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Abstract: Deep learning is a rising topic at the edge of technology, with applications in many 

areas of our lives, including object detection, speech recognition, natural language processing, 

and more. Deep learning's advantages of high accuracy, speed, and flexibility are now being used 

in practically all major sciences and technologies. As a result, any efforts to improve the 

performance of related techniques are worthwhile. We always have a tendency to generate data 

faster than we can analyse, comprehend, transfer, and reconstruct it. Demanding data-intensive 

applications such as Big Data. Deep Learning, Machine Learning (ML), the Internet of Things 

(IoT), and high- speed computing are driving the demand for "accelerators" to offload work from 

general-purpose CPUs. An accelerator (a hardware device) works in tandem with the CPU server 

to improve data processing speed and performance. There are a variety of off-the-shelf 

accelerator architectures available, including GPU, ASIC, and FPGA architectures. So, this work 

focus on designing a multiplier unit for the accelerators. This increases the performance of DNN, 

reduced the area and increasing the training speed of the system. 
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1. Introduction 

Ability of a computer or machine to perform a specific task based on the statistics of the 

past data is called artificial Intelligence (AI). Machine Learning (ML) and Deep Learning (DL) 

are the sub classification of AI [1]. Machine learning has become pervasive in numerous research 

sectors, commercial applications, and achieved satisfactory products over the last few years. Deep 

learning has accelerated the advancement of machine learning and artificial intelligence. Due to 

which the research on ML, DL and AI are exponentially increasing across various field all over 

the world [2]. Many recent artificial intelligence (AI) applications use deep neural networks 

(DNNs) as their core. The efficient hardware implementation of DNNs is critical as they 

proliferate further in real applications. The emergence of online learning has raised a great deal 

of interest in training DNNs on resource- constrained platforms. Unmanned vehicle, detection 
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of chronic disease like cancer is some of the breakthrough applications, where DNN outperform 

humans. 

As stated before, DNN is a class of machine learning algorithms that uses multiple layers 

to progressively extract higher-level features from the raw input. Each layer is aimed at identifying 

features at various levels [3]. In image recognition, for example, where the input is initially in the 

form of pixels, the first layer recognizes low-level features like edges and curves. The first layer's 

output is fed into the second layer, which creates higher-level features like semi- circles and 

squares. A further layer assembles the previous layer's output into portions of familiar things, 

while a third layer detects the objects [4]. The network produces an activation map that 

symbolizes more and more complex features as we move through more layers. The filters 

become increasingly responsive to a greater region of the pixel space as you progress deeper into 

the network. Higher level layers boost discrimination-relevant elements of received inputs while 

suppressing irrelevant variations. 

The Convolutional Neural Network (CNN, or ConvNet) is a class of deep neural 

networks, which is widely used for image/object recognition and classification. The size of the 

convolution neural network must be increased by adding more neural network layers to deliver 

more accurate results as well as real-time object detection, for example in applications like as 

robotics and self-driving cars. However, as more and different types of NN layers are developed, 

more complicated CNN structures and high-depth CNN models emerge. To train and test the 

resulting large-scale CNN, billions of operations and millions of parameters, as well as significant 

computer resources, are required [5]. For general purpose processors (GPP), such requirements 

provide a computational difficulty. As a result, hardware accelerators such as application specific 

integrated circuits (ASICs), field programmable gate arrays (FPGAs), and graphics processing 

units (GPUs) have been used to boost the CNN's performance. GPU accelerators, on the other 

hand, consume a large amount of power. [6] In comparison to GPU-based accelerators, FPGA 

and ASIC hardware accelerators have relatively limited memory, I/O bandwidths, and 

computational resources. However, they can achieve at least moderate performance with lower 

power consumption. 

FPGAs have recently been found to perform well in inference and may speed up training 

[7]. GPUs and FPGAs provide significant speedups for deep learning computation, but they use 

a lot of power that can be handled by special-purpose accelerators. Reference article [8] 

presented a reconfigurable constant coefficient multipliers (RCCMs), which gives a superior 

alternative for reducing silicon space than using low- precision arithmetic. RCCMs use just 

adders, sub tractors, bit shifters, and multiplexers (MUXes) to multiply input values by a limited 

set of coefficients, allowing them to be substantially optimized for FPGAs. They suggested a set 

of RCCMs specifically designed for FPGA logic parts in order to maximize their efficiency. 

