
A Dynamically Scheduled Architecture for the Synthesis of Graph Database
Queries

M. Minutoli, V. G. Castellana, A. Tumeo, F. Ferrandi, M. Lattuada

M. Minutoli, V. G. Castellana, A. Tumeo, F. Ferrandi, and M. Lattuada. A dynamically scheduled archi-
tecture for the synthesis of graph database queries. In 2016 IEEE 24th Annual International Symposium
on Field-Programmable Custom Computing Machines (FCCM), pages 136–136. IEEE, May 2016

The final pubblication is available via http://dx.doi.org/10.1109/FCCM.2016.41

c©2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all
other uses in any current or future media, including reprinting/republishing this material for advertising
or promotional purposes, creating new collective works, for resale or redistribution to servers or list, or
reuse of any copyrighted component of this work in other works

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Politecnico di Milano

https://core.ac.uk/display/55259993?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


A Dynamically Scheduled Architecture for the Synthesis of Graph Methods

Marco Minutoli∗, Vito Giovanni Castellana†, Antonino Tumeo‡

Pacific Northwest National Laboratory

907 Battelle Blvd, Richland, 99354 WA, USA
∗marco.minutoli@pnnl.gov †vitogiovanni.castellana@pnnl.gov

‡antonino.tumeo@pnnl.gov

Marco Lattuada¶, Fabrizio Ferrandi§

Politecnico di Milano — DEIB

Piazza Leonardo Da Vinci 32, 20133, Milan, Italy
¶marco.lattuada@polimi.it
§fabrizio.ferrandi@polimi.it

Data analytics applications, such as graph databases,

exibit irregular behaviors that make their acceleration non-

trivial. These applications expose a significant amount of

Task Level Parallelism (TLP), but they present fine grained

memory accesses. Thus, accelerators for this class of appli-

cations should exploit coarse-grained parallelism and sup-

port parallel memory architectures. These two features alone

do not guarantee optimal performance. The parallelism in

these applications is highly dynamic, and the concurrent

tasks often are unbalanced: they can have different duration,

touch different amount of data, or require mutual exclusive

access on shared data. Statically estimating the latency of

tasks is often impossible due to their strictly data dependent

behavior. Typical High Level Synthesis (HLS) flows employ

execution paradigms based on static scheduling that do not

provide effective load balancing in these applications.

Previous work investigated many techniques to exploit

TLP in hardware accelerators. [1] presents a HLS flow

translating a SPARQL query into a hardware accelerator

using a Parallel Controller (PC) and Memory Controller

Interface (MCI) to support the parallel execution of tasks.

However, the PC that they propose employ a fork and

join model that shows sub-optimal performance when tasks

in the same group are highly unbalanced. Our solution

overcome this limitation through dynamic task scheduling on

the available resources. [2] describes a pipelined architecture

targeted at the HLS of irregular loop nests. They synthesize

pipelined loops as a set of Loop Processing Units (LPUs).

Iterations of the loop are dynamically assigned to one of the

available LPUs through a Distributor. LUPs are connected to

a Collector that passes results to the next stage of pipeline.

To preserve the order of memory operation, the architecture

employs a reorder buffer (ROB). Our solution also employs

dynamic task scheduling with the difference that applies to

more general cases than loop pipelining.

In our study, we structure graph methods and graph

pattern matching algorithms as loop nests. We parallelize

them by transforming each iteration of the outer loop in a

task. Synchronization between concurrent tasks is achieved

through the atomic memory operations implemented in

the Hierarchycal Memory Interface (HMI). The proposed

architecture includes three basic components: a Kernel Pool,

the Dynamic Task Scheduler (DTS) and, the Termination

Logic. The Kernel Pool exploits spatial parallelism including

replicas of custom Processing Units (PUs) that execute

a single task. The DTS manages the parallel execution

with the objective of maximizing resource utilization. It

includes three components: a Task Queue that stores tasks

ready for execution; a Status Register that holds run-time

information about PUs utilization (available/computing); a

Task Dispatcher that dynamically assigns ready tasks to

available PUs. When the Task Queue has some elements

and a PU is available, the Task Dispatcher pops a task

from the queue and starts its execution, updating the Status

Register accordingly. Similarly, when a PU completes a task,

it updates the Status Register to signal its availability to the

Task Dispatcher. The Termination Logic counts all the tasks

that have been pushed in the queue by the parallel loop

and the completed tasks by the PUs. When the number of

spawned task is equal to the number of completed tasks,

the Termination Logic asserts a done signal, denoting the

conclusion of the parallel phase.

We evaluated our approach by generating the accelerators

for a set of queries from the Lehigh University Benchmark

(LUBM). We profiled queries execution, showing that the

execution time among tasks can differ even of order of

magnitudes. We synthesized accelerators for the queries and

compared their performance against a serial implementation.

Experimental results show that our solution provides a

speedup up to 3.76 over the serial implementation. We

explored the design space to achieve maximum memory

channels utilization. The best design used at least 3 of the 4

memory channels for more than 80% of the execution time.

In conclusion, our approach overcomes, with the intro-

duction of the DTS, some of the limitations of the current

state of the art solutions when the task workload is highly

unbalanced.

REFERENCES

[1] V. G. Castellana, M. Minutoli, A. Morari, A. Tumeo, M. Lattuada,
and F. Ferrandi, “High Level Synthesis of RDF Queries for Graph
Analytics”, in ICCAD’15, 2015, pp. 323–330.

[2] M. Tan, G. Liu, R. Zhao, S. Dai, and Z. Zhang, “Elasticflow: A
complexity-effective approach for pipelining irregular loop nests”,
in ICCAD’15, 2015, pp. 78–85.

marco.minutoli@pnnl.gov
vitogiovanni.castellana@pnnl.gov
antonino.tumeo@pnnl.gov
marco.lattuada@polimi.it
fabrizio.ferrandi@polimi.it

