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Abstract: Understanding fire dynamics in vegetation is essential for assessing the impacts caused by 
wildfire action, especially because biomass burning in ecosystems has been indicated as one of the 
main factors that impact climate and biodiversity. A current alternative to detecting fire via satellite data 
is cloud processing platforms such as Google Earth Engine (GEE). Given this context, this work aims 
to assess the degree of vegetation regrowth after a wildfire in an area included in the Chapada 
Diamantina National Park (Bahia - Brazil) based on applying the Normalized Burn Ratio (NBR) in 
Landsat Surface Reflectance Tier 1 data sets. The images were accessed and processed on the GEE 
platform. The NBR index was more sensitive to the pre- and post-fire displacements of the pixels 
affected by the fires between the Landsat NIR and SWIR image bands. We found that the NBR mean 
values decreased immediately after the fire occurrence in the entire study area. Then, following the 
wildfire, the NBR mean values returned to conditions similar to those that preceded the fire. We can 
conclude that the plant biomass had already recovered considerably nine months after the fire when 
checking the NBR values. Therefore, this study points out the need to better understand the wildfire 

https://doi.org/10.21814/physisterrae.4482
https://orcid.org/0000-0001-5437-9202
https://orcid.org/0000-0002-9646-156X
https://orcid.org/0000-0001-6807-1153
https://orcid.org/0000-0003-4558-7602
https://orcid.org/0000-0001-9126-7138
https://orcid.org/0000-0002-2175-2792
https://orcid.org/0000-0002-9103-5369
https://orcid.org/0000-0002-3959-8738


Santos et al. / Physis Terrae, Vol. 4, nº 1-2, 2022, 1-19 
 

2 

dynamics in the Chapada Diamantina National Park region and the impact associated with these events, 
with respect to fire ecology. 
 
Keywords: Google Earth Engine; Landsat 8; Vegetation regrowth; Forest fire; NBR. 
 
Resumo: A compreensão da dinâmica do fogo na vegetação é essencial para avaliar os impactes 
causados pela ação dos incêndios florestais, especialmente porque a queima de biomassa nos 
ecossistemas tem sido indicada como um dos principais fatores que impactam o clima e a 
biodiversidade. Uma alternativa atual para detetar incêndios através de dados de satélite são as 
plataformas de processamento em nuvens, como o Google Earth Engine (GEE). Dado este contexto, o 
presente trabalho visa avaliar o grau de recuperação da vegetação após um evento de incêndio numa 
área incluída no Parque Nacional da Chapada Diamantina (Bahia - Brasil) com base na aplicação da 
Razão de Queimada Normalizada (NBR) em conjuntos de dados Landsat Surface Reflectance Tier 1. 
As imagens foram acessadas e processadas na plataforma GEE. O índice NBR revelou-se mais 
sensível aos deslocamentos pré e pós-fogo dos pixels afetados pelos incêndios entre as bandas de 
imagem Landsat NIR e SWIR. Verificou-se que os valores médios do NBR diminuíram imediatamente 
após a ocorrência do incêndio em toda a área de estudo. Após o incêndio, os valores médios do NBR 
foram apontando no sentido do retorno a condições similares àquelas que o precederam, indicando os 
valores de NBR que a biomassa vegetal, nove meses após o incêndio, já apresentava uma considerável 
recuperação. Neste sentido, este estudo demonstra a necessidade de se conhecer melhor a dinâmica 
dos incêndios na região do Parque Nacional da Chapada Diamantina e os impactes associados a estes 
eventos, no que respeita à ecologia do fogo. 
 
Palavras-chave: Google Earth Engine; Landsat 8; Regeneração da vegetação; Incêndios florestais; 
NBR. 
 
 

Introduction 

Fire plays an essential role in the ecology of many ecosystems (Bento-Gonçalves et 

al., 2012). It can be considered a pivotal factor in justifying the distribution and 

dominance of savannas worldwide, even in places where climate and soil are capable 

of sustaining forests (Bond & Keeley, 2005; Santos et al., 2020). However, fire can 

significantly threaten many environments, being considered one of the most 

challenging issues in the environmental sciences field (Bento-Gonçalves et al., 2012; 

Bento-Gonçalves & Vieira, 2020; Granged et al., 2011). 