The next unique training device translate the potential coefficient representations of the 

RCCMs to neural network weight parameter distributions [9] to reduce information loss due to 
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quantization. This allows the RCCMs to be used in hardware retaining great accuracy. AlexNet, 

ResNet-18, and ResNet-50 networks are used to compare the benefits of these strategies. In 

comparison to typical 8-bit quantized networks, the resultant implementations save up to 50% in 

resources, resulting in considerable performance and power savings. 

In this research, a novel design for an accelerator is described that can improve the 

efficiency of an FPGA processor. The architecture of this accelerator is made up of simple digital 

circuits like multiplexers, shift registers, multipliers, multiplexers, and adders. The main purpose 

is to build a multiplier unit for an accelerator in order to boost the processor's performance. 

VHDL behavioral modulation was used to create these circuits. 

 

2. PROPOSED MODEL 

Several algorithms for the multiplier have been developed for use in accelerators to speed 

up CNN network training time. The development of a multiplexer and shift registers is the first 

step in the proposed design. A multiplexer sends the desired left shifted / multiplied value to the 

output based on the selection line. 

 

Flow Chart 

The desired coefficients are achieved by fundamentally shifting and adding the 

corresponding shifted intermediate outputs based on the multiplexer's selection input. A 4 bit 

value, I, for instance, needs to be multiplied by a 5 bit coefficient. The output is 5*I can be 

obtained by adding the result of intermediate output 4*I and I. Left shifting the given input data 

by 4 times gives the value of 4*I and adding this intermediate result with the I will give the desired 
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coefficient value of 5*I. The kind of mux and the quantity of input bits determine the coefficient's 

value. The four stages of shifting with four different selection combinations are demonstrated in 

the example below. Additionally, the size of the multiplexer is determined by the quantity of 

input bits. Needs 4 to 1 mux for 4 bit input data. X bit input requires X to 1 multiplexer in 

general 

I = 0001 

I << 1 --> 0010 if s=00  

I << 2 --> 0100 if s=01  

I << 3 --> 1000 if s=10  

I << 4 --> 0000 if s=11 

The previous coefficient multiplier operation is reasonably easy if the coefficient has a 

single value. Additionally, the equation becomes too complicated if the CNN network demands 

greater numbers, such as 12305. 

 

Figure 1: Mux and shift design using VHDL code in Xilinx 
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Figure 2: Output of the figure 1 design 

The algorithm described in [9] was complex and took longer and more power than it was 

supposed to. A clear, less complex, and simpler shift add method was offered as a solution to 

this issue. In this algorithm, the required decimal number is first encoded in binary form. The 

specified input number is left-shifted by matching amounts in the bit locations where the 1 is 

situated. The desired coefficient multiplication is then obtained by adding the left-shifted values. 

For example, consider the desired co-efficient as X=1100000000010001 (12305).  The     

initial number is 0000000000000001. Now, we will be checking the at what bit places 1’s are 

there. For the given example, 1’s are placed in 4, 14, 15. 

So, we will be shifting the binary number 1.  

A = X<<6 --> 0000000000010000 

B = X<<7 --> 0100000000000000  

C = X<<8 --> 1000000000000000 

Y = X+A+B+C--> 1100000000010001 

The above pseudo code is implemented in Xilinx as shown in figure 3. 

Table 1: 5 X 5 Coefficient Weighted Matrix 

 24 23 22 21 20 

24 256 128 64 32 16 

23 128 64 32 16 8 

22 64 32 16 8 4 

21 32 16 8 4 2 

20 16 8 4 2 1 
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Figure 3: Shift and add to get the desired coefficient. 

Figure 4: Output of the implemented design shown above in figure 3. 

