

Int. J. Comput. Commun. Inf. , 1-11 / 1

D
O

I:

R
E

S
E

A
R

C
H

 A
R

T
IC

L
E

D
O

I:
 1

0
.3

4
2

5
6

/
ij

cc
i2

2
2

1

Low Power and Efficient Re-Configurable Multiplier for

Accelerator

N. Nikitha Reddy
a,

*, Gogula Subash
a

, P. Hemaditya
a

, Maran Ponnambalam
 a

a

 Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Chennai, Tamil Nadu 601103, India.

* Corresponding Author: nikitha2241@gmail.com

Received: 12-08-2022, Revised: 20-09-2022, Accepted: 28-10-2022, Published: 30-12-2022

Abstract: Deep learning is a rising topic at the edge of technology, with applications in many

areas of our lives, including object detection, speech recognition, natural language processing,

and more. Deep learning's advantages of high accuracy, speed, and flexibility are now being used

in practically all major sciences and technologies. As a result, any efforts to improve the

performance of related techniques are worthwhile. We always have a tendency to generate data

faster than we can analyse, comprehend, transfer, and reconstruct it. Demanding data-intensive

applications such as Big Data. Deep Learning, Machine Learning (ML), the Internet of Things

(IoT), and high- speed computing are driving the demand for "accelerators" to offload work from

general-purpose CPUs. An accelerator (a hardware device) works in tandem with the CPU server

to improve data processing speed and performance. There are a variety of off-the-shelf

accelerator architectures available, including GPU, ASIC, and FPGA architectures. So, this work

focus on designing a multiplier unit for the accelerators. This increases the performance of DNN,

reduced the area and increasing the training speed of the system.

Keywords: CNN, VHDL, Xilinx, FPGA, Multiplier, Acclerator.

1. Introduction

Ability of a computer or machine to perform a specific task based on the statistics of the

past data is called artificial Intelligence (AI). Machine Learning (ML) and Deep Learning (DL)

are the sub classification of AI [1]. Machine learning has become pervasive in numerous research

sectors, commercial applications, and achieved satisfactory products over the last few years. Deep

learning has accelerated the advancement of machine learning and artificial intelligence. Due to

which the research on ML, DL and AI are exponentially increasing across various field all over

the world [2]. Many recent artificial intelligence (AI) applications use deep neural networks

(DNNs) as their core. The efficient hardware implementation of DNNs is critical as they

proliferate further in real applications. The emergence of online learning has raised a great deal

of interest in training DNNs on resource- constrained platforms. Unmanned vehicle, detection

Vol. 4 Iss. 2 Year 2022 N. Nikitha Reddy et al., /2022

Int. J. Comput. Commun. Inf., 1-11 / 2

of chronic disease like cancer is some of the breakthrough applications, where DNN outperform

humans.

As stated before, DNN is a class of machine learning algorithms that uses multiple layers

to progressively extract higher-level features from the raw input. Each layer is aimed at identifying

features at various levels [3]. In image recognition, for example, where the input is initially in the

form of pixels, the first layer recognizes low-level features like edges and curves. The first layer's

output is fed into the second layer, which creates higher-level features like semi- circles and

squares. A further layer assembles the previous layer's output into portions of familiar things,

while a third layer detects the objects [4]. The network produces an activation map that

symbolizes more and more complex features as we move through more layers. The filters

become increasingly responsive to a greater region of the pixel space as you progress deeper into

the network. Higher level layers boost discrimination-relevant elements of received inputs while

suppressing irrelevant variations.

The Convolutional Neural Network (CNN, or ConvNet) is a class of deep neural

networks, which is widely used for image/object recognition and classification. The size of the

convolution neural network must be increased by adding more neural network layers to deliver

more accurate results as well as real-time object detection, for example in applications like as

robotics and self-driving cars. However, as more and different types of NN layers are developed,

more complicated CNN structures and high-depth CNN models emerge. To train and test the

resulting large-scale CNN, billions of operations and millions of parameters, as well as significant

computer resources, are required [5]. For general purpose processors (GPP), such requirements

provide a computational difficulty. As a result, hardware accelerators such as application specific

integrated circuits (ASICs), field programmable gate arrays (FPGAs), and graphics processing

units (GPUs) have been used to boost the CNN's performance. GPU accelerators, on the other

hand, consume a large amount of power. [6] In comparison to GPU-based accelerators, FPGA

and ASIC hardware accelerators have relatively limited memory, I/O bandwidths, and

computational resources. However, they can achieve at least moderate performance with lower

power consumption.

