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Abstract

This chapter deals with the state of the art on the marine current turbine (MCT) 
system faults. Indeed, the MCT structure consists of a marine turbine, a generator 
(permanent magnet synchronous generator (PMSG) or doubly fed induction genera-
tor (DFIG)), and a PWM power converter. Nevertheless, these systems are exposed to 
functional and environmental severe conditions. Firstly, the power increase leads to a 
higher current and/or voltage. Second, the installation of the MCT system under the 
sea and the existence of the swell and wave imply harmonic current speeds. In fact, 
several faults (related to the turbine, the generator, the blades, and the converters) 
can occur in the MCT system. Most of these faults generate the speed and the torque 
oscillations, which can lead to mechanical vibrations and the rapid destruction of 
the insulating material generator. Consequently, MCT system performances can be 
degraded.

Keywords: marine current turbine, permanent magnet synchronous generator, doubly 
fed induction generator, converter, faults

1. Introduction

Today, the use of the marine current turbine, shown in Figure 1, has a great 
importance in the electrical energy production. Nevertheless, these systems are 
exposed to functional and environmental severe conditions. Indeed, different faults 
can exist in these systems, whether on the turbine marine, on the generator, or on 
the converters [1]. Therefore, the detection of the MCT faults becomes essential in 
order to minimize the maintenance cost and ensure the continuity of the electricity 
production.

Moreover, permanent magnet synchronous machines or doubly fed induction 
generators can be used for MCT systems [2, 3]. Thus, the existence of any fault can 
lead to an abnormal behavior of the machine and its accelerated aging process [4]. 
The main faults of permanent magnet synchronous machines can be summarized in 
two main categories; stator faults (short-circuit between turns, short circuit between 
phase and neutral, and short-circuit between phases) and rotor faults (magnets (for 
the PMSG), eccentricity, and rotor windings faults) [5].
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Furthermore, various studies have presented that 70% of converter faults are 
related to power switches [6, 7]. Indeed, insulated gate bipolar transistors (IGBTs) 
are rugged, but, because of electrical stress and excess thermal, they suffer from 
failure. Converters faults can be, generally, divided into intermittent gate misfir-
ing faults, open-circuit faults, and short-circuit faults. Thus, these faults must be 
taken into account; otherwise, they can lead to the whole system’s performance 
degradation [8, 9].

This chapter describes the different faults that can be occurring in the marine 
current turbine system. It is composed as follows; in Section 2, marine turbine faults 
are described. In Section 3, generator faults and their factors are represented. In 
Section 4, different types of converter faults are described. The conclusion is given in 
Section 5.

2. Marine turbine faults

Marine turbine faults are mainly located at the blades. Indeed, seawater salinity 
causes the corrosion and the rusting of the blades (Figure 2). This requires regular 
maintenance and the use of a high-performance anti-rust coating. Also, the presence 
of algae around the blades can also damage the marine turbine.

Figure 2. 
Marine turbine fault.

Figure 1. 
An off-grid marine current turbine structure.
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3. Generator faults

For MCT configuration, both the permanent magnet synchronous generator and 
the doubly-fed induction generator have been used. Table 1 gives the advantages and 
disadvantages of every generator.

3.1 Stator faults

Stator faults are due to different factors.

• Thermal factors

For a nominal temperature, the insulating material that covers conductors has a 
well-defined lifespan. Because of a voltage variation or a repetition of starts in a very 
short time, the temperature can increase and exceed the nominal operating tempera-
ture, which leads to the insulating material life reduction [10].

• Electrical factors

The dielectric properties of the insulating material can be contaminated by foreign 
things (fats, dust, …), which can cause a small current discharge that leads to a short 
circuit between conductors and magnetic carcasses.

• Mechanical origins

Repetitive starts of the machine cause the temperature rise, which leads to the 
insulation dilation. This could generate breaks in the insulation that implies a short 
circuit fault [10].

• Environmental origin

In general, humidity and the presence of chemicals in ambient air can degrade the 
insulating material quality and affect its lifespan [11].

