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Abstract 

Processing conditions have a strong effect on the final mechanical properties of products made of 

polymeric materials. Relevant phenomena most commonly include thermal stresses, physical 

ageing, frozen-in strains and molecular orientation. In this work, two different high-impact 

polystyrenes, processed by thermoforming, were considered: a “standard” one and a grade 

specifically resistant to Environmental Stress Cracking (ESC). The main effect induced by 

thermoforming was molecular orientation. The local degree of orientation was measured on a 

thermoformed product and its effect on the material ESC behavior in sunflower oil was studied. A 

Fracture Mechanics approach was applied to evaluate the fracture resistance of the two materials. 

Results show that a higher degree of orientation increases the fracture resistance in air but has no 

effect on the (expectedly lower) resistance in the active oil environment. 
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1. Introduction 

Polymeric materials in the form of powder or pellets can be shaped to obtain products following a 

complex thermo-mechanical processing history. This history strongly influences many different 

properties of the constituent material and, consequently, the products’ actual performance. 

According to Struik [1], the main effects of processing are: (i) physical ageing, which is the 

consequence of the viscoelastic volume relaxation towards equilibrium experienced by polymers 

cooled below their glass transition temperature, Tg; (ii) residual thermal stresses, which originate 

from temperature gradients in the product when more or less rapidly cooled from the high 

temperatures necessary for shaping; (iii) residual strains, due to the viscoelastic nature of polymeric 

materials which retain memory of the stresses applied during processing; (iv) molecular orientation, 

induced by viscous flow at high temperatures, which becomes frozen-in during cooling. In the case 

of semicrystalline materials, the degree of crystallinity and the specific orientation of the crystalline 

phase could also be influenced by the processing conditions. All these variables exert a strong effect 

on the mechanical characteristics of the final products.  

ESC is a well-known phenomenon by which the presence of certain substances facilitates initiation 

and growth of fracture in a given material, effectively reducing the levels of applied stress necessary 

for its occurrence [2-5]. In the presence of the said substances, even small residual stresses – 

otherwise unharmful – may trigger fracture and lead to the premature failure of a component. 

In this research, the two themes of processing and ESC were put together. There are only a handful 

of studies regarding the effects of processing on ESC resistance, and often a single effect is 

considered: examples can be found in [6-7] for orientation on high impact polystyrene (HIPS) and 

crystallinity on polyethylene, respectively. 
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The material investigated in this work was HIPS, for which food oils are known ESC-promoting 

agents [2,6]. Firstly, the effects of the thermoforming process on a HIPS thermoformed product 

were analyzed, ascertaining their presence and their spatial distribution. In a second stage, samples 

were obtained directly from the thermoformed product and the material’s fracture resistance was 

evaluated using the fracture mechanics (FM) approach, which has been previously applied by the 

authors to study the resistance of different polymers to Environmental Stress Cracking (ESC) [2-3], 

to obtain a correlation between processing effects and ESC resistance. 

2. Materials 

Two different HIPS (named A and B), previously studied in [2], were investigated. HIPS-A and 

HIPS-B are a specifically ESC resistant and a standard grade, respectively; the former exhibits a 

significantly higher resistance to ESC in sunflower oil environment. ESC resistance measured with 

the bent strip test (ISO 22088-3 at 0.5% def. – 50 min–23 °C) gives εr/ε0% of 94 and 26 for HIPS-A 

and HIPS-B, respectively.  

 Mechanical properties (elastic modulus, yield stress, impact resistance) in air are quite similar for 

the two materials. Some differences are due to a larger (by about 10%) dispersed phase content for 

HIPS-A , which also has a larger average rubber particle size. 

The two materials were supplied by Versalis SpA in the form of pellets, extruded sheets (about 4 

mm thick) and a thermoformed laboratory product. Pellets were compression molded into 200x170 

mm plates with thicknesses of 1.5 and 4 mm. The thermoformed product studied is shown 

schematically in Figure 1, together with its relevant dimensions and the parts (1-5) which were cut 

out to test. This product, obtained starting from an extruded sheet, has an average thickness of about 

1.5 mm. 
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3. Evaluation of processing effects 

As already mentioned in the introduction, four main effects of processing may be expected. Their 

relative importance depends on the particular processing conditions adopted. According to the 

nature of each one, they were investigated on the thermoformed laboratory product and/or the 

extruded sheets by tracking dimensional changes following different thermal treatments, with the 

exception of physical ageing the presence of which was detected by performing tensile tests. 