 

Figure 5a. Simulation results of the proposed 5 bit CMM. 
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Compared to the algorithm discussed in reference paper [9], this one is simpler and faster. 

Even with this strategy, the shifting operation varies depending on the coefficient. 

The goal of this work is to create a generic method that is easy to use, quick, and energy-

efficient for multiplying any complex coefficients. The base values' matrix representation serves 

as the foundation for the suggested Coefficient Matrix multiplier. 

For example, if the given multiplication is 25*25, at first convert the decimal numbers to 

binary numbers and represent the binary number in the rows and columns of the above specified 

matrix as shown in figure 5. The cells where the rows having 1’s and columns having 1’s are 

intersecting are the intermediate product terms as highlighted in Figure 5 a&b. The weightage in 

the highlighted cells is added row wise and then the sum of the values is added in the last column. 

This will lead to a coefficient of 625. This approach can be extended to any size of the matrix of 

size N X N, with an input bit length of N. 

Input/Input
T 

 1 1 0 0 1 Total 

  24 23 22 21 20  

1 24 256 128 64 32 16 400 

1 23 128 64 32 16 8 200 

0 22 64 32 16 8 4 0 

0 21 32 16 8 4 2 0 

1 20 16 8 4 2 1 25 
    Total = 625 

 

When compared to existing algorithms, the proposed CMM algorithm increases 

computational speed and efficiency while decreasing memory cell utilisation. The main issue 

with this proposed CMM is the large number of memory cells required to store the length of the 

input or the coefficient multiplier. The above Coefficient matrix shows that only 9 weighted 

coefficients are repeated in the remaining cells. To eliminate redundancy, only 9 memory cells 

are used, with weighted coefficients of 256, 128, 64, 32, 16, 8, 4, 2, 1. The values in the 9 memory 

cells are then reused based on the intersecting cell positions to reduce memory usage. 

 

3. Simulation 

The proposed CMM algorithm with is modeled and verified in the Xilinx using behavioral 

modeling on the XC6SLX75L- FGG676 device from “SPARTAN 6 lower power” FPGA family. 

Several test cases were used to determine whether or not the output generated was correct. 

Consider the numbers 11000 and 11001 as inputs. When utilising the coefficient matrix 

multiplier procedure, add all of the numbers 256+128, 128+64, and 16+8. The maximum output 

is 600. This number's binary representation is 1001011000. That's the same as the xilinx 

simulation results. Inputs are represented in binary as 24 and 25. The result of multiplying 24 

and 25 is 600. 
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4. Analysis of the Proposed Algorithm 

This section discusses the Xilinx ISE design summary report. The targeted device was 

from Spartan 6, with part number Xc6slx75l. Using the Xilinx XC6SLX75L-FGG676 chip from 

the "SPARTAN 6 lower power" line of FPGA boards, the proposed model was compared to 

other models presented in various algorithms described in research papers. This basic board was 

chosen because it is the most cost-effective and widely used. On the same target device, this 

section compares the performance metrics of the proposed RCCM with the shift and add 

algorithm and the CMM method. 

Table 2 summarises and compares the device utilisation summary, which compares the 

total number of available resources and the total number of resources used in the above 

mentioned targeted device upon implementing the proposed RCCM. Table 3 also lists the 

number of slices, input and output buffers, and look-up tables used in implementing the 

proposed RCCM method with the existing methods. 

Table 4 details the total power used in the circuit at different temperature conditions. 

An Xpower Analyzer is used to calculate power. Similarly, Table 5 summarises and compares 

the number of fan-outs from each of the buffers, look-up tables (LUT), multiplexers, etc. with 

other methods. It also includes the gate delays and net delay from each of the combinational 

blocks and calculates the overall critical delay involved in the implementation of the proposed 

RCCM. 

In the simulation described above, coefficient matrix multiplier is performed using two 

5-bit values, and in the reference paper [10], they have simulated two 4-bit numbers for array and 

booth multiplier. They have achieved a delay of 23.856 and 30.798ns respectively for array and 

booth multipliers as shown in table 6. The proposed algorithm achieved a delay of 15.205ns. 