The main faults of the stator are given by (Figure 3); short-circuit between turns 
(a), short circuit between phase and neutral (b), and short-circuit between phases 
(c) [12]. These faults generate a disturbance in the spatial distribution of the rotating 

Type Advantages Disadvantages

PMSG • Full speed range

• Possibility to avoid gearbox (direct drive)

• Complete control of reactive and active power

• Full-scale power converter

• Low-speed generator (big and heavy)

• Permanent magnets needed

DFIG • Limited speed range (±30% around synchro-

nous speed)

• Low-cost small capacity PWM inverter

• Complete control of reactive and active power

• Need slip rings

• Need for gear

Table 1. 
Generator topologies comparison.
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field. This causes, first of all, the electromagnetic torque and the speed oscillations 
(Figures 4 and 5, respectively), which lead to mechanical vibrations. Moreover, the 
short-circuit current with important values can lead to the rapid destruction of the 
insulating material (Figure 6) [13, 14].

Figure 4. 
Speed curve before and after fault.

Figure 5. 
Torque curve before and after fault.

Figure 3. 
Different short-circuit faults in the stator.
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3.2 Rotor faults

• Rotor winding faults

These faults present between 42 and 50% of all rotor failures in electrical 
machines. It can generate noise, mechanical vibrations, and the bearing wear rise. 
Moreover, winding faults are 12 times more frequent in inverter-powered machines 
than in those powered directly by the grid [14].

• Eccentricity

The stator and the rotor, for an electrical machine in healthy conditions, have the 
same rotation axis (same center) (Figure 7). Eccentricity is defined as an unsym-
metrical air gap between the rotor and the stator. It can be static or dynamic.

For the static eccentricity, the stator and the rotor centers are different (Figure 8), 
however, the rotor always turns around its axis. The main cause of static eccentricity 
is the incorrect position of the stator and the rotor [15].

In the case of dynamic eccentricity, the rotor does not turn around its axis of 
rotation where there is an unbalance as shown in Figure 9. The main cause of the 
dynamic eccentricity is the mechanical resonances at critical speed [16] that leads to 
the electromagnetic forces increase.

Figure 6. 
Insulating material destruction.

Figure 7. 
Stator and rotor in healthy conditions.
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4. Converter faults

As shown in Figure 10, the MCT converter consists of three legs. Each leg is 
composed of two semiconductor switches (Tk, Tk+3 k = 1, 2, 3) and two freewheeling 
diodes (Dk, Dk+3). For the switches control, a PWM bloc based on logic control signals 
Sk (k = 1, 2, 3) is used, and it is expressed by:

 
+

+


= 


3

3

1

0

k k

k
k k

if T on andT off
S

if T on andT off
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Most converter faults are short-circuit and open-circuit faults.

4.1 Open-circuit fault

IGBT’s open-circuit faults are, generally, caused by the loss of bonding wires of 
the control signal or the transistor rupture by a short-circuit [17]. Furthermore, this 
fault can occur when the switches are destructed by an accidental overcurrent or a 
fuse connected with series for short protection is blown out. It can arise on the upper 
switch (Figure 11a), the lower switch (Figure 11b), or even the two switches at the 
same time (Figure 11c).

Following this fault, the converter cannot synthesize balanced output voltages, 
thus providing large torque ripple (Figure 12) and increasing speed harmonics 
distortion (Figure 13) [18].

Figure 8. 
Static eccentricity.

Figure 9. 
Dynamic eccentricity.
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Figure 10. 
Converter topology.

Figure 11. 
Open-circuit fault.

Figure 12. 
Torque curve.
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4.2 Short-circuit fault

In this case, the fault transistor current increases. When this fault is applied to the 
whole leg, this latter becomes definitively short-circuited (Figure 14). The phase cur-
rents become strongly unbalanced and their amplitudes can reach several times that 
of the currents in normal operation. This not only causes very high torque ripples but 
can also damage other converter components. In addition, the short-circuit current 
can result in significant amplitudes.

5. Conclusion

This chapter presents the different faults that can occur in the marine current tur-
bine system, either on the turbine, the machine, or the converter. In this contest, these 
faults have been analyzed and described by giving each one its impact on the MCT 
behavior. In fact, Currents, voltages, torque, and speed have been attacked by strong 
ripples, which lead to the degradation of the MCT performances. Thus, the above-
presented study should be useful for the design of advanced robust control techniques 
in order to correct the effects of the faults and improve the MCT performances.

Figure 13. 
Speed curve.

Figure 14. 
Short-circuit fault.
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