In the history and development of humanity, fire has always been present, being used 

through time to establish communities and open clearings in the forest (whether for 

agriculture or pasture), among others. Hence, wildfire assumes the role of a crucial 

"ecological factor" in the development or regression of forest systems worldwide 

(Ferreira-Leite et al., 2013). Thus, fire can be understood as a natural ecological factor 

or not, influencing the structure and functioning of several ecosystems. However, when 

its control is lost, it can cause significant damage (Chuvieco et al., 2010). 

The increase in fire frequency and intensity has been documented in several 

ecosystems worldwide and it represents a substantial impact on global warming, as 

wildfires often result in massive loss of biomass and carbon, which may alter the local 

climate (Chuvieco et al., 2010; French et al., 2008; Meng & Meentemeyer, 2011; 

Parker et al., 2015; Robichaud et al., 2007; Westerling et al., 2006). In 2015, the 

Chapada Diamantina National Park, a Brazilian Federal Conservation Unit (UC), was 

affected by wildfires from September to December, when fire typically occurs in the 
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region, as shown by several authors (Franca-Rocha et al., 2017; Leite et al., 2017; 

Santos et al., 2020; Santos et al., 2017). Therefore, when managing conservation 

areas such as the Chapada Diamantina National Park, it is essential to analyze the 

impact of fires on the ecosystem and its regrowth process. 

After a wildfire, various changes occur as the fire consumes the vegetation, leaving 

soil exposed and altering its moisture. The degree of fire-induced ecological change 

has been the focus of many studies around the world (Parks et al., 2018). These 

researches are usually based on metrics that use pre and post-fire data to quantify fire-

induced change (Parks et al., 2018). Thus, remote sensing techniques are highly 

feasible and effective in describing patterns of wildfire occurrence in several 

ecosystems, considering that satellite images are crucial for delineating fire expansion 

boundaries and characterizing fire severity degrees (Key & Benson, 2006; Meng & 

Meentemeyer, 2011; Santos et al., 2021; Santos et al., 2006; Sunderman & Weisberg, 

2011; Veraverbeke et al., 2014). 

Assessing wildfire induced changes in vegetation patterns from a temporal perspective 

range from field observations to monitoring using Earth Observation Systems (Bento-

Gonçalves, Vieira, et al., 2019; Santos et al., 2020; Soulard et al., 2016). Earth 

observation is critical for monitoring land cover dynamics at both regional and global 

scales (Johansen et al., 2015; Sonnenschein et al., 2011). Although their temporal, 

spatial, and spectral resolutions vary, Earth Observation Systems provide tools to 

evaluate vegetation conditions from different perspectives, such as spectral indices 

(Soulard et al., 2016). In addition, recent advances in computational methods and free 

access to satellite systems such as Sentinel and Landsat enable the development of 

time-series studies to monitor and identify disturbances (Soulard et al., 2016). 

Consequently, using the Google Earth Engine (GEE) platform seems promising for 

developing such analyzes, given its extensive processing capacity, in a concise way 

(Alencar et al., 2022). Google Earth Engine is a cloud-based processing platform that 

provides online access to the global coverage of satellite imagery, including MODIS 

and Landsat. The latter is available for nearly 40-year time series (Alencar et al., 2022). 

GEE also provides tools for trusted testers to explore this image data file to detect 

changes, map trends, and quantify differences in the Earth's surface (Johansen et al., 

2015). 

GEE has been used in various applications, covering topics such as global forest 

change (Hansen et al., 2013) and post-fire vegetation regrowth (Soulard et al., 2016). 

