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Abstract: Within the framework of multifield continua, we move from thedel of elastic

microcracked body introduced in (Mariano, P.M. and Stati,,FStrain localization in elastic
microcracked bodiesComp. Methods Appl. Mech. Engr@001, 190, 5657-5677) and

propose a few novel variational formulations of mixed typeng with relevant mixed FEM

discretizations. To this goal, suitably extended HellmBeissner principles of primal and
dual type are derived. A few numerical studies are preseth@dinclude an investigation
on the interaction between a single cohesive macrocraclddiuse microcracks (Mariano,
P.M. and Stazi, F.L., Strain localization due to crack—wecack interactions: X—FEM for a
multifield approachComp. Methods Appl. Mech. Engi2004 193 5035-5062).

Keywords: Multifield theory; mixed FEM; localization; fracture.

1. Introduction and modeling
1.1. Introductory remarks

A wide class of theoretical and technological problems alated to the mechanical description and
the practical use of bodies endowed with a large number ofaniacks scattered throughout the vol-
ume. Reference is made tg ffor a detailed review of these problems. When microcracksdgdute in
the sense that the interactions between them are not protrand also the microcrack distribution is
approximately periodic, standard homogenization procesiagan be advantageously applied to describe
the influence of the microcracks on the gross behavior, spe[#4]. Conversely, when microcracks
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are dense in a way that the interactions between them areiggotrand also their distribution is not
homogeneous, non—negligible gradients are involved artiard homogenization procedure cannot be
used in standard way. Precisely the microcracked body hias tmnsidered strictly as a complex body
and its description falls naturally within the setting of ittfield theories representing complex bodies.
Here we pay attention to bodies with a dense population ofourecks scattered throughout a "soft”
matrix of material. In particular we try to describe the ieffice on the gross behavior of the deformation
of microcracks, considered both as sharp defects (piecptanés not interpenetrated by interatomic
bonds) and/or as elliptic voids with one dimension very $mvih respect to the others. The following
treatment is restricted to elasticity, since any irrev@esgrowth of microcracks (damage evolution) is
not accounted for. The basic aim of the paper is to represestme way sub-structural interactions
due to microcrack changes in a scattered sense. Since wiedeodsnse populations of microcracks we
follow here a multi—field model of microcracked bodies thas lbeen already formulated in a series of
papers (see9] and references therein). This approach seems to predifiataée non—usual phenom-
ena, namely strain localization that straightforwardligaifrom the adopted model notwithstanding the
linear elastic regime. The model takes into account twooredtcomponents of a global displacement
field, namely macro—displacements and micro—displacesnéiite constitutive relationships described
in Sectionl.2.allow to link their gradients to the relevant macro and mstress fields.

The numerical investigations discussed9hdnd [10] refer to displacement—based finite element meth-
ods that adopt post—processing techniques to derive t&sdields. The present paper proposes instead
ad hoc mixed formulations that interpolate independentgsses and displacements. The mixed scheme
is adopted both at the macro and micro level, thus providingraerical framework that allows a direct
discretization of displacements and stresses that arideedatvo scales. Suitably extended Hellinger-
Reissner principles of primal and dual type are derived t® plrpose in Sectio.. Two different
solutions are herein discussed. The first adopts displatisrae main variables, while stresses play the
role of Lagrangian multipliers. The second, the so—calteadly—mixed” formulation P], implements a
dual approach where the stresses are main unknowns of stegleoblem. Peculiar attention is paid
to the interactions between a macrocrack and diffuse nriaos. Details of the implementation are
discussed in Sectioh 3, while two numerical examples are illustrated in Sec8anThe first is devoted

to assess the capabilities of the proposed method to ptedadization phenomena not only in the micro
displacement field, as already shown %, out also in the micro stress one. Afterwards, the secord ex
ample allows to discuss the effects of the presence of assmgtrocrack within the diffuse microcracks
peculiar to the adopted multifield model. Particular aitants devoted in this case to the convergence
features of the proposed method. Sectlononcludes the paper introducing the ongoing developments.

1.2. The constitutive model

Concerning the constitutive model, the purpose of thisi@eds to present the basic equations gov-
erning micro—fractured media modeled within the framewafrknultifield continua. Reference is made
to [8] for an exhaustive treatment on this subject andd¢r the micro—fractured model investigated
herein. For simplicity sake, we adopt the hypothesis of kdigpplacements and strains.



Algorithms2009 2 608

Figure 1. The lattice model.

