi-view coding.
Differently from previous works, the CSA is not computed
based on geometric information, but is estimated starting from
downsampled images which are exchanged between cameras.
The main benefits in taking this approach is that it is robust
to several scene-related factors (presence of moving objects,
occlusions, illumination changes, etc...) that a geometric model
may not capture accurately. The CSA is also leveraged in [15]
to evaluate the possible benefits of a joint coding/routing
scheme in multi-hop VSNs.

All the aforementioned works deal with coding and trans-
mission of correlated images. To the best of our knowledge,
there are no works targeting joint coding/routing of features
data in networked scenarios, although some preliminary works
have studied the problem of compressing local [16] or global
features [17] extracted from multiple, correlated views. This
multi-view features coding (MVFC) approaches form the basis
for joint coding/routing of features data in VSNs.

III. MVFC COMPRESSION EFFICIENCY PREDICTION

This section describes the approach taken to estimate the
compression efficiency of a practical multi-view features en-
coder based on different predictors. First, we give a brief
background on local and global features extraction and multi-
view features coding. Then, we describe different predictors
for the MVCF compression efficiency, including existing and



novel approaches. We compare their performance in terms of
accuracy of prediction and overhead transmission cost.

A. Background on local and global features

There exist several different algorithms for extracting local
visual features from an image, all following a two-steps ap-
proach. First, a detector algorithm identifies salient keypoints
k in the image. Each keypoint is generally characterized by
its location, dimension (scale) and principal orientation of
the surrounding patch of pixels. Then, for each keypoint,
a descriptor vector d is computed, which summarizes the
photometric properties of the image area around the keypoint.
A visual feature f is then composed of a keypoint and the
corresponding descriptor, i.e. f = {k,d}, and we denote as F
the complete set of features extracted from an image. Without
loss of generality, in this work we consider SIFT features,
which are widely recognized as the gold standard in terms of
performance for a broad range of visual analysis tasks.

The set F can also be transformed in a global representation
known as Bag of Visual Words according to the following pro-
cess. First, a vocabulary of W descriptors w1,w2, . . . ,wW

,
(known as visual words) is learned from a large number of
representative descriptors. Second, the set F is clustered using
the W visual words as centers. Finally, a BoVW histogram
is produced: the histogram has W bins b

i

, i = 1 . . .W

where b

i

counts the number of descriptors from F mapped
to the word w

i

. Usually, a descriptor is mapped to its nearest
centroid in the descriptor space. Due to its compactness and
ability to summarize efficienctly an image content, the BoVW
representation is generally used in the field of content based
image retrieval from very large databases [18].

B. Multi-view local features coding (MVFC)

Several compression algorithms have been proposed to
efficiently encode a set of features F . Mimicking the best
practices in the field of video and image coding, such algo-
rithms exploit either the redundancy of the set of features, or
encode F using another set of features F

r

as reference. As
an example, the work in [19] proposes a coding scheme to
encode set of features extracted from video sequences (i.e.,
F

r

and F are extracted from temporally adjacent frames). In
a similar fashion, the work in [16] propose a multi-view local
features coding scheme, where F and F

r

are extracted from
two correlated views.

C. MVFC compression efficiency prediction

We have implemented a multi-view local features encoder
following the design proposed in [16]. Given two sets of fea-
tures F

i

and F
j

extracted from two cameras with overlapping
fields of view, we define the MVFC coding efficiency as:

⌘

i,j

=

R

j

�R

MVFC
i,j

R

j

, (1)

where R

j

is the rate needed to encode F
j

alone and R

MVFC
i,j

is the rate to encode F
j

using MVFC with F
i

as reference.
Put in other way, ⌘

i,j

is the achievable bitrate reduction (in

percentage) on F
j

, when using F
i

as reference. Note that ⌘
i,j

can be computed exactly only after camera i transmits F
i

to
camera j for multi-view encoding. Our goal is to estimate
⌘

i,j

without explicit transmission of F
i

to camera j, so that
network optimization can be put in place. Clearly, as it happens
for multi-view coding of pixel-domain content such as images
and video, we expect ⌘

i,j

to be directly related to the the
amount of correlation existing between the two cameras. Thus,
we study the relationship of ⌘

i,j

with the following predictors
of inter-camera correlation:

• Geometry-based: similarly to [7], we consider geometric
predictors only, such as the distance d

i,j

between the two
camera centers or the angle ✓

i,j

between their sensing
directions.