It has also been integrated with several applications, such as climate monitoring and 

land-use change assessment (Gorelick et al., 2017). Therefore, fire detection from 

satellite images can be done through specific techniques, such as spectral index 

calculation. These metrics derived from orbital data are often produced using images 

from Landsat Thematic Mapper (TM), Enhanced Thematic Mapper Plus (ETM +), and 

Operational Land Imager (OLI) sensors. This is due to its global coverage and temporal 

resolution. 
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Srivastava et al. (2013) consider that Landsat images may provide better methods for 

obtaining information on the behavior and effects of fire regimes. Based on the results 

described by Key and Benson (2006) in their study, we consider that the NBR index 

incorporates the reflectance of Landsat-8/OLI band 5, which reacts positively to the 

plant’s leaf area. In parallel, the reflectance of Landsat-8/OLI band 7 responds 

positively to the drying of some characteristics of the surface without vegetation. In 

addition, band 7 has low reflectance on vegetation that is green and without moisture, 

including moist soil and cloud, the opposite of band 5. 

A widely used spectral index in fire studies is the Normalized Burn Ratio (NBR) (Key 

& Benson, 2006). This index helps to identify burned areas as they have specific 

spectral responses. Vegetation removal and the deposition of coal by fire generally 

result in a decrease in post-fire near-infrared (NIR) reflectance and an increase in post-

fire short-wave infrared (SWIR) reflectance (Key & Benson, 2006). These metrics 

typically have a high correspondence (r2 ≥ 0.65) with measures of fire severity based 

on field observations (Parks et al., 2018), which makes them a viable alternative to 

collecting information in extensive environmental conservation areas, such as the 

Chapada Diamantina National Park (Santos et al., 2020). 

Fire severity refers to how fire intensity affects ecosystems. While intensity describes 

the physical process of combustion and energy release from organic matter, fire 

severity refers to the magnitude of fires’ direct and immediate impact, it reflects the 

total heat released from burning biomass. Fire intensity thus contributes to fire severity 

but only partially explains it (Bento-Gonçalves et al., 2019; Santos et al., 2020). 

For all these reasons, and because of their spatial resolution and unique spectral 

characteristics, satellite image analysis is a valuable tool for mapping burned areas 

and monitoring vegetation cover (Escuin et al., 2008). The delineation of the perimeter 

of the burned area and the identification of its severity levels, contribute to the decision-

making process regarding the regrowth of these areas. It also allows an analysis of the 

effects of fire on post-fire succession vegetation. 

This paper aims to characterize the degree of regrowth of the vegetation cover in the 

Chapada Diamantina National Park after a wildfire event, using NBR values calculated 

in the GEE processing environment. To achieve this goal, we used Landsat-8 data to 

evaluate the vegetation regrowth in an area affected by wildfire in 2015, considering 

the years pre-and post-fire. NBR spectral index was used to diagnose the fire severity 

and the levels of regrowth (or vegetation regrowth). The regrowth process was 

evaluated by comparing the burned area with an unburned reference area in its 

surroundings. 

The use of Google Earth Engine to run the methodology of this study represents an 

important contribution to planning actions to monitor wildfires. Parks et al. (2018) 

presented their work methods to produce fire severity metrics derived from Landsat 

data quickly. Therefore, the development of studies using methodologies in the GEE 

environment will allow the production of data sets and information on the areas affected 

by wildfires more quickly. 
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1. Materials and Methods 

1.1. Study area 

The Chapada Diamantina National Park is in the state of Bahia (Brazil) and 

corresponds to the extension of the Espinhaço Rift System, beginning in Minas Gerais 

State and penetrating Bahia. This protected area situates in the Sincorá mountain 

range, a plateau with altitudes ranging from 400 to 1700 meters. Therefore, altitude 

and relief diversity influence the occurrence of different climates. According to the 

Köppen Climate Classification System, hot and semiarid (BSwh), tropical highland 

(Cwb), and tropical monsoon (Am) climates prevail in the study area (Santos et al., 

2017). 

The Park is the federal conservation unit with the largest number of wildfires per 

season in Brazil, although it is not where the largest burning extensions occur 

(Gonçalves et al., 2011). In 2015, the conservation unit burned 33,390 hectares 

(Santos et al., 2017) in a fire season that lasted from September to December, a period 

when the occurrence of wildfires in the region is larger (Santos et al., 2017). Therefore, 

the development of this study is based on an area burned in 2015 in the Chapada 

Diamantina National Park (Figure 1). The park has a high floristic diversity associated 

with various vegetation types that include “Floresta estacional”1, “campo limpo”2 

(savannah-type formations), and “campo rupestre”3. The Fire affected a small area of 

“matas ou floresta estacional”, “campo limpo”, and “campo rupestre” type vegetation. 