Elastic empt)
shells

Within this assumption, the macro and micro equilibriumatgans may be respectively written as

div S = 0, (1)

1T

di

[l

whereT andS are the (usual) Cauchy and micro stress tengoisthe load per unit area andis the
self-force the static dual of the micro-displacement veeto€oming to the compatibility equations, an

additive decomposition of the displacement field is intrcetlias

U=u+d, (2)

along with the linear kinematics hypothesis

e, (W) =3

e,(d) = 5(
The constitutive law of the proposed model should providetiens between macro-stress€sand
macro-strain§/ “u, micro-stresse§ and micro-strain§/ °d and cross-terms between macro and micro
static and kinematic quantities. Furthermore, the selfdo is to be related to the micro displacement
vectord. The procedure for the derivation of such constitutivetreteships cannot take much advantage
of experimental tests due to the microscopic nature of thawed quantities. Therefore, a mathematical

procedure has been presenteddnthat moves from the lattice model shown in FigureBy equating
the internal power of the lattice model to the one of an edeiamultifield continuum, one can show

that the following constitutive equations are arrived at

3)

I = AYu-BYd
S = —BYu+GVd, (4)
z = Cd
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where
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The phisical parameters entering the equations above éreedas follows (see also Figufiefor the

definitions of the caracteristic lengthg, ¢, and/y):
t = specimen thickness

RVEM = material reference volume element4t

RVE™ = micro-fracture reference volume element’=

= Young modulus of the bonds between macro-spheres

= Young modulus of the bonds between macro-spheres and-mites

E A/t = macro-lattice stiffness

= FEA/(ml.) = mean stiffness of the ellipsoidal micro-holes

= 2EA/[V2({,, — £))] = stiffness of the bonds between macro and meso lattices
= cross section of rods between adjacent micro-cracks.

SEEREE
1

In view of the derivation of mixed variational principlesidéllinger—Reissner type, generalized to cope
with multifield problems, the formal inverse of the condiita law (4) is written as

Viu = ET + HS

Yd = HT + MS , (5)
z = Cd
where
E —H
—-H M

is the inverse of the constitutive matrix derived from iteedt form, i.e.

A —B
-B G
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2. Mixed variational formulations

This section is devoted to the derivation of the two Hellirgeissner formulations for the herein
considered multifield framework. The first formulation,ther addressed & imal Hellinger—Reissner
formulation has regular displacements as main variables, while disaayus stresses play the role of
Lagrangian multipliers. Th®ual Hellinger—Reissner formulatiozonversely adopts regular stresses as
principal unknowns, while discontinuous approximatioresyrbe used for the displacements. Reference
is made to 2] for further details on the formulations within the clasdi€auchy continuum and td]
for an implementation of the two above mixed formulations.

Peculiar attention will be paid in the following sectionstte inclusion of a macrocrack within the
microcracked model. Discussions on the adoption of cobesiwdels within a mixed frameworks may
be also found inJ].

2.1. Primal Hellinger—Reissner formulation

To derive the first block of equations one may use the comifigtip3) and constitutive equations
(5)12 to get rid of macro and micro strain fields, and subsequeatirtg the resulting two equations
with a macro-stress field and a micro-stress field. The second block of equations may be derived
testing the two equilibrium equations)(with virtual macro and micro displacement fields, sagnde.
The achieved formulation reads: Fififl, S, u,d) € L*(2) x L*() x H'(2) x H'(Q2) such that:

/

—/QT: Vo = F, ©

—/E:ZSQ - /
Q Q

v.e) € L3Q) x L2(Q) x H'(Q) x H'(Q), where

Fuz—/l_%y—/r(g-n)-y

that fits the usual mixed—method algebraic format, i.e.

=
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Referring to the finite element discretization, one can heestandard’, — F, triangular approximation
that has been actually implemented in the numerical exaspléllow. When a macroscopic fracture
is to be added to the model, functional spaces should betlgligtodified to allow displacement dis-
continuities. Furthermore, stress flux continuity acrdesdrack should be enforced by using suitable
Lagrange multipliers.

Formally, by testing the macro—equilibrium equatidjy (@nd using Gauss—Green formula one gets:

dvT-v= [ (Z-n)-v— | T:Vu. (8)
Q r Q

To deal with the inclusion of a macrocrack one may specidheeline integral ol in (8) along the
two adjacent edges of the fracturg, with normaln. One has therefore to introduce the displacement
jump [[v] that denotes the prescribed discontinuity along the créibk.continuous stress fluxes may be
written as:

T-n=C'"[ul 9)

taking into account the constitutive parameiehat holds the cohesive law, i.e. the mechanical relation-
ship that ties the vector of the displacement discontiesitd the vector of the stress—fluxes.