• Image-based: as proposed in [8], the two cameras may
exchange a thumbnail version of the acquired images
and estimate their correlation based on them. The CSA
↵

i,j

between two cameras is computed on a per-frame
basis as the number of pixels in the overlapping region
between the view of camera i and a suitably displaced
version of the view of camera j. The displacement is
chosen so at to maximize the inter-view normalized
bidimensional crosscorrelation function. The suggested
size for the thumbnail to be exchanged between the two
cameras is 22⇥18 pixels.

• Feature-based: The BoVW representation can be nat-
urally used to understand the similarity of two im-
ages. After feature extraction, camera i may produce a
BoVW histogram and transmit it to camera j, which
also computes its own histogram. In practice, the BoVW
histrograms are first normalized to unit length and then
quantized before transmission. Finally, a distance measure
between the two histograms can be computed and used
as predictor of inter-view correlation. Clearly, several
degrees of freedom are available, such as the size of the
vocabulary and the distance measure to be used. Here,
we use BoVW histograms with incresing vocabulary size
W in the range {128, 256, 512, 1024, 2048}. We use the
Euclidean distance as a measure of similarity between
two histograms.

• Mixed approaches: we also evaluate multi-predictor ap-
proaches, where the MVFC compression efficiency is
estimated based on the knowledge of both the geometry
between the cameras and a content-based predictor.

To compare and evaluate the predictors, several tests have been
performed on publicly available multi-view video sequences
and image datasets. In particular, we relied on two different
types of multi-view datasets:

a) Linearly spaced cameras with parallel sensing direc-
tions (d

i,j

> 0, ✓

i,j

= 0): The three datasets Akko&Kayo,
Kendo and Balloons1 all contain multi-view video sequences
recorded with a linear array of cameras with 5-cm spacings.
From each dataset, 6 camera pairs are chosen, corresponding
to a linear spacing of 5,10,15,20,25 and 30 cm respectively.

1http://www.fujii.nuee.nagoya-u.ac.jp/multiview-data/
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Fig. 1. Relationship between the compression efficiency ⌘ and different predictors for the Akko&Kayo dataset: (a) physical distance between cameras in cm,
(b) CSA, (c) Euclidean distance between normalized BoVW histograms with 1024 bins and (d) mixed geometry- and feature-based approach. Each graph
shows also the result of model fitting.

For each pair, 50 frames are chosen. This gives a total number
of image pairs (samples) equal to 3⇥ 6⇥ 50 = 900.

b) Image datasets where cameras have non-parallel sens-
ing directions (d

i,j

> 0, ✓

i,j

> 0): The Columbia Object
Image Library (COIL-100)2 and Amsterdam Library of Image
Objects (ALOI)3 contain images of objects captured at 72
different poses obtained by rotating the object by 5 degrees
each time. From each dataset, 8 camera pairs are selected,
corresponding to the following angles between the camera
sensing directions: {±5

�, ±10

�,±15

�,±20

�}. For each camera
pair, 50 images are selected, for a total of 2 ⇥ 8 ⇥ 50 = 800

samples.
The tests have been performed according to the following

steps: for each sample (i.e., each couple of frame (i, j) from
the aforementioned datasets), we extract SIFT local features.
Frame i is used as reference view, and the corresponding set
of features F

i

is used to encode the features extracted from
the j-th view using the MVFC encoder. The resulting coding
efficiency ⌘

i,j

is stored. Simultaneously, for the same couple of
frames (i, j) we stored the physical distance d

i,j

between the
cameras, or the angle between the camera sensing directions
✓

i,j

(depending on the type of dataset under study), the CSA
value ↵

i,j

and the Euclidean distance between the BoVW
representations of the two frames, b

i,j

.
Figure 1 shows the relationship between the MVFC com-

pression efficiency and the different predictors for the dataset
characterized by linearly spaced cameras (similar results are
obtained for the datasets with non-parallel sensing directions).
Our goal is to find a model based on such predictors such that
(i) the estimation accuracy is maximized and (ii) the cost of
transmitting the predictor is minimized. We rely on linear re-
gression for the geometric-based (Fig. 1(a)) and feature-based
(Fig. 1(c)) predictors. For the image-based (CSA) predictor,
we rely on the model defined in [15]:

⌘̂

i

= ⌘max ·
✏

1� ↵

i

+ ✏

, (2)

where ⌘max is the maximum observed compression and ✏

is a parameter to be estimated. Finally, for the mixed case
(Fig. 1(d)), we used multi-linear regression. To evaluate the
accuracy of each model, we estimate the parameters with least-
squares and we compute the root mean squared error (RMSE)

2http://www.cs.columbia.edu/CAVE/software/softlib/coil-100.php
3http://aloi.science.uva.nl/

between the observed and predicted compression efficiency, ⌘̂
i

and ⌘

i

, respectively:

RMSE =

vuut 1

n

nX

i=1

(⌘̂

i

� ⌘

i

)

2
, (3)

The RMSE computation was performed relying on k-fold
cross-validation with k = 5. For each model, we also compute
the cost of transmitting the predictor between the two cameras.
For the geometry-based model, one may assume that the
physical topology is known to all cameras and therefore there
is no need of transmitting the predictors. For the image-based
(CSA) model, we rely on what suggested in [15]: assuming
the exchange of a thumbnail image of 22⇥18 pixels between
the cameras, and a pixel depth of 8 bits, the cost of such a
predictor is 3168 bits. For the feature-based models, the cost
of the predictor depends on the BoVW size W . We assumed
that each bin in the histogram is quantized uniformly using 8
bits, and the output symbols of the quantizer are lossless coded
with an arithmetic encoder (whose symbols probabilities are
learned from a great set of quantized BoVW histograms).

Figures 2(a) and 2(b) illustrate the accuracy-cost tradeoff
obtained for the different predictors, on datasets characterized
by cameras with parallel sensing directions (Akko&Kayo,
Ballons and Kendo) and cameras with non-parallel sensing
directions (Coil-100, ALOI), respectively. Basing on the in-
spection of such results, several consideration can be made:

• Image-based methods seem to perform poorly with re-
spect to the other predictors, exhibiting the worst RMSE
at the highest cost for transmission. The performance in
terms of RMSE are even worse in the case of datasets
where cameras have non-parallel sensing direction. This
is expected, considering that the CSA is estimated by
finding a suitable linear displacement between two views
and maximizing their crosscorrelation. When the inter-
geometry between cameras is not a pure translation, such
a method fails.

• methods based solely on geometric information perform
particularly well on the tested dataset. On the one hand,
they are the cheapest solution in terms of data transmitted
between the two cameras (if the geometry is known
a-priori, there is not even the need to transmit such
information). However, we posit that such a particularly
good performance is due to the datasets used for the
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Fig. 2. Performance of the different predictors in terms of their estimation accuracy and overhead transmission cost for (a) camera with parallel sensing
directions and (b) cameras with non-parallel sensing direction.

analysis, which are generated in controlled scenarios
without occlusions and difference in lightings conditions.

• The performance of feature-based methods generally in-
crease with the BoVW size: this is clearly expected, as a
larger vocabulary can represent more accurately similarity
between two images. Also, the performance seems to
saturate for vocabularies larger than 1024 words.

• Overall, the best performance is obtained fusing the infor-
mation from geometric-based and feature-based methods.

From such considerations, we select the mixed approach with
BoVW size W = 1024 as predictor of compression efficiency.
The transmission of the selected predictor requires about 700
bits and the RMSE is 0.096 for the case of linearly spaced
cameras and 0.103 for cameras with non parallel sensing
directions.

IV. NETWORK OPTIMIZATION

The predictor identified in Section III can be leveraged to
set up a mathematical framework in order to optimize the
operation of the VSN. In particular, given a VSN topology,
we are interested in finding (i) which camera nodes should
cooperate (that is, they jointly encode their set of visual
features in a multi-view fashion) and (ii) what are the optimal
routing paths from camera nodes to the sink node so that the
amount of information extracted from the VSN is maximized.