FPGAs have recently been found to perform well in inference and may speed up training

[7]. GPUs and FPGAs provide significant speedups for deep learning computation, but they use

a lot of power that can be handled by special-purpose accelerators. Reference article [8]

presented a reconfigurable constant coefficient multipliers (RCCMs), which gives a superior

alternative for reducing silicon space than using low- precision arithmetic. RCCMs use just

adders, sub tractors, bit shifters, and multiplexers (MUXes) to multiply input values by a limited

set of coefficients, allowing them to be substantially optimized for FPGAs. They suggested a set

of RCCMs specifically designed for FPGA logic parts in order to maximize their efficiency.

The next unique training device translate the potential coefficient representations of the

RCCMs to neural network weight parameter distributions [9] to reduce information loss due to

Vol. 4 Iss. 2 Year 2022 N. Nikitha Reddy et al., /2022

Int. J. Comput. Commun. Inf., 1-11 / 3

quantization. This allows the RCCMs to be used in hardware retaining great accuracy. AlexNet,

ResNet-18, and ResNet-50 networks are used to compare the benefits of these strategies. In

comparison to typical 8-bit quantized networks, the resultant implementations save up to 50% in

resources, resulting in considerable performance and power savings.

In this research, a novel design for an accelerator is described that can improve the

efficiency of an FPGA processor. The architecture of this accelerator is made up of simple digital

circuits like multiplexers, shift registers, multipliers, multiplexers, and adders. The main purpose

is to build a multiplier unit for an accelerator in order to boost the processor's performance.

VHDL behavioral modulation was used to create these circuits.

2. PROPOSED MODEL

Several algorithms for the multiplier have been developed for use in accelerators to speed

up CNN network training time. The development of a multiplexer and shift registers is the first

step in the proposed design. A multiplexer sends the desired left shifted / multiplied value to the

output based on the selection line.

Flow Chart

The desired coefficients are achieved by fundamentally shifting and adding the

corresponding shifted intermediate outputs based on the multiplexer's selection input. A 4 bit

value, I, for instance, needs to be multiplied by a 5 bit coefficient. The output is 5*I can be

obtained by adding the result of intermediate output 4*I and I. Left shifting the given input data

by 4 times gives the value of 4*I and adding this intermediate result with the I will give the desired

Vol. 4 Iss. 2 Year 2022 N. Nikitha Reddy et al., /2022

Int. J. Comput. Commun. Inf., 1-11 / 4

coefficient value of 5*I. The kind of mux and the quantity of input bits determine the coefficient's

value. The four stages of shifting with four different selection combinations are demonstrated in

the example below. Additionally, the size of the multiplexer is determined by the quantity of

input bits. Needs 4 to 1 mux for 4 bit input data. X bit input requires X to 1 multiplexer in

general

I = 0001

I << 1 --> 0010 if s=00

I << 2 --> 0100 if s=01

I << 3 --> 1000 if s=10

I << 4 --> 0000 if s=11

The previous coefficient multiplier operation is reasonably easy if the coefficient has a

single value. Additionally, the equation becomes too complicated if the CNN network demands

greater numbers, such as 12305.

Figure 1: Mux and shift design using VHDL code in Xilinx

Vol. 4 Iss. 2 Year 2022 N. Nikitha Reddy et al., /2022

Int. J. Comput. Commun. Inf., 1-11 / 5

Figure 2: Output of the figure 1 design

The algorithm described in [9] was complex and took longer and more power than it was

supposed to. A clear, less complex, and simpler shift add method was offered as a solution to

this issue. In this algorithm, the required decimal number is first encoded in binary form. The

specified input number is left-shifted by matching amounts in the bit locations where the 1 is

situated. The desired coefficient multiplication is then obtained by adding the left-shifted values.