Measurements of dimensional changes of parts 1-5 cut from the thermoformed product were 

performed by aid of a stamped ink grid with a square pattern. As an example, Figure 2 shows two 

pictures of part 3 of the HIPS-B thermoformed product, taken before and after one of the thermal 

treatments. 

Physical ageing  

Polymeric glasses are in a non-equilibrium volumetric state; this in turn depends on the thermal 

history experienced by the polymer while cooling from processing to room temperatures, as well as 

on the amount of time elapsing thereafter, since volume evolves towards equilibrium. The effects of 

these volumetric changes are called physical ageing. Several mechanical properties depend on the 

actual volumetric state; in this work, tensile yield stress has been considered. Yield stress has been 

determined as the maximum in the stress-strain curves, being aware that at this value multiple 

crazing occurs in HIPS. It was measured on samples cut from extruded sheets (kept for several 

weeks at 23°C), before and after a 1h thermal treatment at 90°C, which is just below the glass 

transition temperature of the polystyrene matrix of HIPS (Tg ≈ 100°C), followed by a fast cooling in 

air to 23°C. Because this thermal treatment should rejuvenate the material, the samples before and 

after the treatment will be referred to as “aged” and “un-aged samples” respectively. 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

5 
 
 

 

 

Tensile tests were then performed at 23°C on an Instron 1121 electro-mechanical dynamometer 

with a constant crosshead speed of 1 mm/min; strains were measured using a mechanical 

extensometer. Samples geometry and dimensions are shown in Figure 3. 

Thermal stresses 

Thermal stresses are caused by temperature gradients present across the thickness of the product 

during cooling through the glass transition temperature. They can be removed by annealing the 

product close or at Tg and then slowly cooling it down to room temperature. Generally, unless the 

thermal stresse distribution is perfectly symmetric across the thickness, the product considered will 

distort after such a thermal treatment. The presence of such warping was searched for after 

performing thermal treatment at 90°C for 1h, followed by slow cooling to 23°C. 

Residual strains 

Residual strains depend on the stress level in the product during cooling through the glass 

transition. They can be recovered by annealing the material to a temperature close to Tg; a 

dimensional change is expected in this case. This was checked by carefully measuring the samples 

before and after applying the same treatment considered for removing thermal stresses. 

Molecular orientation  

Molecular orientation is the consequence of frozen-in non-equilibrium conformations. It is 

originated by high stresses applied during product shaping above Tg and it becomes, subsequently, 

frozen-in during fast cooling. Molecular orientation requires annealing treatment above the glass 

transition temperature to be removed. Again, dimensional changes are expected if orientation is 

removed and the method chosen to check their presence takes advantage of this fact. A thermal 

treatment for 1 hour at 140°C was applied to the samples, followed by slow cooling to room 
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temperature; subsequent dimensional changes with respect to the original dimensions were 

measured by defining a suitable orientation index, Ο, as the opposite of the apparent strain 

calculated according to Equation 1: 

0L

L∆−=Ο        (1) 

in which ∆L is the variation in the distance between two grid marks originally (i.e. before the 

thermal treatment) at a distance L0. A positive value of the orientation index indicates that there is 

molecular orientation in the direction along which ∆L was measured. 

4. Fracture tests 

FM was considered in its most simple formulation, Linear Elastic Fracture Mechanics (LEFM) [8], 

following which the stress intensity factor, KI, completely characterizes the stress field around a 

sharp crack tip and, as a consequence, fracture will initiate from a given defect (or sharp notch) 

when KI exceeds a critical value, KIC, which is the material’s fracture toughness. The subscript “I” 

refers to opening fracture mode. Fracture tests were carried out at 23°C with an Instron 1121 

electromechanical dynamometer at constant nominal strain rate of 4.2·10-5 s-1 on double and single 

edge notched specimens in tension referred to as DEN(T) and SEN(T), respectively; their 

dimensions are shown in Figure 4. Notches were introduced into the specimens by razor broaching, 

checking that the resulting notch root radius was smaller than 10 µm. The tests in a sunflower oil 

environment were performed using a custom-designed bath [2] fitted with inspection windows. 