A. Network Model

Let G = (V, E) be a directed graph that models a visual
sensor network, in which V denotes the set of nodes and
E denotes the set of wireless links. Let V = C [ S , being
C the set of camera nodes and S the sink node. A directed
link (i, j) 2 E exists if nodes i and j (with i, j 2 V) are in
communication range. Without loss of generality, we consider
the case of symmetric links only, that is, if (i, j) 2 E then
(j, i) 2 E , as well. Each camera node acquires an image and
extracts a set of visual features from it. Such features have to
be transmitted to the sink node for analysis purposes. Let ⇢

i

be a variable that denotes the amount of visual feature data

transmitted by the i-th camera. Finally, let f
i,j

be a variable
denoting the flow over the directed link (i, j).

The optimization problem should decide whether two cam-
eras i and j have to jointly encode their set of features or not.
In case they do, we say that the two cameras cooperate. Let
x

i,j

be a binary variable defined as:

x

i,j

=

(
1 if cameras i and j cooperate
0 otherwise

(4)

In case the two cameras cooperate, that is, if x

i,j

is equal to
1, camera i will transmit its set of features F

i

to camera j,
which will encode its own set F

j

with the multi-view feature
encoder, using F

i

as reference view.

B. Objective function

The objective of the optimization problem is to maximize
the amount of data extracted from the VSN. Such an objective
function is a natural choice for VSNs, as the amount of data
extracted from camera nodes is proportional to the visual qual-
ity of the content itself. When camera nodes transmit images
or videos whose final purpose is to be perceived by human
beings, the visual quality is captured by rate-distortion models.
Conversely, when camera nodes transmit local features that
have to be analyzed by a computer algorithm (e.g., object
recognition, people identification), the quality of the visual
features is capture by proper rate-accuracy models [20]. In
any case, the higher the amount of data extracted by camera
nodes, the better the visual quality/accuracy.

Although different functions can be used as objective (i.e.,
maximizing the sum or the mean of such rates over all cam-
eras), here we rely on a fair max-min approach by maximizing
the minimum source rate r, that is:

max

⇢,f,x

r (5)

s.t.
⇢

i

� r (6)

This ensures that camera nodes in the VSN will receive a fair
assignment for their output source rates.



C. Energy constraints

In VSNs, camera nodes are generally battery-operated and
their energy resources are limited. Therefore, one may want to
limit the energy consumption of each camera so that at least
R rounds can be completed:

Erx
X

(n,c)2E

f

n,c

+ Etx
X

(c,n)2E

f

c,n

+ Eextr + E

inter
c

X

b2C
x

b,c

(7)

+ E

intra
c (1�

X

b2C
x

b,c

) 
¯

E

R

, 8c 2 C,

where ¯

E is the initial energy budget of each camera. In
particular, we consider that camera nodes consume energy for
receiving and transmitting data (Erx and Etx, respectively), as
well as for extracting features from the acquired images (Eextr)
and compressing them, either relying on the set of features
coming from another view or not (Einter

c or Eintra
c , respectively).

D. Cooperation-related constraints

As a first step, we impose some practical limits on cooper-
ation. In particular, we define the following constraints:

X

j2C
x

i,j

 1, 8i 2 C, (8)

X

i2C
x

i,j

 1, 8j 2 C, (9)

x

i,j

+ x

j,i

 1 8i, j 2 C. (10)

Constraint (8) impose that a camera can be used as reference
view only by at most one other camera. Similarly, constraint
(9) impose that one camera can use at most on reference
view. Note that, in the most general scenario, constraints (8)
and (9) may also be avoided. For removing the latter, one
should model the fact that the same set of features is used as
reference view for different cameras. In a networked scenario,
this require to transmit the same set of features to all the
cameras willing to use it as a reference, thus making the
network modeling more complex. We leave this as future
work. Similarly, we do not deal with the fact that a single
view may be encoded with reference to multiple views, as
avoided by constraint (9). While this is possible in principle,
we expect limited improvements in the coding efficiency when
using multiple references.

Finally, constraint (10) states that cooperation may work
only in one direction at a time, that is if camera i is used as
reference for camera j, then the opposite should be avoided.

Note that, in case of multi-view encoding, there must exist
a flow of (at least) ⇢

i

on the link from i to j, that is:

f

i,j

� ⇢

i

· x
i,j

8(i, j) 2 E , i 2 C, j 2 C (11)

Constraint (11) is not a strict equality: this allows to model
the case of camera nodes which also act as relays. In this
case, even if cameras i and j do not jointly encode their set

of features (i.e., x

i,j

= 0), still camera i may route its (or
other) traffic through camera j.