For example, consider the desired co-efficient as X=1100000000010001 (12305). The

initial number is 0000000000000001. Now, we will be checking the at what bit places 1’s are

there. For the given example, 1’s are placed in 4, 14, 15.

So, we will be shifting the binary number 1.

A = X<<6 --> 0000000000010000

B = X<<7 --> 0100000000000000

C = X<<8 --> 1000000000000000

Y = X+A+B+C--> 1100000000010001

The above pseudo code is implemented in Xilinx as shown in figure 3.

Table 1: 5 X 5 Coefficient Weighted Matrix

 24 23 22 21 20

24 256 128 64 32 16

23 128 64 32 16 8

22 64 32 16 8 4

21 32 16 8 4 2

20 16 8 4 2 1

Vol. 4 Iss. 2 Year 2022 N. Nikitha Reddy et al., /2022

Int. J. Comput. Commun. Inf., 1-11 / 6

Figure 3: Shift and add to get the desired coefficient.

Figure 4: Output of the implemented design shown above in figure 3.

Figure 5a. Simulation results of the proposed 5 bit CMM.

Vol. 4 Iss. 2 Year 2022 N. Nikitha Reddy et al., /2022

Int. J. Comput. Commun. Inf., 1-11 / 7

Compared to the algorithm discussed in reference paper [9], this one is simpler and faster.

Even with this strategy, the shifting operation varies depending on the coefficient.

The goal of this work is to create a generic method that is easy to use, quick, and energy-

efficient for multiplying any complex coefficients. The base values' matrix representation serves

as the foundation for the suggested Coefficient Matrix multiplier.

For example, if the given multiplication is 25*25, at first convert the decimal numbers to

binary numbers and represent the binary number in the rows and columns of the above specified

matrix as shown in figure 5. The cells where the rows having 1’s and columns having 1’s are

intersecting are the intermediate product terms as highlighted in Figure 5 a&b. The weightage in

the highlighted cells is added row wise and then the sum of the values is added in the last column.

This will lead to a coefficient of 625. This approach can be extended to any size of the matrix of

size N X N, with an input bit length of N.

Input/Input
T

 1 1 0 0 1 Total

 24 23 22 21 20

1 24 256 128 64 32 16 400

1 23 128 64 32 16 8 200

0 22 64 32 16 8 4 0

0 21 32 16 8 4 2 0

1 20 16 8 4 2 1 25
 Total = 625

When compared to existing algorithms, the proposed CMM algorithm increases

computational speed and efficiency while decreasing memory cell utilisation. The main issue

with this proposed CMM is the large number of memory cells required to store the length of the

input or the coefficient multiplier. The above Coefficient matrix shows that only 9 weighted

coefficients are repeated in the remaining cells. To eliminate redundancy, only 9 memory cells

are used, with weighted coefficients of 256, 128, 64, 32, 16, 8, 4, 2, 1. The values in the 9 memory

cells are then reused based on the intersecting cell positions to reduce memory usage.

3. Simulation

The proposed CMM algorithm with is modeled and verified in the Xilinx using behavioral

modeling on the XC6SLX75L- FGG676 device from “SPARTAN 6 lower power” FPGA family.

Several test cases were used to determine whether or not the output generated was correct.

Consider the numbers 11000 and 11001 as inputs. When utilising the coefficient matrix

multiplier procedure, add all of the numbers 256+128, 128+64, and 16+8. The maximum output

is 600. This number's binary representation is 1001011000. That's the same as the xilinx

simulation results. Inputs are represented in binary as 24 and 25. The result of multiplying 24

and 25 is 600.

Vol. 4 Iss. 2 Year 2022 N. Nikitha Reddy et al., /2022

Int. J. Comput. Commun. Inf., 1-11 / 8

4. Analysis of the Proposed Algorithm

This section discusses the Xilinx ISE design summary report. The targeted device was

from Spartan 6, with part number Xc6slx75l. Using the Xilinx XC6SLX75L-FGG676 chip from

the "SPARTAN 6 lower power" line of FPGA boards, the proposed model was compared to

other models presented in various algorithms described in research papers. This basic board was

chosen because it is the most cost-effective and widely used. On the same target device, this

section compares the performance metrics of the proposed RCCM with the shift and add

algorithm and the CMM method.