Continuous video recording was conducted using an IDS UI-1480LE digital camera to measure 

crack length. Occasionally, extensive crack blunting prevented a reliable identification of crack 

onset by visual observation: for this reason fracture initiation time, ti, was conventionally 
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determined by the time at which the crack length vs. time curve exceeded its initial value by 5%. In 

a previous paper [2], in which the same fracture mechanics approach was adopted, it was shown 

that a time of about 100s is necessary for the sunflower oil to interact with the HIPS in a notched 

test. Thus, the displacement rate was chosen so as to have initiation times for fracture always longer 

than 100s. 

From the relevant load at ti the critical stress intensity factor at fracture initiation, KIC, was 

determined according to Equation 2: 

aYK CIC πσ ⋅⋅=      (2)  

with σC being the global stress at crack onset, a the initial notch length and Y a shape factor whose 

value was obtained according to [10].  

To verify that KIC is indeed independent of the actual testing configuration and specimen geometry, 
preliminary tests in air on different DEN(T) and SEN(T) samples obtained from the compression 
molded sheets of HIPS-B were first carried out. It was found that the two configurations gave 
identical results for both thicknesses considered (1.5 and 4mm). On the other hand, a noticeable 
effect was observed while varying the ligament length: in particular, a lower apparent value of 
toughness was measured for samples having an uncracked (initial) ligament length lower than 
15mm, as shown in Figure 5. Too small a ligament length hinders the full development of the 
plastic zone around the crack tip, and thus reducing the fracture resistance. A similar effect has been 
previously reported for other polymeric materials [11-12]. To avoid the need for samples of 
excessive size – in view of making them out of the thermoformed product – the use of SEN(T) 
configuration was preferred. 

5. Results and discussion 

5.1 Processing effects 

Physical ageing  

No significant difference between the yield stress of aged and unaged samples was found, as shown 

in Table 1 for both HIPS-A and HIPS-B. It is known that physical aging for polystyrene at room 
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temperature is limited and, therefore, a significant difference in volumetric state would arise only in 

samples subjected to very different cooling rates; results suggest that this was not the case in the 

investigated conditions. 

Thermal stresses 

No sign of distortion after the thermal treatment was observed for the extruded sheets. Minor 

distortions were observed only in some parts of the thermoformed product made of HIPS-A. 

Overall, thermal stresses seemed to play a very minor role for the case under investigation and, 

accordingly, they were not considered further. 

Residual strains 

No dimensional change was observed after performing the thermal treatment neither in the extruded 

sheets nor in the thermoformed products. Therefore, residual strains appear to be negligible. 

Molecular orientation  

Dimensional changes were observed after the thermal treatment both in the thermoformed product 

parts and the extruded sheets. A map of the orientation index in the two perpendicular in-plane 

directions for each part of the thermoformed product was obtained for HIPS-B: they are depicted in 

figures 6-10. Depending on the relevant part size, two or four grids were considered for each. It can 

be observed that the orientation varies considerably in the different parts. 

In the case of HIPS-A, mapping of parts 1, 2 and 5 could not be performed because they rolled up 

after annealing, as shown in Figure 11. This is most likely due to a different orientation level on the 

internal and external surfaces of the thermoformed product. The orientation maps of parts 3-4 were 

qualitatively similar to those of HIPS-B. 
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As expected, the orientation level is high in the z direction, which corresponds to the drawing 

direction during thermoforming, while it is low or even negative in the transverse direction. A 

detailed analysis of the orientation and of its correlation with the specific thermoforming process is 

beyond the scope of this work. However, it is useful to observe areas showing a constant level of 

orientation, from which specimen for the mechanical characterization could be cut. 

As for the extruded sheets, orientation was found to be uniform in the sheets and identical for the 

two materials (HIPS-A and HIPS-B). Relevant results are listed in Table 2. 

5.2 Fracture 

The data obtained from compression molded sheets, extruded sheets and thermoformed products 

were compared in terms of the critical stress intensity factor. The study was mainly performed on 

HIPS-B, for which all thermoformed parts were available; a few samples of HIPS-A were also 

tested for comparison purposes. Figure 12 reports, for tests performed in air and sunflower oil, KIC 

as a function of the orientation index, Ο, measured in the direction perpendicular to the notch plane 

(corresponding to that of the opening stress). In the case of specimens cut from the thermoformed 

products, the value of Ο from the orientation map at the position of the notch tip was used. For the 

extruded material, the orientation index reported in table 2 value were considered, while for the 

compression molded sheets a value of Ο  equal to zero was assumed. 