The sum of outgoing flows from the j-th camera can be
written as:

X

k|(j,k)2E

f

j,k

=

X

k|(k,j)2E

f

k,j

+ ⇢

j

· (1�
X

i2C
x

i,j

⌘̂

i,j

), 8j 2 C

(12)
Constraint (12) states that in case camera i and j cooperate,
the outgoing flow of camera j is computed by incrementing its
incoming flow with the quantity ⇢

j

· (1�
P

i

x

i,j

⌘̂

i,j

), which
represents the multi-view compressed bitstream of camera
i given the reference flow of camera j. The compression
efficiency ⌘̂

i,j

is estimated on a per-frame basis using the
mixed-model presented in Section III, after the two cameras
have exchanged their BoVW histograms.

E. Flow conservation constraints

The formulation of the optimization problem is based on a
“fluidic” model, with flows of data streaming from the sources
of the network (camera nodes), to a remote destination (sink
node). Clearly, one should ensure that all the data produced by
the cameras is correctly received by the sink node. This fact
can be conveniently expressed using the following constraints:

X

j2C
⇢

j

· (1�
X

i2C
x

i,j

⌘̂

i,j

) =

X

i|(i,s)2E

f(i, s) (13)

Note that constraint (13) takes into account the possible
cooperation between camera nodes to determine the total
amount of flow injected in the network.

F. Interference and capacity constraints

The available bandwidth in the network is limited and must
be shared among sensor nodes. To ensure that transmissions
of multiple nodes do not interfere with each other, one should
carefully allocate the camera source rates. Such an allocation
should then permit to schedule the transmission of multiple
nodes in such a way that neither interferences nor delays
reduce the overall quality of delivery. Here, we translate this
requirements by identifying subsets of interfering links in the
network. The main idea is to constrain the total amount of
data streamed over those links, so that scheduling is possible
and interference or collisions are avoided. We assume that
nodes use a mechanism similar to RTS/CTS prior to packets
transmission so that two links (i, j) and (h, k) interfere with
each other if and only if i) (i, j) = (h, k); ii) (i, j) is adjacent
to (h, k); or iii) (i, j) is adjacent to another link which is
adjacent to (h, k). We can then introduce the set I

i,j

which
includes all the links interfering with link (i, j). If the generic
link (i, j) has capacity c(i,j), the interference constraint can
be expressed as:

f

i,j

+

X

(h,k)2Ii,j

f(h,k)  c(i,j) 8(i, j) 2 E . (14)



G. Robust counterpart problem

The complete problem formulation is a mixed integer non-
linear problem (MINLP) in the optimization variables ⇢, f

and x and it is solved on a per-frame basis after camera nodes
exchange BoVW histogram and communicate the estimated
compression efficiency ⌘̂

i,j

to the solver. However, as shown
in Figure 2, such estimates are not perfect. The values of ⌘̂

i,j

used during the optimization may in fact be different from
the actual achieved compression efficiency ⌘

i,j

, causing the
computed solution to be inefficient or even infeasible.

In order to cope with this uncertainty, we leverage a method-
ology known as robust optimization [21] and find a solution
that is not optimal for the nominal value of the parameters ⌘

i,j

,
but is robust with respect to its uncertain variation. Formally,
let min f(x, u) s.t. g(x, u)  0 be an optimization problem
defined over the variables x and the uncertainty parameter
u 2 U , where U is the uncertainty set. A robust feasible
solution to such an optimization problem is a vector x such that
all realizations of the constraints from the uncertainty set U
are satisfied, i.e. g(x, u)  0, 8u 2 U . The robust counterpart
solution can be then formalized as the robust feasible solution
which optimizes a worst-case objective function:

min

x

max

u

f(x, u)

s.t. g(x, u)  0 8u 2 U . (15)