The area’s elevation varies between 1200 and 1600 meters, with Neosol and Latosol 

soil types. This burned area was chosen because it has a large tourism flow, and rich 

biodiversity of fauna and flora, besides being affected by frequent burnings (Gonçalves 

et al., 2011). 

 

                                                      
1 The “floresta estacional” may be encountered on the western slope of the mountain and is a small area in a valley 
carved into the anticlinal of the mountain. According to a survey conducted in 2011 in the Chapada Diamantina 
National Park, on the western edge, the canopy trees are 6 to 9m high with an understory with a high number of 
young species, this type of forest its trees lose their leaves during the dry season (Do Couto et al., 2011). 
2 The “campo limpo” vegetation type is a predominantly herbaceous physiognomy characteristic of the Cerrado 
Biome and can be found in various topographic positions with different humidity variations. However, it is most often 
found in humid and periodically flooded areas (Munhoz & Amaral, 2010). 
3 “Campo rupestre” stand out for their high plant richness and endemism (Araújo & Conceição, 2021; Silveira et al., 
2016). The vegetation comprises a mosaic of plant communities with different physiognomies on rocky or sandy 
substrates. It generally occurs at altitudes above 900m, in areas with constant winds and extreme temperature 
variations, with hot days and cold nights (Munhoz & Amaral, 2010). On extensive rocky outcroppings, the vegetation 
is structured in small islands of herbs and shrubs sensitive to fire and tolerant to desiccation. On sandy soils, the 
vegetation is characterized by a continuous layer dominated by grasses and shrubs resistant to fire (Araújo & 
Conceição, 2021). The presence of endemic plant species with characteristics that allow them to survive some fire 
regimes suggests an ancient role of fire in the evolution of Rupestrian grasslands (Araújo & Conceição, 2021). 
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Figure 1: Location of the study area. In green, the Chapada Diamantina National Park is represented 

on the smaller map. The delimitation of the study area is shown in red. The post-fire image 

corresponding to the study area is the Landsat-8/OLI (R:7; G:5; B:4). 

Source: NASA Landsat Program. 

 

1.2. Database 

By accessing the Google Earth Engine (GEE) platform, the Landsat Surface 

Reflectance Tier 1 data sets were used for running the NBR index and NDVI index. 

Initially, 111 Landsat-8 scenes ranging from April 2013 to November 2018 were 

identified for the study area. However, after applying a cloud filter of less than 30%, 

the collection has been reduced to 20 images. Despite this, there were still many 

clouds in these data, which meant that in the end, only 6 scenes were considered 

between 2013 and 2017 (Table I). 

 

Table I: Characteristics of OLI / LANDSAT-8 images. 

Satellite Sensor 
Path/ row 

Spatial resolution Period Product 

Landsat OLI 217/069 30 m  30/05/2013pre NBR and NDVI 

22/09/2014pre 

24/08/2015pre 

Landsat OLI 217/069 30m 25/09/2015post NBR and NDVI 

30/11/2016post 

16/10/2017post 

 

To identify rainfall indices, maximum temperature, and humidity values, monthly 

accumulated values data from the meteorological station of Lençóis-Ba were used for 
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2015 (fire occurrence) and 2016 (post-fire). These data were obtained from the website 

of the National Institute of Meteorology (https://tempo.inmet.gov.br/). 

The years 2013, 2014, 2016, and 2017 did not record any heat sources by the 

reference satellites, except for 2015, with four heat sources identified. These data 

come from sensors onboard the reference satellites used by the National Institute for 

Space Research (INPE) from Brazil, whose daily data on detected heat sources are 

used to build the time series over the years. Thus, the trend analysis may be carried 

out regarding the number of heat sources in different periods for the same study area. 

From 2010 to 2015, the reference sensor is MODIS (AQUA/TERRA), available in the 

Center for Weather Forecasting and Climate Studies (CPTEC) database. 

