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ABSTRACT
Stack size is an important factor in the mapping decision when
dealing with embedded heterogeneous architectures, where fast mem-
ory is a scarce resource. Trying to map a kernel onto a device with
insufficient memory may lead to reduced performance or even fail-
ure to run the kernel. OpenCL kernels are often compiled just-in-
time, starting from the source code or an intermediate machine-
independent representation. Precise stack size information, how-
ever, is only available in machine-dependent code. We provide a
method for computing the stack size with sufficient accuracy on
machine-independent code, given knowledge of the target ABI and
register file architecture. This method can be applied to make map-
ping decisions early, thus avoiding to compile multiple times the
code for each possible accelerator in a complex embedded hetero-
geneous system.

CCS Concepts
•Software and its engineering→Compilers; •Hardware→ Emerg-
ing languages and compilers;

Keywords
Stack size estimation; OpenCL

1. INTRODUCTION
The wide space margin provided by modern chip manufactur-

ing techniques has given rise to a pervasive diffusion of a number
of parallel computing architectures, up to the point where embed-
ded systems are also characterized by multi- or many-core proces-
sors. Due to the need to minimize the energy budget, these multi-
/many-core embedded processors are generally characterized by an
heterogeneous architecture, where a small group of more powerful
processors act as the “host”, endowed with full capability to exe-
cute code, including the operating system, while a larger number of
smaller processors act as one or more programmable accelerators.
∗This work was supported in part by EU H2020-FETHPC program
through the ANTAREX project under grant 671623.
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Figure 1: Architecture of STHORM/P2012, an example of Ex-
plicitly Managed Many Cores.

Architectures such as STHORM/P2012 [12,13] or PULP [7] ex-
ploit independent processing elements (PEs) grouped in clusters,
with a small amount of tightly coupled dedicated memory bound
to the cores, as shown in Figure 1. This class of architectures,
sometimes called Explicitly Managed Many-Cores, combines sev-
eral key characteristics, including scalability, power-efficiency, and
the ability to leverage different types of parallelism — compared
with traditional General Purpose GPUs, which are limited to mas-
sively parallel computation with little control flow divergence, Ex-
plicitly Managed Many-Cores support an independent control flow
for each processing element.

To program these platforms, parallel programming models are
typically used, such as the Open Computing Language (OpenCL) [9]
or Open Multi-Processing (OpenMP) [3], both of which are sup-
ported, e.g., by the STHorm/P2012 software stack [6,11]. OpenCL
describes the computation of a data-parallel program in terms of
sets of work-items, called work-groups, which are mapped on the
underlying architecture usually by the OpenCL runtime, while pro-
viding an architecture-agnostic structure to the programmer. This
results in an ease of providing functional portability of parallel pro-
grams across different platforms. If the target device architecture
does not provide enough hardware resources, the ability of OpenCL
to provide functional code portability is disrupted – e.g., if the stack
size for a kernel function grows too large, it will be impossible to
run it on more limited devices.

In a simple system, if a kernel cannot be run on the accelera-
tor due to memory constraints, it may be still executed on the host
as a fallback solution. However, in more complex system archi-
tectures, multiple heterogeneous accelerator devices may be avail-
able, or a single accelerator may be partitioned to allow concurrent



execution of multiple OpenCL kernels. In this case, the mapping
choices become more complex, and it is important for the compiler
and resource management system to be able to estimate the mem-
ory requirements of a kernel, in order to perform the mapping task
optimally.

In this work, we propose a technique to early estimate the stack
size of functions before the machine-dependent intermediate code
is generated. The proposed technique is based on the simulation of
register allocation, performed before the machine-dependent code
has been generated. We assess the accuracy of the prediction tech-
nique on a set of benchmarks. To do so, we implement the proposed
technique, as well as a typical stack size analysis on machine-
dependent code useful for comparison, in the industry standard
LLVM compiler framework [10]. We provide an analysis of the
accuracy of our estimation on the Scalable Heterogeneous Comput-
ing (SHOC) benchmark suite [4], a well known set of benchmarks
designed for the OpenCL programming standard.

It is worth noting that the convergence between embedded and
high performance computing systems, driven by the need to con-
tain the power budget of high performance computing systems on
one hand, and by the increased amount of functionalities requested
from embedded and mobile systems, is leading to a computing con-
tinuum where established techniques from once separate domains
are being adopted across larger portions of the continuum. Thus,
clustered architectures not unlike the Explicitly Managed Many
Cores are investigated as accelerators in the high-performance com-
puting domain [5].