Even though it has an extra bit, the proposed algorithm coefficient matrix multiplier has a 

significantly lower time delay than these other algorithms. 

 

Table 2: Device utilisation summary 

Logic Utilization Used Available 

Number of slice LUTs 80 46648 

Number used as logic 80 46648 

No, of LUT Flipflop pairs used 80 80 

Number with an Unused flip flop pairs 0 80 

Number with an unused LUT 0 80 

No, of fully used LUT-FF pairs 0 80 

No, of unique Control sets 0  

No, of Bounded IOBs 360 408 
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Table 3: Comparison of device utilization between shift and add and CMM 

Logic Utilization Used Available Utilization 

 CMM Shift and 
ADD 

CMM Shift and 
ADD 

CM

M 

Shift and 
ADD 

No of Slices 80 32 46648 46648 0% 0% 

No of fully used 
LUT- FF pairs 

0 0 80 32 0% 0% 

No of bonded IOBs 360 80 408 408 88% 19% 

 

Table 4: Comparison of power between shift and add and CMM 

On-chip Power(W) Used Available Utilization(%) 

 CMM Shift and 

ADD 

CMM Shift and 

ADD 

CMM Shift and 

ADD 

CMM Shift and 

ADD 

Logic 0.000 0.000 16 46 46648 46648 0 0 

Signals 0.000 0.000 45 85 --- --- --- --- 

IOs 0.000 0.000 80 360 408 408 20 88 

Leakage 0.046 0.046   

Total 0.046 0.046 

 

Table 5: Comparison of Delay between Shift and add and CMM 

Cell:in -> out Fan-out Gate Delay Net delay 

 CMM Shift and 

ADD 
CMM Shift and 

ADD 
CMM Shift and 

ADD 

IBUF:I->O 9 9 1.594 1.594 1.332 1.332 

LUT2:I0->O 3 1 0.454 0.454 1.697 0.818 

LUT6:I0->O 2 1 0.454 0.430 0.869 0.000 

LUT3:I2->O 1 1 0.430 0.370 0.818 0.000 

LUT4:I3->O 1 1 0.430 0.015 0.000 0.000 

MUXCY:S->O 1 1 0.370 0.015 0.000 0.000 

MUXCY:CI->O 1 1 0.015 0.015 0.000 0.000 

MUXCY:CI->O 1 1 0.015 0.015 0.000 0.000 

XORCY:CI->O 1 1 0.393 0.393 0.818 0.000 

LUT2:I1->O 1 1 0.430 0.430 0.000 0.000 

MUXCY:S->O 0 0 0.370 0.370 0.000 0.000 
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XORCY:CI->O 1 1 0.393 0.393 0.783 0.783 

OBUF:I->O   3.540 3.540   

Total CMM= 15.205ns ( 8.888ns Logic, 6.317ns route) 
Shift and ADD= 9.850ns ( 6.916ns Logic, 2.934ns route) 

 

Table 6 : Comparison of multipliers 

 Array Booth Shift 

and 

Add 

CMM 

No of bits 4 bits 4 bits 16 bits 5 bits 

Delay (ns) 23.856 30.798 9.850 15.205 

I/O Buffers 32 33 80 360 

Bels(Area) 123 458 64 138 

Power 0.081 0.014 0.046 0.046 

 

5. Conclusion 

In this study, many techniques for multiplying diverse numbers were examined, and a 

brand-new algorithm called coefficient matrix multiplier was proposed. The procedure discussed 

here multiplies the integers quickly and simply using a matrix. For multiplying two 5-bit values, a 

new model has been developed. After deploying the code in FPGA board, we have obtained a 

delay of 15.205 ns and power of 0.046 W. The coefficient matrix algorithm is compared to the 

shift and add procedure and other multipliers like array and booth. The coefficient matrix 

multiplier differs from other multipliers in that once the code is written, it can be used to multiply 

two different numbers without requiring revision, whereas the shift and add algorithm requires 

revision for each and every multiplication. We have determined that coefficient matrix multiplier 

is the best option and is the easiest to use after examining the delay, power, and area. 
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