In air, both materials (HIPS-A and HIPS-B) show an increase in fracture toughness with increasing 

orientation in the direction perpendicular to the crack; in particular, fracture resistance of HIPS-B is 

larger than HIPS-A at all orientations examined. A significant reduction of KIC occurs for fracture in 

sunflower oil, as expected; the envisaged higher resistance of HIPS-A to ESC only becomes evident 

for values of applied K much lower than those applied in the present work, as already discussed in 
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[2]. Besides the obvious reduction of toughness in the presence of oil, a noticeable reduction in the 

sensitivity to orientation can be observed, especially in the case of HIPS-B, for which the value of 

KIC is fairly independent of Ο on a relatively large set of data. 

These results can be explained by considering a change in fracture propagation mechanism for the 

more oriented samples when tested in sunflower oil. While in all the other cases crack growth 

occurs, as expected, along the notch plane direction, crack deviation was observed at high levels of 

orientation and in the presence of the active environment. The two distinct forms of fracture are 

shown in Figure 13 in the case of HIPS-B (the same effect was also observed on HIPS-A): forward 

crack propagation for low orientation and crack deviation for high orientation. When crack 

deviation takes place, the dependence of toughness on material orientation is suppressed, as 

previously mentioned. Crack deviation from the notch plane has been already reported by other 

authors [13-14] who related it to the interaction between stress triaxiality induced at the crack tip 

and a sufficient degree of fracture resistance anisotropy possessed by the material, causing sideways 

crack propagation to become energetically favourable. 

The dependence of toughness on orientation (in air) is consistent with such anisotropy: the oriented 

molecular chains hinder the development of a crack crossing them with respect to what happens in 

the un-oriented material. This strength anisotropy increases in the presence of oil: the stress 

cracking agent is more likely to influence the intermolecular interactions rather than the covalent 

bonds along the chain. For this reason, a larger reduction in fracture resistance is expected in the 

direction parallel to material orientation, to the point that crack propagation more favourably occurs 

in a direction not along the notch plane. 

 

6. Conclusions 
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Effects of processing thermo-mechanical history were assessed on two different HIPS by 

investigating samples obtained from compression molded and extruded sheets and a thermoformed 

laboratory product. In particular, the effects on the resistance to ESC were investigated using a 

fracture mechanics approach. 

For both materials, it was found that the main effect induced by extrusion and thermoforming was 

molecular orientation, while other possible consequences of processing (physical ageing, thermal 

stresses, residual strains) were not as significant. Molecular orientation was found to affect crack 

development in air, with an increase in fracture resistance when the orientation occurs in the 

direction perpendicular to the crack plane. 

As expected, a noticeable reduction of fracture toughness was observed when the two HIPS were 

tested in a known ESC agent such as sunflower oil. A less obvious effect of the active agent is the 

suppression of the dependence on molecular orientation (more evident for one of the two materials 

investigated) which has been related to the different interaction with regard to intra- or inter-

molecular bonds. The ESC agent intensifies the orientation-induced material strength anisotropy to 

the point that a change in fracture mechanism is observed, with the crack deviating from the 

original notch plane. 

This study highlights the need for an increased awareness of the effects of processing on the final 

products’ properties. Most products are currently designed assuming material properties which are 

obtained on laboratory samples – which may significantly differ from the real ones. Ideally, 

process-related aspects should be considered to prevent unexpected failures and to optimize process 

variables, possibly improving the actual performance of final products. 
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Figure Captions 

Figure 1. Schematic of thermoformed product considered, with cut out parts 1-5 indicated 
(dimensions are in mm). 

Figure 2. Part 3 of thermoformed product, before and after the thermal treatment (TT: 1h at 90°C). 
The corresponding grid geometry distortion is visible. 

Figure 3. Geometry of the sample used for tensile tests (dimensions are in mm). 

Figure 4. In-plane dimensions of the samples used for fracture tests. The value of H refers to the 
gauge length, with the samples actually being longer to allow for firm gripping. 

Figure 5. Fracture toughness KIC of HIPS-B as a function of (initial) ligament length for DEN(T) 
and SEN(T) samples obtained from compression molded sheets. The dashed line represents the 
average value of KIC calculated for values of ligament length larger than 15mm. 

Figure 6. Orientation map of upper and lower sections of Part 1 of HIPS-B. The orientation index, 
Ο, is plotted as percent value for the z (left) and x (right) direction, according to the coordinate 
system indicated in Figure 1. 

