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Chapter

RS Codes and Optimized
Distributed RS-Coded Relay
Cooperative Communications:
Code Constructions and
Performance Analysis
Chen Chen and Fengfan Yang

Abstract

This chapter introduces the Reed-Solomon (RS) codes and the distributed
RS-coded cooperative system over the Rayleigh fading channel, where the encoding
and decoding procedures of the RS codes are elaborated. Besides, two optimized
selection approaches, i.e., the exhaustive search approach and partial search approach,
are employed in the relay to obtain a resultant code at the destination with better
weight distribution. Moreover, the two joint decoding algorithms, namely naive and
smart algorithms, are presented that further improve the overall average bit error rate
(BER) performance of the cooperative scheme. Also, the performance analysis of the
distributed RS-coded cooperative scheme is provided in detailed.

Keywords: BCH codes, RS codes, relay cooperation, distributed RS codes, joint
decoding

1. Introduction

Fifth-generation (5G) communication systems may accommodate the traffic gen-
erated by a variety of wireless network types such as Device-to-Device (D2D) and
sensor networks. Hence, it is reasonable to consider the short-information-transmis-
sion scenario. Generally, one of the most important aspects of transmission is to
combat the signal fading over a wireless channel. Spatial diversity has proven to be the
most effective method for mitigating the impacts of fading [1]. However, many
mobile communication devices are unable to leverage spatial diversity techniques
owing to size, power, and hardware complexity. Therefore, coded cooperative diver-
sity with the aid of the relay was proposed to provide uplink diversity via single
antenna sharing. Factually, various distributed linear block codes have been employed
in the coded cooperation such as the distributed turbo codes (DTC) [2], distributed
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low-density parity-check codes (D-LDPC) [3], and polar codes [4]. Nevertheless, for
the non-binary codes with short information sizes in coded cooperation, the literature
has not been thoroughly investigated. Note that Reed-Solomon (RS) codes are a
well-known class of non-binary codes with low encoding and decoding complexity.
Furthermore, as a member of maximum distance separatable (MDS) codes, short-
to-medium-length RS codes perform well in correcting random burst errors. Hence,
RS-coded relay cooperation is considered a promising exploration to support short
information transmission [5]. In addition, the distinct information selection in the
relay may result in a different resultant code at the destination, which will influence
the performance of the overall transmission. Hence, the optimized selection
approaches [6] at the relay are also introduced in this chapter.

The remaining contexts of this chapter are summarized as follows. Section 2
provides a brief introduction to the BCH codes and RS codes. The general distributed
RS-coded cooperative system is presented in Section 3. Section 4 exhibits the two
optimized selection approaches and the corresponding examples. The joint decoding
algorithms and the performance analysis are elaborated in Section 5. Section 6 con-
cludes this chapter.

2. BCH codes and RS codes

2.1 BCH codes

Bose-Chaudhuri-Hocquenghem (BCH) codes are a kind of cyclic codes that can
effectively correct random errors [7], which can be classified into binary BCH codes
and non-binary BCH codes according to the different fields from which symbols are
taken. Given any finite field GF qð Þ and its extension field GF qmð Þ, where q is a prime
or a power of a prime and m is a positive integer, let α be a non-zero and non-one
element of GF qmð Þ. If the generator polynomial g xð Þ∈ F x½ � F∈GF qð Þð Þ is the lowest-

degree-polynomial with consecutive roots α, α2,⋯, α2t
� �

, then a cyclic code generated

from this polynomial g xð Þ is called a BCH code.

Assume that φi xð Þ denotes the minimum polynomial of αi 1≤ i≤ 2tð Þ and ei repre-
sents the order of αi. Therefore, the generator polynomial g xð Þ and the code length n of
BCH code are provided as,

g xð Þ ¼ LCM φ1 xð Þ,φ2 xð Þ, … ,φi xð Þf g, n ¼ LCM e1, e2, … , e2tf g, (1)

where LCM denotes the least common multiple. In particular, when q ¼ 2, it is the
binary BCH code. Also, if α is the primitive element in GF qmð Þ, it is a primitive BCH
code of code length n ¼ qm � 1. Otherwise, the BCH code is non-primitive where n is
the factor of qm � 1. Consider a BCH code of length n, its parity check matrix is
provided as [8],

H ¼

1 α α2 α3 ⋯ αn�1

1 α2 α2ð Þ
2

α2ð Þ
3

⋯ α2ð Þ
n�1

1 α3 α3ð Þ
2

α3ð Þ
3

⋯ α3ð Þ
n�1

⋮ ⋮ ⋮ ⋮ ⋱ ⋮

1 α2t α2tð Þ
2

α2tð Þ
3

⋯ α2tð Þ
n�1

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

: (2)
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Then, the minimum distance of the t-error-correcting BCH codes is at least 2tþ 1.
The proof process can be referred to [9]. This lower bound on the minimum distance
is called the BCH bound.

