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Chapter

Analytical Trophodynamics
Applied to Modeling Forest
Dynamics with Carbon Cycling
Solange da Fonseca Rutz and Marcelo Santos Carielo

Abstract

Models based on analytical trophodynamics (AT) method have provided an ana-
lytical framework for modeling in ecology, including the dynamical flux of nutrients
present in the soil for a fixed region. Dynamics occurring concurrently in different
time scales are modeled. Through a mathematical treatment of the elements of both
biotic and abiotic factors, is established Â stability and conservation laws for growing
trajectories, whose solutions of the second-order differential systems equations
known as Volterra–Hamilton systems. All solutions trajectories obtained to follow the
biological principles of energy conservation. The tensors of AT were computed with
the computational algebraic package FINSLER. Moreover, in this chapter, we present
an overview of the last results and actual status of research in this area.

Keywords: forest modeling, mycorrhizal networks, finsler geometry, second-order
differential equations, nonlinear connections

1. Introduction

Forest dynamics are closely related to the effects of climate change, biodiversity, air
temperature regulation, precipitation patterns, carbon cycling, and fixation of essential
nutrients for organic life such as nitrogen, phosphorus, and potassium [1]. Understanding
the cycling of nutrients and carbon is essential to comprehend this process [2]. Such cycles
present in forest ecosystems are influenced by biotic and abiotic effects, including ecolog-
ical interactions and adaptations to environmental external changes [3, 4]. In [5], experi-
mental results for species in Tropical Forests, show the role of the understory in the
dynamics of interaction between different species of underground plants andmicroorgan-
isms. In particular, it has already been shown that ectomycorrhiza fungi are responsible for
the hyphae pathways that mediate transports in forest soil, increasing the rate of nutrients
uptake, weathering of soil minerals, and also influencing the bacterial community in the
rhizosphere [6]. Recent research [4], investigating the transfer of carbonbetween trees in a
fixed area, under the effect of a specificmicroclimate, highlights the role of the rhizosphere
in nutrient dynamics. Mycorrhizal networks play the role ofmediators of interactions
between trees and plants surrounding the understory [7-9].

The transfer of carbon and other nutrients between plants in the same place has
been investigated, taking into account the mycorrhizal networks, which provide a
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means for the sending and receiving of nutrients to occur. Understanding quantitative
aspects of the direction and magnitude, among other factors, of the transfer process
directly affects the understanding of mechanisms related to the interaction and
function of these plants [4, 6, 10].

Recent results [11] show that mycorrhizal fungi influence the coexistence and
diversity of plants, being mediators of the symbiosis process of intra- and interspecific
competition of plant communities. The different types of mycorrhizal fungi affect the
level of nutrient sharing between neighboring plants and, consequently, their avail-
ability, acting as a regulator and stabilizer of the interaction mechanisms that lead to
the coexistence of species.

To evaluate the concentration of nutrients present in the subsoil of regions where
the different species are found, a long-term analysis under the effects of external
agents, such as natural disasters and anthropic interference, is essential [12]. The long-
term facilitation-type interactions have been shown to be more influential in the
dynamics than the competition. This is characterized by the positive effect in which at
least one of the local species benefits from interactions. A direct implication of this
result is that plants with higher biomass may not prevail in the long term [13, 14].

Models based on the analytical trophodynamics (AT) method [15, 16] provide a
new theoretical approach for a mathematical analysis of the carbon cycle dynamics
and of other nutrients present in the soil, taking into account short-term and long-
term as competition and facilitation, respectively. In addition, abiotic disruptive fac-
tors can also be integrated. AT has made it possible to model complex phenomena
such as forest dynamics [5, 9, 17, 18]. Recent AT results describe the interaction
between trees and the understory, including litter [19], succession forest [20], and the
environmental impact of the transgenic crop [21].