Table 2 summarises and compares the device utilisation summary, which compares the

total number of available resources and the total number of resources used in the above

mentioned targeted device upon implementing the proposed RCCM. Table 3 also lists the

number of slices, input and output buffers, and look-up tables used in implementing the

proposed RCCM method with the existing methods.

Table 4 details the total power used in the circuit at different temperature conditions.

An Xpower Analyzer is used to calculate power. Similarly, Table 5 summarises and compares

the number of fan-outs from each of the buffers, look-up tables (LUT), multiplexers, etc. with

other methods. It also includes the gate delays and net delay from each of the combinational

blocks and calculates the overall critical delay involved in the implementation of the proposed

RCCM.

In the simulation described above, coefficient matrix multiplier is performed using two

5-bit values, and in the reference paper [10], they have simulated two 4-bit numbers for array and

booth multiplier. They have achieved a delay of 23.856 and 30.798ns respectively for array and

booth multipliers as shown in table 6. The proposed algorithm achieved a delay of 15.205ns.

Even though it has an extra bit, the proposed algorithm coefficient matrix multiplier has a

significantly lower time delay than these other algorithms.

Table 2: Device utilisation summary

Logic Utilization Used Available

Number of slice LUTs 80 46648

Number used as logic 80 46648

No, of LUT Flipflop pairs used 80 80

Number with an Unused flip flop pairs 0 80

Number with an unused LUT 0 80

No, of fully used LUT-FF pairs 0 80

No, of unique Control sets 0

No, of Bounded IOBs 360 408

Vol. 4 Iss. 2 Year 2022 N. Nikitha Reddy et al., /2022

Int. J. Comput. Commun. Inf., 1-11 / 9

Table 3: Comparison of device utilization between shift and add and CMM

Logic Utilization Used Available Utilization

 CMM Shift and
ADD

CMM Shift and
ADD

CM

M

Shift and
ADD

No of Slices 80 32 46648 46648 0% 0%

No of fully used
LUT- FF pairs

0 0 80 32 0% 0%

No of bonded IOBs 360 80 408 408 88% 19%

Table 4: Comparison of power between shift and add and CMM

On-chip Power(W) Used Available Utilization(%)

 CMM Shift and

ADD

CMM Shift and

ADD

CMM Shift and

ADD

CMM Shift and

ADD

Logic 0.000 0.000 16 46 46648 46648 0 0

Signals 0.000 0.000 45 85 --- --- --- ---

IOs 0.000 0.000 80 360 408 408 20 88

Leakage 0.046 0.046

Total 0.046 0.046

Table 5: Comparison of Delay between Shift and add and CMM

Cell:in -> out Fan-out Gate Delay Net delay

 CMM Shift and

ADD
CMM Shift and

ADD
CMM Shift and

ADD

IBUF:I->O 9 9 1.594 1.594 1.332 1.332

LUT2:I0->O 3 1 0.454 0.454 1.697 0.818

LUT6:I0->O 2 1 0.454 0.430 0.869 0.000

LUT3:I2->O 1 1 0.430 0.370 0.818 0.000

LUT4:I3->O 1 1 0.430 0.015 0.000 0.000

MUXCY:S->O 1 1 0.370 0.015 0.000 0.000

MUXCY:CI->O 1 1 0.015 0.015 0.000 0.000

MUXCY:CI->O 1 1 0.015 0.015 0.000 0.000

XORCY:CI->O 1 1 0.393 0.393 0.818 0.000

LUT2:I1->O 1 1 0.430 0.430 0.000 0.000

MUXCY:S->O 0 0 0.370 0.370 0.000 0.000

Vol. 4 Iss. 2 Year 2022 N. Nikitha Reddy et al., /2022

Int. J. Comput. Commun. Inf., 1-11 / 10

XORCY:CI->O 1 1 0.393 0.393 0.783 0.783

OBUF:I->O 3.540 3.540

Total CMM= 15.205ns (8.888ns Logic, 6.317ns route)
Shift and ADD= 9.850ns (6.916ns Logic, 2.934ns route)