In this case, it may appear that memory size is less critical, since
large amounts of memory are available in high-performance archi-
tectures. However, accelerators are in many cases deployed far
from the larger memories, so that falling back to them imposes a
significant memory penalty, which may undermine the capacity of
the accelerator to actually provide a performance improvement over
the host processors. Thus, the technique proposed in this paper may
prove useful in a wider range of applications than its primary target.

Organization of the paper
The remainder of the paper is organized as follows. Section 2 pro-
vides a brief overview of related stack size analysis techniques.
Section 3 describes our stack size estimation technique, while Sec-
tion 4 reports experimental evidence to gauge its precision and use-
fulness. Finally, Section 5 draws our conclusions and points out
some future investigations.

2. RELATED WORKS
The computation of stack size is useful for multiple scenarios.

The most common is embedded software, which has to run on
severely constrained hardware resources. In this scenario, stack
overflow detection is the key issue, with the aim of increasing re-
liability. Tools such as Stackanalyzer [8] employ a combination of
binary code analysis by abstract interpretation and user-provided
information to compute precise and sound stack size information.
Similar approaches are adopted in [1,2,15], all of which rely on the
analysis of linked binaries.

The previously mentioned approaches differ from ours in goals
and assumptions. In our case, the goal of the analysis is to assess
as soon as possible whether a kernel can be mapped to a given
accelerator or not, based on its memory requirements. Thus, we
can accept some precision losses, but we want to gather as much
information as possible before reaching the target-dependent back-
end stage of the compiler. Thus, analysing the binary is not a viable
approach for our specific problem.

Other approaches rely on run-time analysis, i.e. stack size mon-
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Figure 2: LLVM compilation flow, highlighting the position
of the standard stack size computation pass (on machine-
dependent code) and of our proposed pass. Pass borders are
coloured as follows: in red, passes that operate on the source
code; in blue, those working on the LLVM IR; in green, on
machine-dependent code; in black, on assembly code. Each
block is filled with a different colour depending on the stage
of the compiler: yellow for the front-end; cyan for middle-end;
and green for back-end.

itoring [14], once more to prevent stack overflow in more complex
multiprocessing scenarios. Run-time analysis is neither necessary
nor desirable in our scenario – on one hand, the stack size for ac-
celerator kernel functions can be fully determined at compile time,
so run-time analysis is not necessary, and on the other, the compiler
needs this information before the code is deployed to the accelera-
tor.

3. PROPOSED SOLUTION
In this section, we report the architecture of our proposed solu-

tion for the estimation of the stack size on machine-independent
code. The approach can be divided in two main steps, the estima-
tion of the stack size based on the knowledge of frame size esti-
mates for all functions in the call graph of a kernel, and the estima-
tion of the frame size of each function.

We generate two estimates – an optimistic one and a pessimistic
one. The goal of the former is to minimize the absolute error of the
estimation, whereas the goal of the latter is to provide a conserva-
tive estimate. Thus, the optimistic estimate is the one designed to
provide a hint to the compiler to perform the mapping decisions,
whereas the pessimistic estimate provides a more conservative so-
lution which is useful for assessing the impact of source language
and target machine features on the estimation algorithm.

Figure 2 shows the positioning in the LLVM compilation flow



of the stack size estimation algorithm with respect to the stack size
computation, which can be performed on machine-dependent code.
Note that for OpenCL C kernels, where no recursion or function
pointers are allowed, the stack size computation is precise, whereas
for plain C code, it may not be so (in this case, our implementation
detects and reports the issue).

Algorithm 3.1: Stack Size Estimation

1 Function StackSize (CG):
Input: CG = (F,E) the Call Graph, where

E ⊆ {(f, f ′)|f, f ′ ∈ F}
Output: S, a set of triples

(f, sbestf , sworst
f ), f ∈ F ∧ s ∈ N

2 begin
3 S ← ∅
4 Fready ← {f |f ∈ F ∧ @f ′ ∈ F |(f, f ′) ∈ E}
5 foreach f ∈ Fready do
6 S ← S ∪ {(f,FrameSize(f))}
7 end
8 while F 6= Fready do
9 Fnew ← {f |f ∈ F ∧ @f ′ ∈ F \ Fready|(f, f ′) ∈

E}
10 foreach f ∈ Fnew do
11 sbestf , sworst

f ← FrameSize(f)