1.3. Processing in Google Earth Engine 

Landsat Surface Reflectance Tier 1 data sets include a quality evaluation mask to 

identify the pixels containing clouds, shade, and water (Parks et al., 2018). Such a 

process was performed using the FMask multi-pass algorithm, based on decision trees 

and described in detail by Foga et al. (2017) and Parks et al. (2018). When calculating 

the NBR index, the pixels identified as cloud, shade, and water were excluded. 

To detect the area affected by the fire and to evaluate the post-fire vegetation regrowth, 

the Normalized Burn Ratio (NBR) index was calculated based on Landsat 8 data. This 

index normalizes the difference between the reflectance of Landsat-8/OLI band 5 and 

band 7, in which the burned areas are highlighted. To evaluate the bi-temporal change 

detection, the SWIR-NIR spectral interval was considered (see Figure 2) (Escuin et al., 

2008; Key & Benson, 2006; S. Veraverbeke et al., 2010). The NDVI was calculated to 

help understand the vegetation condition, as it is a widely used index for studies in this 

line (Gouveia et al., 2010; Morresi et al., 2019).  

 

 
Figure 2: Example of a pre-and post-fire pixel trajectory in the SWIR-NIR feature space. A pixel 

moves from unburned (U) to burned (B). Point “O” resembles the position of a pixel optically detected 

and burned (Santos et al., 2020). 
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If a spectral index is appropriate for a given physical change, in this case, the reduction 

of fire-induced vegetation, there is a clear relationship between the shift and the 

direction of displacement in the bi-spectral feature space (Veraverbeke et al., 2010). 

In an ideal scenario, the bi-temporal trajectory of a pixel is perpendicular to the first 

bisector of the Cartesian coordinate system. This is illustrated in figure 2 for the 

displacement from unburnt (U) to optically (O) detected as burned (Escuin et al., 2008; 

Santos et al., 2020; Veraverbeke et al., 2010). 

After selecting the scene collection, the NBR index (Key & Benson, 2006) was 

calculated based on a normalized difference function (Equation 1) and NDVI (Equation 

2). 

 

Where, 

• RED corresponds to Landsat-8/OLI band 4; 

• NIR corresponds to Landsat-8/OLI band 5; 

• SWIR corresponds to Landsat-8/OLI band 7. 

 

NBR is a normalized index, its values range from -1.0 to +1.0. Key and Benson (2006) 

argue in their study that the response is positive when the reflectance in band 5 is 

greater than the reflectance in band 7, which is the case in productive vegetation areas. 

When the response is close to zero, the reflectance of both bands 5 and 7 are 

approximately equal, as with clouds, unproductive vegetation, bare soil, and rock 

outcrop. On the other hand, when NBR is negative, the reflectance in band 7 is higher 

than in band 5, suggesting high water stress on plants and the negative values 

representing burned areas (Leite et al., 2017; Santos et al., 2020). 

After processing in GEE, the data was exported and converted to matrix format using 

ENVI 5.3 software. Descriptive statistics were calculated using R software, followed by 

the creation of boxplot graphs to represent the temporal variation of the observed burnt 

and unburnt area data. A transect was also applied to collect pixel information from 

unburned and burned areas; these data were used for calculation of Pearson 

correlation for NBR values. 

2. Results 

The fire occurred during September 2015 in the Chapada Diamantina National Park in 

a region called Gerais do Vieira. The affected vegetation was mostly “campo limpo”, 

“campo rupestre”, and a small area of seasonal forest. The area presented severity 

classes ranging from moderate-low severity to high severity (Santos et al., 2020). 

The meteorological data indicate that September of 2015 presents favorable 

characteristics for fire occurrence. Low rainfall values (0,04 mm) associated with 
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increased maximum temperature (32,7 ºC) and reduced air humidity (64%) were 

observed (see Figure 3). 

 

 
Figure 3: Mean precipitation (in blue), mean high temperature (in red) and minimum relative humidity 

(in yellow) monthly mean. The increase in temperature from August on, after months of little rainfall, 

favors the deflagration of vegetation fires (red column). Data source: INMET. 