In other words. the robust optimal solution is simply the
best uncertainty-immunized solution we can associate with
the uncertain problem. Moreover, in many scenarios finding
the robust solution is no harder than solving the deterministic
problem. Clearly, the definition of the uncertainty set U is
key to be able to formulate a robust counterpart that can be
solved efficiently. For the problem defined in Sections IV-A to
IV-F, the uncertainty comes from the parameters ⌘

i,j

, whose
lower and upper bounds are known from Figure 1(d). This
uncertainty affects the flow conservation constraints (12),(13)
and, indirectly, in the interference constraint in (14). If the
estimated value of the compression efficiency used during
optimization is higher than the actual value, such constraints
may be violated (e.g., the resulting flow routed on one link may
exceed the link capacity). Therefore, a robust solution must
satisfy the worst realization of the contraints, that is when the
parameters ⌘

i,j

assume their minimal values in the uncertainty
set. We use such a lower bound to solve the robust counterpart
problem.

V. EXPERIMENTAL EVALUATION

To evaluate the performance of the proposed framework, we
have carried out extensive experimental simulations. In partic-
ular, we are interested in assessing how beneficial multi-view
coding is in realistic scenarios, compared to the case in which
camera nodes transmit their data to the sink independently.
For the task at hand, we simulated several VSN instances
characterized by different numbers of camera nodes deployed
uniformly at random in a squared area of 100m⇥100m, with
one sink node deployed at the center of the area. A link

TABLE I
MEASUREMENTS FROM A VSN TESTBED

Name Symbol Value
Link capacity c 30 kbps

Transmission power Etx 5.35⇥10�5 J/bit
Reception power Erx 5.35⇥10�5 J/bit

Energy cost for features extraction Eextr 6.42 ⇥10�2 J
Energy cost for independent coding Eintra 8.56⇥10�2 J/bit
Energy cost for multi-view coding Einter 2.14⇥10�1 J/bit

Initial energy budget Ē 32.4⇥ 10�3 J

is established between two cameras if their distance is less
than the communication range Rcomm, which is set equal to
30 meters. Some of the links are removed with probability
p

r

= 10% to simulate asymmetries and noise in the radio envi-
ronment. For each couple of cameras in one network instance,
we select a couple of images in the datasets with parallel
sensing directions and we generate a couple of nominal and
actual compression efficiency parameters ⌘̂

i,j

and ⌘

i,j

, either
by prediction or by running the MVFC encoder.

To obtain the energy costs in (7) we implemented the
multi-view feature encoder proposed in [16] on a Linux-
operated BeagleBone Black platform. Such a platform may
be coupled with a IEEE 802.15.4-compliant dongle such as
the Memsic TelosB for low-power wireless communication
and with ad-hoc camera boards to provide vision capabilities
and has already been used in the past to implement real-life
VSN applications [22]. The resulting energy consumption was
measured indirectly by keeping track of the time spent by the
platform in each operative mode and multiplying this time by
the platform power consumption. Similarly, we also measured
the maximum data rate achievable by the TelosB dongle to
model the capacity of each link. Table I summarizes the values
resulting from such measurements campaign and which have
been used in the optimization problem.

We formalized both the optimization problem introduced
in IV and its robust counterpart with AMPL and generated
different data instances varying each time the number of
camera nodes and the maximum consumed energy ¯

E. The
instances were solved with BONMIN [23]. All results are
presented in terms on the percentage gain G obtained by
the proposed framework compared to a non-cooperative case,
i.e., when camera nodes transmit all their data to the sink
independently without relying to multi-view coding. That is,

G =

rc � rnc

rnc
, (16)

where rc is the solution in the cooperative case) and rnc is
the solution obtained when fixing all the variables x

i,j

to zero
(i.e., maximum flow achievable in the non-cooperative case).

As a first experiment, we computed the achievable gain
for different energy constraints. We give to R in (7) two
representative values in order to activate or avoid the energy
constraint (R = 5000, R = 5). For both cases, we vary the
number of cameras from 4 to 10. We repeat the experiments
10 times averaging the results, which are shown in Table II.
As one can see, multi-view coding always provides better



TABLE II
GAIN OBTAINED FOR DIFFERENT ENERGY CONSTRAINT

Number of cameras 5 7 9 10
R = 5000 0.0718 0.0745 0.0978 0.1175
R = 5 0.0522 0.0691 0.0792 0.0914
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Fig. 3. Percentage gain achieved in different scenarios

performance with respect to the non cooperative case (the gain
G is always positive). Moreover, multi-view coding is more
attractive when the energy constraint is tight.