Figure 7. Orientation map of the four sections of Part 2 of HIPS-B. The orientation index, Ο, is 
plotted as percent value for the z (a) and y (b) direction, according to the coordinate system 
indicated in Figure 1. 

Figure 8. Orientation map of upper and lower sections of Part 3 of HIPS-B. The orientation index, 
Ο, is plotted as percent value for the z (left) and y (right) direction, according to the coordinate 
system indicated in Figure 1. 

Figure 9. Orientation map of front and back sections of Part 4 of HIPS-B. The orientation index, Ο, 
is plotted as percent value for the x (left) and y (right) direction, according to the coordinate system 
indicated in Figure 1. 

Figure 10. Orientation map of upper and lower sections of Part 5 of HIPS-B. The orientation index, 
Ο, is plotted as percent value for the z (left) and x (right) direction, according to the coordinate 
system indicated in Figure 1. 

Figure 11. Parts 1, 2 and 5 of thermoformed product made of HIPS-A after thermal treatment at 
T>Tg. 

Figure 12. Fracture toughness, KIC, as a function of orientation index in the direction perpendicular 
to the notch plane. Data obtained in air and sunflower oil, on specimens cut from compression 
molded sheets, extruded sheets and thermoformed products. 

Figure 13. Fracture phenomenology of HIPS-B in air and sunflower oil, respectively for low (left) 
and high (right) orientation. The sequences of images are taken at different stages during the 
fracture test: initially and before, at and after the initiation time, ti. The dashed lines represent the 
initial crack tip position. 
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Table 1. Tensile yield stress σy of samples obtained from extruded sheets, before and after an 
annealing treatment of 1h at 90°C. Data represent the average of four samples for each condition. 

 

 Yield stress (MPa) 
 HIPS-A HIPS-B 

aged (before TT) 10.18±0.47 15.09±0.20 
unaged (after TT) 10.84±0.20 15.24±0.11 
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Table 2. Orientation index of extruded sheets 

Direction Orientation index (Ο) 
Extrusion 12% 
Transverse -4% 
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Figure 1. Schematic of thermoformed product considered, with cut out parts 1-5 indicated 
(dimensions are in mm).  
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Figure 2. Part 3 of thermoformed product, before and after the thermal treatment (TT: 1h at 90°C). 
The corresponding grid geometry distortion is visible. 
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Figure 3. Geometry of the sample used for tensile tests (dimensions are in mm). 
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Figure 4. In-plane dimensions of the samples used for fracture tests. The value of H refers to the 
gauge length, with the samples being longer to allow for firm gripping. 
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Figure 5. Fracture toughness KIC of HIPS-B as a function of (initial) ligament length for DEN(T) 
and SEN(T) samples obtained from compression molded sheets. The dashed line represents the 
average value of KIC calculated for values of ligament length larger than 15mm. 
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Figure 6. Orientation map of upper and lower sections of Part 1 of HIPS-B. The orientation index, 
Ο, is plotted as percent value for the z (left) and x (right) direction, according to the coordinate 
system indicated in Figure 1.  
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Figure 7. Orientation map of the four sections of Part 2 of HIPS-B. The orientation index, Ο, is 
plotted as percent value for the z (a) and y (b) direction, according to the coordinate system 
indicated in Figure 1. 
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Figure 8. Orientation map of upper and lower sections of Part 3 of HIPS-B. The orientation index, 
Ο, is plotted as percent value for the z (left) and y (right) direction, according to the coordinate 
system indicated in Figure 1.  
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Figure 9. Orientation map of front and back sections of Part 4 of HIPS-B. The orientation index, Ο, 
is plotted as percent value for the x (left) and y (right) direction, according to the coordinate system 
indicated in Figure 1. 
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Figure 10. Orientation map of upper and lower sections of Part 5 of HIPS-B. The orientation index, 
Ο, is plotted as percent value for the z (left) and x (right) direction, according to the coordinate 
system indicated in Figure 1. 
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Figure 11. Parts 1, 2 and 5 of thermoformed product made of HIPS-A after thermal treatment at 
T>Tg. 

  



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

12 
 
 

 

 

 

 

Figure 13. Fracture phenomenology of HIPS-B in air and sunflower oil, respectively for low (left) 
and high (right) orientation. The sequences of images are taken at different stages during the 
fracture test: initially and before, at and after the initiation time, ti. The dashed lines represent the 
initial crack tip position. 
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