According to the above issues, the achieved primal mixedtanal formulation for microcracked bod-
ies that embed discrete macrocracks reads: @hd, u,d) € L*(Q) x L*(Q) x H'(Q) x H'(Q) such
that:

=
I
o

)
/EIZI - HS:7 — /VSQI
—_— — Q__ = Q_

{o\o
[ili==
[
IS
+
S
=
[tn
IS
|
:a\
<]
IS¥
IS
I
o

10)
-z + [ el o _—

Fy

|
S~
[

: zsg

|
:a\
)
I
Is
I

V(z,0,v.e) € L*(Q) x L*(Q) x H'(Q) x H'(Q).

It must be remarked that the primal mixed formulation is &amto a classical displacement—based
approach in the sense that the continuity of the displacefiedd is required in both the case by the

variational formulation. In practice, the displacemergcdintinuity that has to be introduced across an
evolving crack has been modeled in SectBoby doubling the nodes across the fracture.

2.2. Dual Hellinger—Reissner formulation

The alternative truly—mixed formulation may be recovergdapplying Gauss—Green formul8)(
to equation §), in order to transfer regularity form the displacementdgeto the stress ones. One
straightforwardly gets: Findl, S, u,d) € H(div,Q) x H(div,Q) x L*(Q) x L*(Q2) such that:
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V(z,q,v,e) € H(div,Q) x H(div,Q) x L*(Q) x L*(Q), where
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As found in the previous section the above formulation mayh#en according to the usual mixed—
method algebraic format ofy.

The finite element scheme however presents additional leswhith respect to the previous case, due
to the well-known stability requirement that goes undemame ofinf-sup conditior{2]. Only a few
discretizations pass this requirement providing full stbess even in the presence of incompressible
materials. Among the others, reference is made to the catepdangle of Johnson and Mercie6][

An attractive feature of the introduced "truly—mixed” sedf resides in the possibility of straightfor-
wardly modeling cohesive macrocracks within the variagidiormulation. Looking at the functional
spaces introduced il {) one may easily notice that a discontinuity in the displagets naturally arises
from the variational principle, while the required regitiaon the stress fields simply consists in a con-
tinuity of the stress—fluxes. These two issues therefoosvalto implement a cohesive macro—fracture
that may be taken into account through the following modifieanulation, i.e.: Find(Z, S, u,d) €
H(div, Q) x H(div,Q) x L*(Q) x L*(Q) such that:
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2.3. Implementation

From a computational point of view, the problem is mainlyreleéerized, in comparison to a classical

Cauchy problem, by the presence of twice as many discrietizfields. In fact we discretize the macro
stress and macro displacements fields typical of a plandgoénd their corresponding micro quanti-
ties. This fact suggests to pay attention to the storagemseloé the final solving system, considering in
particular the solution method to be profitably adopted. geesl up the code, the assembling procedure
has been optimized by means of a parallelization introdurcéise making of macro and corresponding
micro stiffness matrixes. Such a method leads to have a fi@abe structure that is composed by block
matrixes which must be handled through specific solverswAdigorithms are available in the literature
for the solutions of indefinite linear systems of the typge (
One may resort to solvers belonging to the Uzawa family andhéxact variants. These methods have
an iterative nature and often require a clever and often eusaone choice of the relevant parameters to
achieve the expected convergence in a small number ofidesat~or this reason the performed analysis
resort to the the algorithm PARDISQZ, 13] that was especially conceived for the solution of large
indefinite linear systems.

3. Numerical studies

The following session has the aim of validating the previtwe®retical framework through some rel-
evant numerical investigations. The first Hellinger Reggsdormulation is herein implemented in order
to investigate the capabilities of the mixed setting to aatt multifield approaches.

The first example deals the benchmark problem originallggméed in 9], that was especially conceived
to show the arising of remarkable localizations in the dispment fields when adopting displacement—
based techniques. The mixed formulation is tested on tlamele to capture not only the above local-
izations on displacements but also the ones that may affieco isiresses.

The second example deals with the interactions of a maakevéh the considered microcracked con-
tinuum. The problem was firstly tackled ih{], according to a variation of the well-known displacement—
based X-FEM procedurd l]. The same example is also used to show some results on tkiergence
features of the proposed mixed schemes.