To evaluate the performance of the robust optimization
approach, we rely on the approach presented in [24] and we
compute the gain G in the following cases:

• Deterministic solution in nominal scenario: GN
d , obtained

by solving the deterministic solution using the parameters
⌘̂

i,j

as estimated by the predictor.
• Deterministic solution in worst-case scenario: GWC

d , ob-
tained using the routing solution returned in the deter-
ministic scenario and computing the objective function
value in the worst case scenario (i.e., when the ⌘

i,j

have
their minimum value). Such a measure captures the effect
of overestimation of compression efficiency. In case of
unfeasibility, we scale the source rates outgoing from
each camera so that the solution is feasible.

• Robust solution in worst-case scenario: G

WC
r , obtained

by solving the robust solution using the worst-case pa-
rameters.

• Robust solution in nominal scenario: GN
r , obtained using

the routing solution returned in the worst-case robust
scenario and computing the objective function value in
the nominal scenario. This value captures the effect of
underestimation of compression efficiency.

We also compute the following ratios to compare the robust
and deterministic solutions on the nominal and worst case data:

Rac =
G

N
d �G

N
r

G

N
d

, Rwc =
G

WC
r �G

WC
d

G

WC
d

The latter ratio, Rwc, measures the relative benefit of the
robust solution in the worst-case, i.e. the maximum protection
that a robust solution can provide. The first ratio, Rac, captures
the percentage loss of optimality of the robust solution in the
nominal case, i.e. the cost of protection. We compute the value
of the gain in the different scenarios and the corresponding
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Fig. 4. Maximum protection and protection cost of the robust approach

ratios on network instances characterized by an increasing
number of camera nodes from 4 to 10. For a particular number
of camera nodes used, we generate 20 different network
instances and we average the obtained results. For the energy
constraints, R was fixed to 5.

Figure 3 illustrates the gain obtained in different scenarios.
As expected, in the nominal scenario (i.e., when the com-
pression efficiency parameters used in the optimization match
with the actual data), the deterministic solution is the one that
performs the best. Conversely, in the worst-case scenario, the
deterministic solution performs poorly. The robust solution,
instead, achieve a higher gain than the deterministic solution
in the worst case scenario at the price of reduced performance
in the nominal scenario. To better understand the performance
of the two solutions, it is worth analyzing the ratios Rac
and Rwc shown in Figure 4. We observe that Rwc is always
greater than Rac, but this difference decreases as the number of
cameras in the network increaeses. This means that the robust
solution is particularly attractive for small-sized VSNs, when
it is able to compensate for uncertainty while suffering very
small performance losses. When the number of camera nodes
increases, the performance increase of the robust solution
compared to the deterministic solution in the worst case
scenario decreases, and its cost increases.

We also present numerical results to illustrate the perfor-
mance of the deterministic and robust approaches on a fixed
network. In particular, we fix the network topology and obtain
the deterministic and robust solution. Then, we generate a
random set of compression efficiency parameters by perturbing
the nominal estimate ⌘

i,j

with increasing standard deviation �

so that they fall between the observed lower and upper bound.
We compute the objective function of the deterministic and
robust solution for such parameters, scaling the solutions to
guarantee feasibility. We repeat the test 100 times and we
show the average of the obtained values in Figure 5. As one
can see, the robust solution always allow to obtain an higher
gain compared to the deterministic one, for all uncertainty
levels.
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VI. CONCLUSIONS

We addressed the problem of multi-view coding and routing
of local features in VSNs. We studied the relation between
the compression efficiency of a practical encoder and several
predictors. We identified a novel predictor, comprising both
content- and geometric- based information, which maximizes
the prediction accuracy at the overhead transmission cost
of about 700 bits. Then, we set up a robust optimization
framework for maximizing the amount of information ex-
tracted from the VSN. The robust solution explicitly takes into
account the uncertainty in the estimation of the compression
efficiency and performs better than a deterministic solution in
the worst case, at the cost of a small loss in optimality. Future
works will address the study of distributed solution for the
robust optimization problem and the extension of the proposed
framework to more complex scenarios in which more than two
cameras can cooperate at once.
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