Models based on TA can include external environmental effects in the local
dynamics by analogy with continuum mechanics. In this approach, geometric quanti-
ties described through Finsler geometry and systems of second-order differential
equations provide mathematical objects that allow the analysis of these dynamics. The
algebraic manipulation of the geometric elements modeled is usually performed with
the FINSLER package [22].

The effect of external forces on the local dynamics of plants affects their forms of
interaction and functionality, causing stability scenarios to be altered. The eco-strain
model [20] makes it possible to investigate the external effects of the surrounding
space on the forest dynamics. Thus, transformations like that are important to deform
the Huxley allometric space, in which the known classical ecological interactions
(symbiosis, competition, and parasitism) occur so that in the new space there are
optimal trajectories that conserve Medawar growth energy [16], being described by
analytical expressions that modeling this mechanism.

The present work provides a review of the article [23], detailing biological and
mathematical aspects of the constructed model, with the TA method. The mathemat-
ical model built using this approach took into account the concept of the potential of
the mycorrhizal network [24] so that the solutions of the proposed model allowed us
to describe the dynamics of carbon cycling for two species of trees in the British
forest, corroborating experimental results. The trajectories of the proposed system of
differential equations describe the dynamics of species in a production space dis-
turbed by external agents. The results achieved in this model can be statistically tested
at later times since it is expected that the structural behavior of the dynamics will
continue to be valid for particular cases, in which the coefficients assume numerical
values measured through field experiments.
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In Section 1, we present an updated overview of the importance of the type of
modeling. Sections 2 and 3 introduce the theoretical framework of the proposed
approach. Examples of modeling applications with real data from biological experi-
ments are shown in Section 4. We end with a description of the next steps to continue
this research.

2. Volterra: Hamilton systems and Finsler and Wagner spaces

Given a coordinate chart xi, yi
� �

in the base space M of a slit tangent bundle TM ∗

consider the Volterra–Hamilton [25] system defined by1

dxi

dt
¼ k ið Þ y

i,

dyi

dt
¼ Gi

jk y
jyk þ rij y

j þ ei, i, j, k ¼ 1, … , n

(1)

where k ið Þ
2 is rate growth per capita, Gi

jk x, yð Þ are positively homogeneous of degree

zero in yi representing the interaction between populations yj and yk, rij
3 and ei are,

respectively, how the populations grow and react to environmental influence. The
variable x is the variable of production of Volterra [26]. It measures the quantity
produced by a population Ni ¼ dxi

dt along an interval of time.
There are three possibilities for the interaction coefficients: (i) are all constants;

(ii) depends explicitly of xi; or (iii) depends on the ratio yi

yj
[16]. When (iii) occurs, the

effects of social interaction [27] are included in modeling. Furthermore, a condition
assumed in this work is that the population are proportional, that is, the ratios Ni

Nj are
constants. This is known as how uniformity condition.

Given an initial condition, solutions of the second order system (SODE) (1)
provide trajectories that have the property of conserve growth energy [28] along the
solutions curves in the correspondent production process space. In [16] is studied a
two-dimensional case of this SODE model with classical ecological interactions
between two populations. In this case, the Gi

jk will be constant along the time.

For the case that the coefficients Gi
jk are constant these equations define the

coefficients of the Berwald connection [15, 29-31]. In this case, three of the eight
SODEs, are elastic transformation and are denoted by Ai

jk. They are the three cases are
the Minkowski space M,Fð Þ, whereM is as before, and F is the Finsler norm such that
with ds ¼ F yð Þ, and the metric tensor4

gij yð Þ ¼
1
2
_∂i
_∂jA

2
α, (2)

1 In the system (1) was used the Einstein notation for repeated indices.
2 The sub-index ið Þ in k ið Þ denote that this quantities are not summables over repeated indices.
3 Without loss of generality for this work, we can assume that the organisms contribute for the dynamics

similarly, that is k ið Þ � 1, and growth with same rate rij � λ.
4 Symbols ∂i and _∂i indicates the partial derivative with respect xi and yi, respectively.
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for

Aα ¼ exp ϕ xð Þ½ �F yð Þ, (3)

where there are three possibilities for F, given by F ¼ Fα yð Þ, ϕ ¼ ϕα xð Þ, α∈ 1,2,3f g,
as stated in [20].

