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Abstract  

The application of Prognostics and Health Monitoring (PHM) concepts in rail vehicles and railway 

infrastructure is a rapidly growing field of research, and extensive efforts are being spent with the aim of 

improving the reliability and availability of railway systems and of substantially reducing maintenance 

costs by switching from time-based to event-driven maintenance policies. This paper presents the 

results of a research project in which concepts were developed and demonstrated for the health 

monitoring of the rolling stock (traction equipment) and of the railway infrastructure (track and overhead 

equipment). A prototype monitoring system was installed on a E464 locomotive and results were 

gathered across a time span of 14 months from December 2014 to January 2016. 

1. Introduction 

The application of Prognostics and Health Monitoring (PHM) concepts in rail vehicles and railway 

infrastructure is a rapidly growing field of research  [1]-[5], and extensive efforts are being spent with the 

aim of improving the reliability and availability of railway systems and of substantially reducing 

maintenance costs by switching from time-based to event-driven maintenance policies. 

This paper presents the results of a research project in which concepts were developed and 

demonstrated for the health monitoring of the rolling stock and of the railway infrastructure (track and 

overhead equipment). A prototype monitoring system [6] was installed on a E464 locomotive and results 

were gathered across a a time span of 14 months from December 2014 to January 2016.  

The monitoring system includes three modules, which are aimed at the condition monitoring of the 

traction system, of track state and of the pantograph-catenary couple respectively. More details on the 

three units are provided in Section 2 of this paper. The monitoring system was interfaced with the MVB 

of the loco: in this way, some relevant parameters describing the working condition of the loco such as 

speed, direction of movement, odometry, traction/braking/coasting mode can be used in the monitoring 

and fault diagnosis process. The system is also provided with a GPS-based geo-referentiation system 

so that the measured data can be examined in terms of their trend not only with time (or with the 

mileage run) but also with the position of the vehicle on the track. 

The processing of measures is performed by two CPUs installed on the loco and synthetic packages of 

diagnostic indicators are generated and sent to a wayside server through GPS wireless data 

transmittion. These data are stored on the wayside server and used to generate a historical data-base 
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of the condition of the vehicle’s monitored components (bearings in the traction system, pantograph), as 

well as a real-time map of the infrastructure condition (track and overhead equipment). 

2. Architecture of the monitoring system 

The monitoring system consists of three modules having different aims: 

- the condition-based monitoring of the bearings belonging to the motors and gearboxes and 

those installed on the axleboxes; 

- the monitoring of track state from vehicle dynamics measurements performed on the train, to 

drive line maintenance actions based on the objective measure of train-track interaction: 

- the condition-based monitoring of the pantograph-catenary couple. 

Data acquisition and processing is automatically performed by an on-board diagnostic unit and the 

diagnostic indicators are sent via GSM to a wayside unit where they are stored and used for trending 

analysis. In the following of this section, the three CBM units are presented. Then, a description is 

provided of the hardware for data acquisition and processing. 

2.1. The traction monitoring unit  

For the monitoring of the traction system, accelerometers and dual sensors (acceleration + temperature) 

are used. All four motors and gearboxes and all eight axle boxes are monitored. Figure 1 shows the 

bearing positions on the motor, gearbox and axle bearing.  

 

 

a) b) 

Figure 1. a) bearings of the traction monitoring unit. b) position of the sensors 

The vibrations of the bearings are measured by IEPE industrial accelerometers placed close to each 

bearing. A tachometer sensor is installed in correspondence of each motor and detects the number of 

revolutions. The accelerometers installed on the gearbox-motor assembly are PCB IMI-Sensors 

T0602D01 and PCB IMI-Sensors T0603C01 with sensitivity of 100mV/g and range up to 50g. On the 

bushings, Measurement Specialties 8021-01-0500 accelerometers with range up to 500g are installed, 

due to the higher level of acceleration expected on the axle. All the used sensors are dual-sensors 

measuring acceleration and temperature 
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The track state monitoring unit  

The condition of the track is monitored by measuring the vertical and lateral acceleration of the vehicle 

at the axle-boxes, bogie frame and carbody. The track state monitoring unit includes therefore two bi-

axial MEMS accelerometers measuring the vertical and lateral acceleration of the two axle boxes of the 

same axle, three mono-axial accelerometers measuring the vertical acceleration of the bogie frame at 

three distinct points, and two mono-axial MEMS accelerometers measuring the vertical and lateral 

acceleration of the car body above the centre of the trailing bogie. The acceleration signals are low-pass 

filtered with a cut-off frequency of 50 Hz and sampled at 1650 Hz. 