Table 6 : Comparison of multipliers

 Array Booth Shift

and

Add

CMM

No of bits 4 bits 4 bits 16 bits 5 bits

Delay (ns) 23.856 30.798 9.850 15.205

I/O Buffers 32 33 80 360

Bels(Area) 123 458 64 138

Power 0.081 0.014 0.046 0.046

5. Conclusion

In this study, many techniques for multiplying diverse numbers were examined, and a

brand-new algorithm called coefficient matrix multiplier was proposed. The procedure discussed

here multiplies the integers quickly and simply using a matrix. For multiplying two 5-bit values, a

new model has been developed. After deploying the code in FPGA board, we have obtained a

delay of 15.205 ns and power of 0.046 W. The coefficient matrix algorithm is compared to the

shift and add procedure and other multipliers like array and booth. The coefficient matrix

multiplier differs from other multipliers in that once the code is written, it can be used to multiply

two different numbers without requiring revision, whereas the shift and add algorithm requires

revision for each and every multiplication. We have determined that coefficient matrix multiplier

is the best option and is the easiest to use after examining the delay, power, and area.

References

[1] Y. Bengio, Learning deep architectures for AI, Foundations and trends® in Machine

Learning, 2(1) (2009) 1– 127.

[2] J. Schmidhuber, Deep learning in neural networks: An overview, Neural networks, 61(

2015) 85–117. https://doi.org/10.1016/j.neunet.2014.09.003

[3] Vagisha Gupta, Shelly Sachdeva and Neha Dohare, Deep similarity learning for disease

prediction, Trends in Deep Learning Methodologies, (2021) 183-206.

https://doi.org/10.1016/B978-0-12-822226-3.00008-8

[4] Y. LeCun, Y. Bengio, and G. Hinton, Deep learning, Nature, 521 (7553) (2015) 436.

https://doi.org/10.1038/nature14539

https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/10.1016/B978-0-12-822226-3.00008-8
https://doi.org/10.1038/nature14539

Vol. 4 Iss. 2 Year 2022 N. Nikitha Reddy et al., /2022

Int. J. Comput. Commun. Inf., 1-11 / 11

[5] T. M. Chilimbi, Y. Suzue, J. Apacible, and K. Kalyanaraman, Project Adam: Building an

efficient and scalable deep learning training system, in OSDI, 14 (2014) 571–582.

[6] E. Nurvitadhi, Jaewoong Sim, D. Sheffield, A. Mishra, S. Krishnan, and D. Marr.

Accelerating recurrent neural networks in analytics servers: Comparison of FPGA, CPU,

GPU, and ASIC. In 2016 26th International Conference on Field Programmable Logic and

Applications (FPL), pages 1–4, Aug 2016. https://doi.org/10.1109/FPL.2016.7577314

[7] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao and J. Cong, Optimizing FPGA-based accelerator

design for deep convolutional neural networks, FPGA '15: Proceedings of the 2015
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, 161-170

(2015). https://doi.org/10.1145/2684746.2689060

[8] J. Faraone et al., "AddNet: Deep Neural Networks Using FPGA- Optimized Multipliers,"

in IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 28(1) (2020) 115-

128. https://doi.org/10.1109/TVLSI.2019.2939429

[9] M. Courbariaux and Y. Bengio, "Binarized neural networks: Training deep neural networks

with weights and activations constrained to +1 or −1" in CoRR, 2016, [online] Available:

http://arxiv.org/abs/1602.02830.

[10] M. Aravind Kumar, O. Ranga Rao, M. Dileep, C V Pradeep Kumar Reddy, K.P. Mani

Performance Evaluation of Different Multipliers in VLSI using VHDL, in International

Journal of Advanced Research in Computer and Communication Engineering 5(3) (2016).

Funding

No funding was received for conducting this study.

Conflict of interest

The Authors have no conflicts of interest to declare that they are relevant to the content of this

article.

About The License

© The Author(s) 2022. The text of this article is open access and licensed under a Creative

Commons Attribution 4.0 International License

https://doi.org/10.1109/FPL.2016.7577314
https://doi.org/10.1145/2684746.2689060
https://doi.org/10.1109/TVLSI.2019.2939429
http://arxiv.org/abs/1602.02830