12 sbestf ← sbestf +

max(f ′,sbest
f′ ,sworst

f′ )∈S∧(f,f ′)∈E sbestf ′

13 sworst
f ← sworst

f +

max(f ′,sbest
f′ ,sworst

f′ )∈S∧(f,f ′)∈E sworst
f ′

14 S ← S ∪ {(f, sbestf , sworst
f )}

15 end
16 Fready ← Fready ∪ Fnew

17 end
18 return S
19 end
20 end

3.1 Stack Size Estimation
Algorithm 3.1 reports the working of our solution for stack size

estimation. The goal is to obtain, for each function f in the call
graph CG a pair of stack size estimates, representing the optimistic
and pessimistic estimate for the stack size respectively. Essentially,
the algorithm works through the call graph by collecting first the
leaf functions, i.e. those within which no further function calls are
performed (line 4). For the leaf functions, the estimated stack size
is merely the estimated frame size (lines 5-6). Then, the algorithm
considers all functions within which calls are performed only to
functions for which the stack size estimation has been computed
(line 9). For these, the stack size is estimated as the sum of the es-
timated frame size and the largest stack size for any called function
(lines 10-15).

Obviously, in case of recursive calls (either direct or indirect)
to obtain an estimation one would need to estimate the recursion
depth as well. In case of recursion, our algorithm reports a mini-
mum stack size (assuming the recursive call is not performed) and
signals the presence of recursion. However, in our main target pro-
gramming model, OpenCL, recursion is not allowed in the kernel
code, so there is no actual precision loss. For the same reason,
we do not implement recursion depth estimation. For the sake of
brevity, this special handling of recursion is not reported in Algo-

rithm 3.1

Algorithm 3.2: Frame Size Estimation

1 Function Size (i):
Input: i an instruction that defines a new value
Data: alignmin, alignmax: minimum and maximum

alignment padding
Output: Best and worst case size for the value defined by

i
2 begin
3 sizemin ← sizeof(type(i))+ alignmin

4 sizemax ← sizeof(type(i))+ alignmax

5 return sizemin, sizemax

6 end
7 end

8 Function FrameSize (f ):
Input: f a function in the Call Graph
Data: opcode (i): retrieves the opcode for instruction i;

alloca: the opcode for the LLVM IR instruction
that performs explicit allocation in the stack frame

Output: Best and worst case frame size for function f
9 begin

10 sbestalloca ← 0

11 sworst
alloca ← 0

12 foreach bb ∈ f do
13 foreach i ∈ bb do
14 if opcode(i) = alloca then
15 sbestalloca ← sbestalloca + Sizebest(i)

sworst
alloca ← sworst

alloca + Sizeworst(i)
16 end
17 livei ← LivenessAnalysis(i)
18 inRegsi ← RegisterAllocation(i)
19 sbesti ←

∑
i′∈livei

Sizebest(i′)−∑
i′∈inRegsi

Sizebest(i′)

20 sworst
i ←

∑
i′∈livei

Sizeworst(i′)

21 end
22 sbestb b← maxi∈bb s

best
i

23 sworst
b b← maxi∈bb s

worst
i

24 end
25 sbestf ← sbestalloca +maxbb∈f s

best
bb

26 sworst
f ← sworst

alloca +maxbb∈f s
worst
bb

27 return sbestf , sworst
f

28 end
29 end

3.2 Frame Size Estimation
Frame size estimation is performed through Algorithm 3.2. In

this case, we need to take into account two sources of memory al-
location in a function’s frame: alloca LLVM IR instructions per-
formed to explicitly allocate data in the stack and spilled variables
from register allocation. For the former, it is sufficient to compute
the array size (lines 13-16) and add it to the stack size (lines 25-
26). For the latter, we perform Liveness Analysis beforehand, so as
to know which values are alive at every point in the function (the
outcomes of the analysis are used at line 17). Then, we simulate
the Register Allocation algorithm, to detect which values are stored
in registers, and which are spilled to memory (line 18). In our opti-
mistic estimate, we consider all values held in registers to not need



allocation on the stack, whereas in the pessimistic, we assume all
values need to be saved on the stack as long as they are alive (lines
19-20).

Our register allocation simulation algorithm assumes the size
and type of available registers on the specific target architecture
to be known. This assumption impacts only on the optimistic esti-
mation and does not affect at all the pessimistic estimation. In or-
der to perform the simulation, live values are grouped in five sets,
sorted by element size: (1) scalar variables from wider to smaller,
(2) vectors from wider to smaller, (3) struct from smaller to wider,
(4) arrays from smaller to wider and (5) other values from wider
to smaller. Allocation starts with set (1) and proceeds with sets
(5), (2), (3) and (4). For each value we attempt to find the smaller
available register that is wide enough to contain it. Whenever it is
possible, float and vector values are allocated respectively to float
and vector registers. Otherwise, we use general purpose or integer
registers.