2.2. The pantograph-catenary monitoring unit  

The condition of the overhead line is monitored by measuring the vertical acceleration of the pantograph 

collector. The sensors are based on fiber optic technology, which allows, due to its intrinsic insulating 

properties, to connect directly the accelerometers to the acquisition and processing unit placed in the 

car-body, without any need to power the sensors. This is quite important for a system thought for 

application on commercial trains, since it reduces the costs of installation and equipment. One optical 

accelerometer is mounted below each contact strip, placed in a crossed configuration on the pan head 

collector (front-right and rear-left), so as to record differences in right-side and left-side motion 

generated by the lateral displacement of the contact point between the pantograph head and the 

catenary due to the stagger. The bandwidth of the system is 0.5-300 Hz. 

2.3. The data acquisition and processing hardware  

All signals are acquired by two data acquisition systems, one per bogie. The sampled data are sent for 

processing to a central system (industrial PC) that manages the entire apparatus. The data acquisition 

system for the leading bogie is positioned under the car-body and the one for the trailing bogie is 

located in the car-body. The connection between the PC and the on-board system is via Ethernet cable, 

while the connection to the leading bogie’s acquisition system is performed by means of wireless 

transmission. In order to ensure redundancy in the communication between the leading bogie data 

acquisition system and the central unit, a physical connection via Ethernet cable is also implemented. 

The complete layout of the data acquisition and processing system is shown in Figure 2. 

 

Figure 2: Schematics of the data acquisition and processing hardware. 

Data acquisition is performed by two National Instruments CompactRIO devices. These are 

reconfigurable systems equipped with an FPGA module for real-time programming. The industrial PC is 

a MOXA-V2416 installed in a rack placed on board the car-body in the rear cargo area of the 
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locomotive. The PC is connected to a GPRS module which allows the transfer of the diagnostic 

packages to a wayside server.  

3. Exemplary results of fault diagnosis for the traction equipment 

Vibration data for rolling element bearings have been acquired at high sampling frequency, namely 

25600 Hz and collected in different operating conditions: train speed and direction, motor torque 

temperature. In particular, some rules have been defined in order to acquire data only in suitable 

operating conditions, mainly in constant speed, and with an average interval of about 5 minutes 

between two consecutive acquisitions. In the monitoring period, a total amount of about 25000 

acquisitions have been collected. Data acquisitions have been classified depending on the operating 

condition. For each class the bearing health has been evaluated as function of the train mileage by 

means of suitable damage indicator. Fault identification has been performed mainly by means of 

envelope tools [7] due to the nature of the vibration signal for a damaged bearing. In particular peaks in 

correspondence of the bearing defect frequencies have been extracted from the envelope spectrum. 

BPFO, BPFI, FTF and BSF bearing defect frequencies, corresponding to a defect on outer race, inner 

race, cage and roller respectively, have been investigated. The final fault indicator  is then evaluated 

as the ratio between the number of acquisitions in which peaks in the envelope spectrum exceed a 

statistical threshold [8] and the total number of samples falling in a moving time window. The upper limit 

of the fault index is equal to one and indicates that in all acquisitions a bearing damage is clearly 

detectable, that is a probability of a defect is very high. 

 

Figure 3. Trends of the damage indicators for the ball bearing in the NDE side of the motor. 

The procedure has been repeated for all bearings of all four traction units. The trends of these indicators 

are shown in figure 3 for the ball bearing in the Non Driving End (NDE) side of the motor. It is possible 

to highlight high values of the indicator for a possible damage on the cage (FTF) and outer race 

(BPFO). The inspection of the bearing performed after the monitoring period has actually revealed the 

presence of cage and outer race defects on these bearings. 

4. Exemplary results of the track condition monitoring 

A methodology for the condition monitoring of track state was developed based on the use of 

acceleration signals acquired during train service. A useful representation, in order to highlight the 
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strong correlation between acceleration measurements and track condition, is obtained applying a 

Specgram technique to the signals. This 3-D graph (shown in Figure 4) reports on the horizontal axis 

the position along the line of the vehicle and on vertical axis the wavelength content of the signal, while 

the color map defines the amplitude of the R.M.S. of the acceleration signal. This representation points 

out clearly possible track defects, providing information on their location and wavelength, thereby 

providing an overall evaluation of the line condition. It can be concluded that the study of the track 

geometry seen from vehicle’s dynamics point of view is of fundamental importance for the evaluation of 

the line condition and for the definition of track condition monitoring approaches: as a matter of fact 

traditional measurement methodologies (for instance 3 points based measurements) are able to identify 

only irregularity profile with wavelengths under 30 whereas the experimental set up adopted here can 

go beyond this limitation allowing the identification of higher wavelength irregularity, besides enabling 

the continuous monitoring of the track with a relatively low effort spent. 