The ideal case of Huxley allometric space is one of these, and your geodesics are
given by

d2xi

ds2
¼ 0, (4)

for a parameter s is known as a natural parameter [16]. They are the perfect case of
Huxley allometric space. Consequently, the solutions are straight lines yi ¼ ai sþ bi,
for arbitrary real constants of integration ai and bi.

As in forest ecosystems, it is common to have processes occurring on different time
scales [7, 14], in the modeling developed with TA different scales are combined. While
the parameter t indicates the real-time scale, the parameters s and p – introduced ahead
– denote other time scales, in which forest dynamics phenomena studied here have
patterns that preserve quantities of interest, obeying the principle of conservation of the
energy in the allometric space. The Finslerian geodesics given by the metric tensor (2)
preserve energy growth along trajectories in production process space.

Here transformations of the perfect case are reversible in the sense that one can be
obtained from the other by a non-singular change of coordinates xi into xi,

dxi ¼ Jij xð Þdxj, (5)

where the Jacobian Jij ¼
∂xi

∂xj

� �

depends only on the Volterra production variable xi.

The other five, of all eight SODEs mentioned above, are plastic deformation and
denoted by Ai

jk þW i
jk where

W i
jk ¼ δij ∂k σ xð Þ½ �, (6)

for a scalar function σ xð Þ defined over M, and ∂k σ xð Þ½ � ¼ σk xð Þ is your gradient.
According to the TA approach, after a heterochronic transformation

σ xð Þ, ci xð , yÞ
� �

, we obtain the following perturbed SODE from (1):

d2xi

dp2
þ Ai

jk þ δij σk

h i dxj

dp

dxk

dp
¼ ci,

dp

ds
¼ Q exp �

ð

γ

σ rð Þdr

� 	

,

ds ¼ exp λtð Þdt,

(7)

where Q is an arbitrary constant and γ is a solution curve. When ci 6¼ 0, then the
environmental effects act, such that the populations dynamics react through a time-
sequence of growth along their trajectories [32].

Now the solutions of this new SODE (7), the autoparallels of a constant Wagner
connection, are not geodesics [33]. In [34], it was demonstrated that the energy along
these paths is conserved, and they provide a condition for optimality accordly division
of labour principle [16, 28, 35].
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Although model (7) includes the effect of environment in dynamics, it does not
explain how soil carbon is periodically cycled and how it occurs in the case of interac-
tions of paper birch and Douglas-fir trees [6]. The energy flux and mycorrhizal
networks was introduced in the model by consider a proper form of the anholonomic
frames Bi

j x, dxð Þ, depend on xi and dxi, that describe the plastic deformation. Through
this element, defined below, the new version of SODE (7) will provide solutions that
model the nutrient cycle as expected.

External events can have a high impact on forest dynamics, directly affecting soil
organic matter, and leading most microorganisms to suffer drastic reductions in their
population due to high temperatures [36]. In addition to the direct effects of short-
term wildfires affecting the soil microbial communities, there are indirect abiotic
effects. In the long term, there are changes in both microbial and plant communities,
chemical changes at different soil levels, alterations in the microclime, reduction of
overstory and understory plant diversity, soil microflora, and others [37]. In turn,
such effects imply patterns of forest succession such that the vegetation cover present
as well as the dynamics of this ecosystem are altered [38]. Although there are
approaches based on Finsler geometries, different from TA, for modeling this aspect
[39, 40], understanding the long-term effects of wildfires on forest dynamics is still a
research area with many challenges [41-43].