 

From the GEE, NBR images were obtained for the study area. The exclusion of the 

pixels corresponding to cloud, shade, and water resulted in a reduced number of 

Landsat-8 images to be processed. A variation of the NBR index values was observed 

from 2013 to 2017. It is worth highlighting that for 2015 the results showed more 

substantial effects (Table II). 

 

Table II: NBR descriptive statistics, highlighting the year 2015, the year of the burning Data from the 

points before and after the fire. 

Date 
Min Median Mean. SD Max. 

Fire No Fire Fire No Fire Fire No Fire Fire No Fire Fire No Fire 
30/05/2013 0.0655 -0.0135 0.1901 0.2396 0.2526 0.2647 0.1750 0.1691 0.6518 0.6789 
22/09/2014 0.0219 -0.0533 0.1099 0.1825 0.1967 0.2120 0.1777 0.1695 0.6180 0.6411 
24/08/2015 0.0716 0.0048 0.1704 0.3061 0.2486 0.2882 0.1711 0.1608 0.6549 0.6537 
25/09/2015 -0.4352 -0.0319 -0.2111 0.1911 -0.1405 0.2279 0.2589 0.1755 0.5235 0.6495 
30/11/2016 -0.0994 -0.0266 0.0474 0.1297 0.1488 0.2010 0.1971 0.1688 0.5946 0.6393 
15/10/2017 -0.0681 -0.0536 0.1535 0.1122 0.1621 0.1838 0.1780 0.1675 0.6077 0.6255 

 

Table III: NBR descriptive statistics, highlighting the year 2015, the year of the burning Data from the 

points before and after the fire. 

Date 
Min Median Mean. SD Max. 

Fire No Fire Fire No Fire Fire No Fire Fire No Fire Fire No Fire 
30/05/2013 0.5092 0.5092 0.5825 0.5825 0.6139 0.6139 0.0985 0.0985 0.8422 0.8422 
22/09/2014 0.4424 0.3853 0.5107 0.5385 0.5577 0.5597 0.1000 0.1104 0.7833 0.8424 
24/08/2015 0.4858 0.3549 0.5535 0.6004 0.5912 0.6091 0.0972 0.1029 0.8178 0.8518 
25/09/2015 0.2181 0.2318 0.3315 0.5751 0.3851 0.5805 0.1497 0.1211 0.7470 0.8504 
30/11/2016 0.3491 0.4184 0.5172 0.5497 0.5526 0.5803 0.1197 0.1013 0.8060 0.8517 
15/10/2017 0.4265 0.4099 0.5222 0.5214 0.5525 0.5598 0.0992 0.1002 0.7994 0.8365 
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Table II presents the descriptive statistics of the data. The mean NBR values were 0.2 

in the study area, except for 2015, where a mean NBR equivalent to -0.1405 was 

recorded for the area burned in September. 

For this scene, minimum values around -0.4 were identified, suggesting the occurrence 

of burns in this period. This result shows that from 2013 to 2017, the study area only 

presented NBR values indicating the wildfire in 2015.  

Figure 4 shows pixel shifts in a time series for the datasets studied. The NBR values 

for September 2015 showed a higher concentration of negative pixels referring to the 

burned area. The mean NBR values for the entire study area indicate that the NBR 

values of September 2015 decreased immediately after the wildfire. Then, following 

the wildfire event, the NBR mean values returned to similar conditions to those 

preceding the fire. 

 

 
Figure 4: Boxplot of the NBR values based on Landsat-8 images. For pre- and post-fire scenes for 

burned and unburned areas. 

 

Figure 5 brings NDVI index data to understand how the state of the vegetation was in 

the same period. In the 2016 image, we can see that the NDVI and NBR values of the 

burned area pixels return to similar conditions to the 2015 values (before the fire). We 

can relate the return of the photosynthetic conditions of the vegetation to the high 

rainfall values recorded in January 2016 (see Figure 3). The burnt and unburnt area 

presented the same type and conditions of vegetation, the fire was conditioned by 

action of firefighting and suppression of the fire by brigades working in the 

environmental preservation area.   
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Figure 5: Boxplot of the NDVI values based on Landsat 8 images. For pre- and post-fire scenes for 

burned and unburned areas. 