 
Figure 4: Example of Specgram of bogie lateral acceleration 

Owing to the confirmed correlation between track condition and train dynamic response, a step forward 

was done focusing the attention on the correlation between the frequency content in the acceleration 

signals and the track defect wavelength. Figure 5 shows an example of the results obtained. A track 

section on the conventional line Torino Porta Nuova – Genova Brignole is taken as a reference and the 

vertical bogie acceleration is analysed in different time periods covering seven months of service. In the 

first subplot the vehicle speed is reported as a function of train position for different vehicle runs. The 

second subplot shows the vertical acceleration signal pass-band filtered in the 3-40Hz frequency range. 

The third subplot reports the power spectral density (PSD) of the vertical bogie acceleration and finally 

the lower subplot shows the r.m.s. of the same signal computed over a 250m moving window.  

 

Figure 5: Monitoring of track state for the Torino – Genova line from December 2014 to July 2015 
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From the vehicle speed diagram it can be observed that the speed profiles are subject to some 

variability which is reflected in a variation of the moving average r.m.s. recorded in different runs. 

Hence, it is important that the condition based monitoring methodology properly takes into account the 

effect of speed in order to distinguish between an evolution of the defect and the effect of speed 

variations. Moreover, from the trend of the moving window r.m.s. it is possible to identify track segments 

producing higher levels of vehicle vibration, which can be interpreted as produced by higher levels of 

track irregularity or other track defects. The evolution with time of these track segments can be 

monitored by proper interrogation of the track data-base being built based on the measurements 

collected.  

5. Exemplary results of the monitoring of the pantograph-catenary couple 

During the 6-month testing period, it has been possible to monitor all the 3 kV conventional overhead 

lines over a wide geographical area in North-West Italy. Several data acquisitions were performed on 

the same lines and at comparable speed, allowing to verify the repeatability of the diagnostic 

information obtained, which is essential for developing a reliable condition-based maintenance system. 

The analysis performed is aimed at identifying local defects of the overhead line, i.e. singular points 

which can affect the stability of current collection. These defects can be either the result of construction 

imperfections or infrastructure degradation. The root mean square value (RMS) of both accelerations is 

computed over a mobile window of short length (e.g. 0.2 s) with a high level of overlap (e.g. 90%), in 

order to highlight the power increase of collector accelerations at the location of local defects [9]. The 

main idea behind this technique is to identify the power associated with the acceleration peaks, so as to 

distinguish occasional peaks from those generated by a real defect. The data obtained with different 

train runs are then compared to verify the persistence of the main RMS peaks at the same positions, 

which indicates the presence of a relevant infrastructure defect. The use of accelerometers allows 

extending the measurement to the frequency band 0.5-250 Hz, which is larger than the 0-20 Hz usually 

allowed by contact force measurement. This enables the acquisition of useful information on the level of 

excitation of collector flexural modes, which are usually excited by contact line singularities. However, 

the analysis showed that the identification of RMS peaks with respect to the background level is easier 

when only the range 0.5-50 Hz is considered. This is due to the flexibility of the support holding the 

sensors in the pantograph adopted in the present work, and marks a difference with respect to the 

results obtained in [9].  

 

Figure 6: RMS values of pan-head accelerations. (a) Leading strip. (b) Trailing strip. 
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Figure 6 shows an example of the results obtained by RMS analysis, corresponding to the 

accelerometers placed to the leading (a) and trailing (b) contact strips (Frequency content 0.5-50 Hz). 

All the repetitions along a 150 km line are reported. The maximum commercial speed is 160 km/h, and 

some train stops can be identified in the figure where the RMS value gets to zero. Five remarkable 

peaks are detected, highlighted in the figure by a red square. The identification of hot-spots is made by 

disregarding the peaks that are not confirmed in several repetitions, such as the ones at km 6 and km 9 

for the leading strip. It is possible to observe that most of peaks are only visible in one signal, confirming 

the necessity of two sensors. The final step of the work will be an evaluation of a threshold to identify 

which peaks are remarkable, and which is the level of priority for maintenance. This can be done by 

means of a field analysis aimed at identifying the correspondence between the detected defect and the 

status of the overhead line.  

6. Conclusions 

In this paper, a monitoring unit was presented which is capable of providing detailed information on the 

condition of the roller bearings in the traction unit as well as of the state of the railway track and of the 

pantograph-catenary couple. 

The unit was installed on a E464 locomotive and is now successfully operating since December 2014. 

Data are being continuously measured and treated according to a number of fault diagnosis 

technologies, whose indications are compared with return from vehicle maintenance and from the field. 

A vast measurement data-base is already available and is being continuously expanded, allowing the 

assessment and validation of the fault detection algorithms being developed as well as a a real-time 

map of the infrastructure condition. 

A next part of the research will be to establish direct links between the condition monitoring data-base 

and the maintenance of the vehicle and of the track, so that the detailed diagnostic information availale 

can be directly fed in the maintenance decision process. 
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