3. Randers space

For investigating the effect of surround local environment, not considered by the
initial Eco-strain model [20], in [23], it was assumed that there was an increase in the
total intake of nutrients per unit of time, according to the biological event [44].
Mathematically, this corresponds to assume the following Finsler metric functional

F α ¼ exp σ xð Þ½ �Aα þ bi xð Þyi, (8)

and its norm dSα ¼ F α x, dxð Þ. The metric tensor in this case is denoted by hαβ x, yð Þ.
Using parameter p of Wagner SODE, we can obtain [23, 45] your geodesics,

dyi

dp
þ Ai

jk þ δij σk xð Þ þ δik σj xð Þ � gjkσ
i

h i

yjyk ¼ gim yð Þ δmbl � δlbmð Þyl,

yi ¼
dxi

dp
, δm ¼ ∂m � Ar

m
_∂r:

(9)

The δm is known as Berwald delta derivative5 and gim denotes the inverse of metric
tensor.

Another geometric element for the model proposed in [23] is the introduction of
the infectivity potential represented by the real positive function V xð Þ. Considering
how a function splits off the vector field bið Þ into bi xð Þ ¼ ∂iV xð Þ þ ~bi xð Þ, the potential
V xð Þ is defined so that increase the total intake per unit of time because

dSα ¼ exp σ xð Þ½ �Aα þ dV, (10)

where dV >0.

5 Note that δm and δij denote, respectively, the Berwald delta derivative and the Kronecker delta.

5

Analytical Trophodynamics Applied to Modeling Forest Dynamics with Carbon Cycling
DOI: http://dx.doi.org/10.5772/intechopen.109163



In [23], the effect of a strained environment pressuring the forest dynamics was
modeled by the Eco-strain model [20] where the Berwald frame Bα

i x, dxð Þ has been
used, and additionally by the Holland’s frame Uα

i x, dxð Þ.
From the original allometric space described in terms of the metric tensor (2), the

relaxed state δαβ and strained state gij are obtained so that

δαβ x, yð Þ ¼ gij x, yð ÞBi
αB

j
β,

gij x, yð Þ ¼ δαβB
α
i B

β
j :

(11)

When the frame is a Jacobian matrix it is called holonomic (or elastic) and indicates
a coordinate change that is reversible. Already when this does not occur, the frame is
termed anholonomic (or plastic), and it is non-reversible.

Additionally, an alreadydeformed space canbedeformed again through a composition
of frames. From the Holland’s frame for Randers space, denoted byUα

i and defined by

gij x, yð Þ ¼ Uα
i U

β
j hαβ,

hαβ x, yð Þ ¼ gijU
i
αU

j
β:

(12)

obtain one of the plastic deformation of the Euclidean allometric space with a non-
vanishing curl.

4. Applying the modeling in a concrete case

In [23], a model for carbon and nutrient cycling including understory and under-
ground mycorrhizal networks was presented. This model extends the Eco-strain
model [16]. Now, the results proposed allow to describe the periodicity of carbon
cycling. The effect of mycorrhizal networks in the model proposed here shows that
the nutrient dynamics described by the SODE trajectories (9), obtained by the TA
method, now provide trajectories that model these dynamics.

As in the first SODE (1) where classical ecological interactions are modeled and the
system provides trajectories that model the different dynamics under such interac-
tions, SODE (9) described here provides trajectories that will describe the effect of
carbon cycling, providing different interaction schemes according to the coordinates
and assumed values for their coefficients. Although for different choices of these
elements the dynamics effects can change, the geometric concepts of the TA [27]
derived from this system allow the study of the stability, among other aspects, of the
system according to this approach.