 

The temporal changes in the study area were obtained in the GEE environment using 

Landsat-8/OLI images in RGB (7-5-4) composition (Figure 6) and NBR (Figure 7). In 

the image of September 2015, the burn scar is highlighted in the brown pixels. In the 

image processing one year after the wildfire event, the plant regrowth is easily visible 

due to a change in the color of the targets. 

 

 
Figure 6: Landsat-8 RBG (7-5-4): (a) 30/05/2013; (b) 22/09/2014; (c) 14/08/2015; (d) 15/09/2015; (e) 

30/11/2016; (f) 16/10/2017. In the image of September 2015 (image d), the burn scar can be observed 

in brown color. Source: NASA Landsat Program. 
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Figure 7: Index NBR: (a) 30/05/2013; (b) 22/09/2014; (c) 14/08/2015; (d) 15/09/2015; (e) 30/11/2016; 

(f) 16/10/2017. In the image of September 2015 (image d), the burn scar can be observed. 

Source: NASA Landsat Program. 

 

The application of a transect on the image allowed us to verify the correspondence of 

NBR values before the fire (2014) and NBR regrowth (2016 and 2017) and to evaluate 

their correlation in different situations (Figure 8). The first correlates the NBR values 

before the fire and one year and two months after the wildfire, which resulted in a 

correlation of r = 0.93 (Figure 8a). And the second correlation, between pre-fire NBR 

and NBR regrowth two years and one month after the event, recorded an r = 0.94 

(Figure 8b). 

The Student's t-test to find out if the correlation is significant gave a p-value below 0.05, 

which shows that the correlation is significant. That means when the vegetation 

recovers, in short time periods, it continues at the same levels compared to before for 

the studied area with this type of vegetation. 
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Figure 8a: Correlation between pre-and post-fire conditions (regrowth): NBR pre-2014 and NBR 

regrowth 2016. 

 

 
Figure 8b: Correlation between pre-and post-fire conditions (regrowth): NBR pre-2014 and NBR 

regrowth 10/2017. 

3. Discussions 

The calculation of the NBR index identified the area affected by the wildfire in the 

Chapada Diamantina National Park (Parks et al., 2018) estimates that the NBR 

measures the change in the spectral response caused by burned areas. 

Complementing this idea, Rogan and Yool (2001) consider that changes in the NIR 

reflectance typically indicate changes in the coverage of photosynthetic vegetation that 

are likely to be reduced by fire. In contrast, changes in SWIR reflectance usually mean 

changes in the exposure to bare soil, which is expected to increase after the influence 

of wildfire. 
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In 2015, the Chapada Diamantina National Park was devastated by several fires 

between September and December, a typical period for fires in the region(Santos et 

al., 2020; Santos et al., 2017). Studies indicate that the region is exceptionally 

favorable for the occurrence of fires between September and November (Santos et al., 

2017). Data from the National Institute of Meteorology for 2015 show that the relatively 

low volume of rainfall and the increase in maximum temperature and reduction in 

humidity leads to the loss of photosynthetically active capacity of the vegetation cover, 

which facilitates the occurrence of fires.  

In a study conducted in 2015 in the PNCD (Araújo & Conceição, 2021), in an 

environment with the same fire-prone vegetation type, spaces opened by fire can be 

quickly recovered by native plants (Araújo & Conceição, 2021; Neves & Conceição, 

2010), mainly when the community is composed of resprouting species (Araújo & 

Conceição, 2021). Following this trend, the re-establishment of vegetation cover 

observed in the present study also occurred in a short period (16 to 20 months)(Araújo 

& Conceição, 2021), which corroborates the results found with the application of the 

NBR index. Leite et al. (2017) sought to identify fire-affected areas in 2008 and 2015 

and compare the effectiveness of both NBR and NDVI spectral index for the same area 

as this study. The authors found that NBR attributed negative values to burned areas. 

Consequently, there is a decrease in the vegetation vigor density, which implies a 

negative spectral response in band 5 and an increase in the exposed soil substrate 

and burned materials, resulting in positive values for band 7. Key and Benson (2006) 

found that the results of recent fires usually present with negative NBR values close to 

zero for strongly negative NBR values (from 0 to -1), as it is observed in the boxplot of 

09/25/2015 in figure 4. 