In case of values wider than the size of the wider available reg-
ister, we attempt to allocate these values on multiple smaller ho-
mogeneous registers. Every time we cannot allocate a value in the
simulated register file, we increase the size of the frame size, in-
cluding the alignment (lines 3-4). In the optimistic estimate, we
assume no padding is needed for alignment, whereas in the pes-
simistic scenario we consider a fixed alignment, based on the target
architecture.

3.3 Sources of Inaccuracy
While we simulate closely the workings of the Register Allo-

cation algorithm, and identify accurately the values generated and
used by each instruction in the machine-independent intermediate
representation, there are still several sources of inaccuracy in the
estimate.

First, our analysis does not take into account machine-dependent
optimization passes. These may significantly reduce the amount of
memory used by folding temporaries generated and used by se-
quences of instructions that can be mapped to a single machine
instruction. This effect has a stronger impact on CISC instruction
sets, as well on instruction set extensions that deal with specialized
data types, such as vector extensions.

To mitigate this issues, it is possible to take into account machine-
dependent effects, without performing all the code generation steps.
For example, in machines where the conditions are stored in the
processor status word rather than in explicit registers, boolean vari-
ables present in the intermediate representation are usually folded.
Heuristically, it is possible to assume they require no storage in
memory, even though the basic analysis would tell us otherwise.

4. EXPERIMENTAL EVALUATION
In this section, we report the results of the proposed stack size

estimation method. We employ two suites of benchmarks: (1) a set
of internally developed digital signal processing (discrete cosine
transform, discrete sine transform, quarter-wave sine transform)
and image processing morphological transformation (dilation, ero-
sion, laplacian filter), written in C language without involving re-
cursion; (2) level one benchmarks of the Scalable Heterogeneous
Computing (SHOC) benchmark suite [4].

The code for each benchmark is compiled for the x86_64 instruc-
tion set architecture using clang 3.8. Due to the large instruction
set, x86_64 poses a greater challenge to the estimation algorithm
with respect to simpler instruction sets – preliminary results on the
MIPS architecture are in line with this assumption. The stack size
is estimated before reaching machine-dependent code, as well as
after the code generation phase, when the machine-dependent code

is available. The latter stack size estimate is employed to gauge the
accuracy of the machine-independent code estimation. This is par-
ticularly important because one of the main source of inaccuracy
for the estimation algorithm is the application of target-dependent
optimization passes, which are not accounted for in the early esti-
mation.

Figure 3 reports the analysis of the digital signal processing and
image processing benchmarks written in the C language. The stack
size is estimated with an error of less than 0.2% using the optimistic
heuristic. It is underestimated in the case of the discrete sine trans-
form by 4 Bytes, overestimated by 252 Bytes for the image process-
ing kernels, and correctly estimated for the remaining benchmarks.
The pessimistic computation always overestimates the stack size,
by less than 0.3% (with a maximum error of 544 Bytes).

In the case of the SHOC benchmark suite, reported in Figure 4,
the presence of OpenCL-specific constructs, in particular vector
data types, causes some loss in precision. However, the pessimistic
analysis is still able to provide a conservative estimate of the stack
size, while the optimistic one provides usually an accurate estimate.
It is worth noting that in OpenCL benchmarks the stack size is
much smaller, so the relative impact of these errors is larger than in
the C benchmarks. The optimistic heuristic overestimates the stack
by 1236 Bytes in the case of the fft benchmark, but the average
estimation error on all other SHOC benchmarks is lower than 120
Bytes. It is worth noting that fft is, among the benchmarks, the
one that makes the heaviest use of vector data types, which are a
major source of inaccuracy in the current algorithm.

5. CONCLUSIONS & FUTURE
DEVELOPMENTS

We have presented a method to compute an approximation of
the stack size of OpenCL kernels (and, more generally, C functions
that need to be offloaded to heterogeneous accelerators). The goal
of the stack size approximation is to enable the compiler to make
a mapping decision (whether to run the kernel on an accelerator or
not, and on which accelerator if more than one is available) before
generating the machine-dependent code, so as to reduce the over-
head of just-in-time compilation of OpenCL kernels.

The computed estimation can still be improved, by taking into
account the impact of target-dependent optimization and instruc-
tion selection on the amount of memory used. To this end, we
plan to characterize each target architecture through learning tech-
niques, by associating a likelihood that a variable is folded by later
optimization to each pair of instructions connected by def-use rela-
tions. We espect this extension to significantly reduce the estima-
tion error of our optimistic heuristic.
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