Using analytical trophodynamics [15, 16], a model was presented for two tree species
(dominant and codominant) inhabiting a fixed region with a specific microclimate,
defined by means of solar incidence, wind speed, air temperature, substrate, and pH. In
this model, it was considered species interacting with the plant community in the local
understory and with microorganisms from the rhizosphere, and of the subsoil of the soil-
root interface [46, 47]. The results obtained extended other existing ones [20], in which
the interaction coefficients had zero curvature. The newmodel constructed [23] took into
account the potential for arbuscular infectivity defined by the mycorrhizal network,
which contributes to the understanding of the interactions between trees and plants in the
same region. Commonly, these interactions are complex, not being limited to the most
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usual in ecology: predation, parasitism, and symbiosis. Mycorrhizal networks, present in
practically all subsoil, connect at least two local plants through the mycelia, which serves
as a physical medium for the transmission of nutrients [1, 8]. This feature was also
contemplated by the proposed mathematical model. It is also noteworthy that the results
obtained corroborate experimental data [18, 44] that describe two species of trees –
namely, the Douglas-fir (Pseudotsuga menziesii) and the paper birch (Betula papyrifera) –
present in the same forest region of Canada’s British Columbia. Thus, it was possible to
mathematically investigate the nutrient dynamics in addition to classifying possible sta-
bility scenarios [15]. Additionally, through the concept of Eco-strain [20], the forest
dynamics were studied [23] under the addition of external environmental effects that
influence the flux of nutrients. Conceptually, this aspect is formulated by analogy with
the mechanics of the continuous medium. Including the infectivity potential in the
proposed model also allowed us to understand the plastic and elastic deformations in the
considered allometric production space.

We emphasize that the model proposed in [23] also allow investigating interactions
in scenarios that include rhizosphere microorganisms, abiotic soil variables, grafts,
and mycorrhizal network. Through algebraic computation [22, 30], experiments were
carried out that contributed to the validation of the results. In the Appendix, there are
codes of computational experiments related to the following application examples.

Application 1. Assume that the two species of trees in a forest are both close as
Douglas-fir and paper-birch in forests of British Columbia [44]. As mentioned above,
the dynamic of ecological interactions among these involve the understories and
mycorrhizal components. Using the indices #1 to denote Douglas-fir and #2 for paper-
birch consider the following system [23], derived from the Huxley space defined by Fα

and α ¼ 1, namely F1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y1ð Þ2 þ y2ð Þ2
q

, that correspond to the Randers geodesics,

d2X1

ds2
¼ Ω12Y

2,

d2X2

ds2
¼ �Ω12Y

1,

(13)

for Y i ¼ dXi

ds , b1 ¼ �c2 x2 � x2
∗

� �

, b2 ¼ c1 x1 � x1
∗

� �

, Ω12 ¼ c1 þ c2, and c1, c2 are con-
stants. Therefore,

Y1� �2
þ Y2� �2

¼ R2, (14)

where R is a constant. This solution shows that the net carbon flux varies periodi-
cally corroborating the biological experiments with these trees.

Application 2. Now, consider the Finsler functional defined by α ¼ 2,

F2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y1ð Þ2 þ 2
λ
þ y2ð Þ

2
λ

q

, so that, using normal coordinates xi, with rates dxi

dp ¼ Ni and

the uniform condition to insure that Ni

Nj are constants over a time interval or close to
climax equilibrium, the Randers geodesics are given by

dN1

dp
¼ Ω12 �g12N1 þ g11N2� �

,

dN2

dp
¼ Ω12 �g22N1 þ g12N2� �

:

(15)
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In [23], it is shown that this system is also periodic both in p parameter and in

real-time t. Moreover, the N-constant ratio occurs in original variables, dx
1

dx2
, but with

different constants.
These two applications of the model presented here illustrate how the AT method

allows a mathematical description of complex dynamics such as those involving plants
under different effects of the external environment. The complex mycorrhiza’s role in
the interactions of plants and its effects on neighboring species, investigated under an
analytical approach, can be tested from a statistical perspective in the next step.
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Appendix A

Computational experiments with FINSLER package [22] Figures 1 and 2.

Figure 1.
Application 1 experiment codes.
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