Several authors also made similar observations in previous studies on this topic (Doerr 

et al., 2006; Key & Benson, 2006; Parker et al., 2015; Rogan & Yool, 2001; Sunderman 

& Weisberg, 2011; Wimberly & Reilly, 2007). Rogan and Yool (2001) highlighted the 

potential of NBR in characterizing fire-induced landscape changes. Parker et al. (2015) 

analyzed the effects of vegetation regrowth from the NBR calculation due to the latency 

time between the wildfire ignition and the date of the Landsat image acquisition. The 

authors noted that Landsat images captured 68 days after the ignition date indicated 

that the spectral signature of the burned was likely to have decreased, underestimating 

the severity of the fire, which can be attributed to the rapid regeneration of the 

vegetation, thus indicating its regrowth. 

Santos et al. (2017) showed while assessing fire occurrence in a 10-year interval that 

the hot spots in the Chapada Diamantina National Park tend to increase considerably 

between September and December. Such an observation allows for considering the 

climatological factor in discussions of this nature, especially because fire occurrence 

has a particular seasonal pattern. Therefore, soon after this period, increased 

precipitation and reduced temperature between summer and fall may contribute to 

vegetation regrowth. 
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In this study, the NDVI values one year after the wildfire showed higher vigorousness 

compared with the data of the 2017 image. This increase may be related to a more 

notable plant activity in the study area between the months studied. Such a pattern is 

due to the influence of the rainy season. Given this result, we can consider that 

historical data derived from satellite imagery on fires can provide valuable information 

for more effective management of natural resources. These data represent a new 

insight into spatial and temporal patterns of fire regimes and fuel loads for supporting 

plans regarding flammable ecosystem management. 

The NBR index can indicate pre-and post-fire vegetation conditions and is highly 

influenced by meteorology. In a study developed in South Korea, Ryu et al. (2018) 

observed that the annual meteorological variation strongly affects the vegetation and 

water conditions in a forest ecosystem. As a result, such phenomena directly impact 

the temporal patterns of forest regrowth indicated by NBR and NDVI. 

Conclusions 

This paper presented a useful methodology to characterize the vegetation regrowth 

after a wildfire event. The NBR index demonstrated higher sensitivity to the pre-and 

post-fire displacements of the fire-affected pixels in the interval based on comparing 

both Landsat NIR and SWIR bands. This study also found that the NBR mean values 

decreased immediately after the wildfire occurrence in the entire study area. After the 

wildfire event, the NBR mean values returned to conditions similar to those that 

preceded the wildfire occurrence. Thus, when checking the NBR values, we can 

conclude that the plant biomass had already recovered considerably 9 months after 

the fire. 

When assessing vegetation regrow from Landsat imagery, historical data on fires must 

be considered to guarantee more consistent information for increasing the 

effectiveness of the management of natural resources. These data represent a new 

insight into both spatial and temporal patterns of fire regimes and fuel loads that can 

be used to support plans concerning the management of flammable ecosystems. 

It is important to consider that the historical information on vegetation regrowth 

obtained from the Landsat images can provide valuable data for the effective 

management of natural resources. Studies should be encouraged to map the 

recurrence of fires in the area and understand the landscape patterns created by the 

fire and the monitoring of the regrowth of the affected areas and their relationship with 

severity. 

With this study, we can realize that only with the application of the NBR index the Park 

managers can apply the technique and carry out the monitoring of the vegetation, being 

a simpler analysis that can be easily applied. We can also conclude that the vegetation 

characteristics in 1-2 years return to the spectral characteristics of the vegetation 

before the fire. This information will be valuable for forest managers to understand the 

consequences of even more acute fire regimes as observed for the area studied in 

2008 and 2012. It will help in the implementation of effective restoration and 
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environmental education actions. As a suggestion for future work, this study 

recommends further investigation into the dynamics of fires, their consequent 

ecological impacts, and recurrence in the Chapada Diamantina National Park. 
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