It must be highlighted that both the examples exploit a pactéature of the mixed methods, i.e. the
accuracy in the approximation of the stress field that madecends form its independent interpolation
with respect to the displacement field.

3.1. Aclamped square lamina

Following [9], a square membrane is considered clamped at the left sididoaded at the mid—
point on the right side. The physical quantities of the addphodel are specified in Taklewhile the
geometry of the specimen is illustrated in Fig@re
Concerning boundary conditions, both micro and macro dsghents fields are constrained to zero
translations at the left side of the domain. At the right sitie node in the middle, loaded by the force
F, is also constrained by an imposed micro displacement equalsee P] for a discussion on this
issue).
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Table 1. Physical parameters.

U [mm] | Loy [mm] | 8 [mm] | E [N/mm?] | A[mm?] | A[mm?] | bcmm | x
200 1 0.1 10° 1 0.314 1 50

Figure 2. The loaded plane membrane.

F

400 mm

5=mFi. /(EA)

400 mm

Figures3 and4 show the components of the macro and micro displacementstimtbe directions.
The resulting global displacement field is plotted in Figbird he last figure clearly shows the capability
of the model in capturing the strain localization of the tWis-degree oriented stripes that arise from
the load application point. This behavior is exclusivelyda the multifield nature of the model, since
macro displacements plots are free from any localizati@npmenon and exhibit the usual smoothness
expected in the context of a classical Cauchy continuum. sktang localizations take place in the
micro displacement components and have such a remarkaglatonde that they considerably affect the
resulting (additive) global displacement field of Figéte
These results, concerning the displacement fields, arerfaghb@greement with those achieved by the
displacement—based method usedin Additionally, the mixed method herein implemented altofor
a straightforward prediction of the stress fields, sincg tre independently interpolated as variables of
the multifield elastic problem. No post—processing techaiig required in this case, thus providing the
expected accuracy in the evaluation of all the unknownslueebin the problem.

Figures6, 7 and8 describe a similar behavior with respect to the one alrea@sljudsed concerning the
displacements. Macro stresses show in fact the smooth ioelpeculiar to tensors of the Cauchy type.
Micro stresses follow instead the localization alreadytgsgal in the displacements plots with similar
45—degree oriented stripes that moves form the singularitytpén this case stress concentrations that
have a similar magnitude with respect to the correspondiagroaquantities affect the three components
of the micro—tensors in the region next to the load applcetione.

It is also interesting to point out that the symmetry of mistoesses is not imposed by the rotation
balance, as for the Cauchy macro tensor, but is herein remtbwaa the constitutive law, see Section
1.2.
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Figure 3. Macro—displacements, - Micro—displacements, .

Figure 5. Global displacements, + d, - u, + d,,.
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Figure 6. Macro—stresg,, - Micro—stressS,..
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Figure 7. Macro—stresg,, - Micro—stressS,,,.
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Figure 8. Macro-stresg’,, - Micro—stressS,,.
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3.2. Interaction between a macrocrack and diffuse microksa

To study the effect of the presence of a macrocrack in theaniacked domain we analyze the
specimen of Figur®, where a horizontal crack in the middle of the right side itekia geometrical sin-
gularity. The same example was originally investigatedLid,[that used a variation of the well-known
X—FEM methods to deal with the description of the macro-ahsiauity embedded in the microcracked
medium. The mechanical parameters, as declaretC &re reported in Tabl8.2. for completeness
sake. Boundary conditions refer in this case to the only md@placements field, as straightforwardly
derived from a classical description of the Cauchy type.

Table 2. Physical parameters.

C [mm] | Loy [mm] | E [N/mm?] | A[mm?] | A[mm? | lcmm | x
75 5 103 1 0.0314 1 50

Figure 9. The cracked plane membrane.

NRERREER

300 mm

W/2 A

L=

LTI

W=100 mm

As detailed in the original contributiod ], macro displacements are not affected by any localization
phenomenon. A remarkable concentration conversely ctearaes the micro vectors, see Figus
and11l The geometrical singularity, i.e. the crack tip, actigadel5>—degree displacement localization
that has the shape of a regular four—brace cross arising vi¢imity of the tip.
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Figure 10. Macro—displacements, - Micro—displacements,.
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Figure 11. Macro—displacements, - Micro—displacements,.

| S

Figures12, 13 and14 show plots of both the macro and micro stress tensors on tiogevdomain.
The macro stress diagrams show results that are well-knathmvthe field of fracture mechanics for
classical Cauchy media. The performed numerical analygfuce the macro stress concentration that
typically arises at the tip of a cohesive fracture. Itis quntteresting to notice that the micro displacement
localizations have a counterpart in the micro stress fieltth& components of the micro stress tensors
are affected by a remarkable localization in the vicinityttod crack tip. In this case the magnitude of
the micro quantities is lower than the macro ones and one wglude that the macro singularities due
to the crack tip overcome the localization phenomena pactdithe micro level.

The example is also used to introduce some preliminary tigaggons on the convergence properties
of the adopted mixed discretization with respect to the maad micro variables that have been directly
discretized in the model. To this purpose the point A, lodatethe middle of the vertical right side of
the specimen, has been firstly used to draw the convergemeescplotted in Figured5and16. The
point A is also represented in Figude
At a first glance the diagrams point out that all the numecédnowns of the methods, i.e. two macro
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Figure 12. Macro—stres§,, - Micro—stressS,,,.

Figure 14. Macro-stres§’,, - Micro—stressS,,,.
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displacement vectorial componentsandu,, two micro displacement vectorial componeitttsandd,,,
three macro stress tensorial componédhts 7,, andT,,, three micro stress tensorial componesits,

S,y andsS,,, approximately enjoy a similar convergence rate. This imipalue to the adopted mixed
polynomial discretization, see i.e. Sectidi. Improvements in the accuracy of the results, especially
for what concerns the stress interpolation, may be strimghkérdly achieved by the adoption of finer
polynomial interpolations. One may also resort to the domhtulation of Sectior2.2, which principally
takes advantage of the role of the stresses that are dmdets main variables of the problem.

Figure 15. Point A. Macro—displacements convergence - Micro—dgieents convergence.
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Figure 16. Point A. Macro—stresses convergence - Micro—stresse&gance.
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Additional remarks on convergence issues may be derivesiigating the behavior of the mixed dis-
cretization in the vicinity of the crack tip, where an acdargrediction of the stress field is often an hard
challenge for finite element schemes. Figlivgoresents convergence curves for both macro quantities,
i.e. the displacement vector and the stress tensor. Natiaitlding the coarse mixed polynomial inter-
polation herein implemented, the mixed scheme is able ttuoathe components of the displacements
vector with a convergence rate that is very similar to the preziously highlighted for point A. The
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convergence of the stress tensor components is more difscute finer discretizations must be used to
achieve the highest accuracy. However the convergence camains smooth all over the considered
range and clearly tends to the expected plateau withoutribi@@ of any numerical instability. These
results may be considerably improved by the adoption of thidy-mixed” scheme of Sectic 2, that
should exhibit a very fast convergence in terms of the strgsssity factor (SIF) or any other scalar
measure of the stress field at the crack tip. The role of tless#is as main variables of the problem is
expected in this case to assure better prediction, espeicidhe singularity zone.

Figure 17. Crack tip. Macro—displacements convergence - Macrossdieconvergence.
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4. Conclusions and future work

The paper has dealt with the numerical description of miadcaed bodies according to the theories
introduced in 9, 10] and belonging to the framework of multifield contin'g.[ Two extensions of the
mixed variational formulations descending from the pmheiof Hellinger Reissner have been herein
presented, taking also into account the inclusion of maeais within the microcracked model.

A few numerical investigations have been illustrated ineorth assess the capabilities of the method
to cope with localization phenomena that affect not onlydisplacement field but also the stress one.
These simulations, based on the first of the two methodsreresented, may be considered as pre-
liminary investigations to test the accuracy of the intégpons when handling a macro and a micro
level. It must be remarked that the introduction of a mixestoBtization requires a larger number of
unknowns with respect to classical displacement—basedpoiations. Notwithstanding the increased
computational burden this allows to provide a better aagurathe description of the stress field, that is
not derived through any post—processing technique, singene of the unknowns of the problem. This
is a remarkable feature especially in the case of the heosisidered multifield approach, where a high
accuracy is required to properly capture the expectedilatadn phenomena.

The current research is focused on the the features of thig-“tnixed” scheme, to implement numerical
methods that exploit the advantages of a problem desaniptitere stresses are the main variables. As
emphasized in the paper, this allows to further improve twicy of the method and to tackle, in a
more straightforward way, problems as the inclusion of aro@ack within a continuous body.
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