2.2 RS codes: encoding and decoding

The most important subclass of q-ary BCH codes is the RS codes, a particular
subclass of q-ary BCH codes for which m ¼ 1. The efficient encoding and hard-
decision decoding algorithms of RS codes as well as their improved capacity to rectify
random burst errors have made them extensively applied for error control in both
storage systems and digital communication [9]. The following describes the specific
characteristic, encoding, and decoding processes of the RS codes.

2.2.1 Free distance of RS codes

Suppose that α is a primitive element in GF qð Þ. The generator polynomial g(x)

of t-error-correcting n, kð Þ RS code has α, α2,⋯, α2t
� �

as all its roots, where all symbols
of RS codes are chosen from GF qð Þ, n and k denote the code length and length of
information sequence, respectively. Therefore, the minimum polynomial φi xð Þ

corresponding to each αi is x� αi. And g xð Þ can be obtained from Eq. (1) given as,

g xð Þ ¼ x� αð Þ x� α2
� �

⋯ x� α2t
� �

¼ g0 þ g1xþ g2x
2 þ⋯þ g2t�1x

2t�1 þ x2t,
(3)

where gi ∈GF qð Þ for 0< i< 2t. Since the all roots of xq�1 � 1 are α, α2, … , α2t, g xð Þ

can divides xq�1 � 1. Thus, g xð Þ generates a q-ary RS code of length n ¼ q� 1 with
exactly 2t parity-check symbols, which means n� k ¼ 2t.

From the BCH bound and the Eq. (3) where the code polynomial comprises 2tþ 1
terms. Hence, there cannot be a zero for any of the coefficients in g xð Þ can be zero.
Otherwise, the resultant codeword would have a weight less than 2tþ 1, which would
be in conflict with the BCH bound on the minimum distance. As a result, the g xð Þ
corresponds to a codeword with a weight of precisely 2tþ 1. It follows that the
minimum distance of the t-error-correcting RS code generated by Eq. (3) is deter-
mined as exactly 2tþ 1, i.e., dmin ¼ 2tþ 1. In addition, the minimum distance of the
RS code is more than the number of its parity-check symbols. Therefore, RS codes are
a prominent subgroup of the maximum distance separable (MDS) codes [10]. In this
chapter, we simply consider q ¼ 2.

Example 1. Let α is a primitive element in GF 24
� �

constructed based on the

primitive polynomial 1þ xþ x4 shown in Table 1. Consider the double-error-

correcting RS codes with the symbols from GF 24
� �

. The generator polynomial g xð Þ of

this code has α, α2, α3, α4 as all its roots. Hence, g xð Þ is acquired as,

g xð Þ ¼ x� αð Þ x� α2
� �

x� α3
� �

x� α4
� �

¼ α10 þ α3xþ α6x2 þ α13x3 þ x4,
(4)

The code is (15,11) RS code over the GF 24
� �

that can correct two errors. And, the
minimum distance of this RS code is 5.

The end of Example 1.
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2.2.2 Encoding of RS codes

Given the generator polynomial g xð Þ illustrated in Eq. (3), the polynomial c xð Þ of
the codeword c of the RS code is generated as,

c xð Þ ¼ g xð Þu xð Þ, (5)

where u xð Þ ¼ u0 þ u1xþ u2x
2 þ⋯þ uk�1x

k�1 is the polynomial of the information
sequence m, ui ∈GF 2mð Þ for i ¼ 0, 1, … , k� 1. Moreover, the polynomial c xð Þ of sys-
tematic codeword c is obtained as,

c xð Þ ¼ xn�ku xð Þ þ p xð Þ, (6)

where p xð Þ ¼ p0 þ p1xþ p2x
2 þ⋯þ

pn�k�1x
n�k�1 pi ∈GF 2mð Þ, i ¼ 0, 1, … , n� k� 1

� �

denotes the parity-check polynomial
which can be computed by the polynomial division as,

p xð Þ ¼ xn�ku xð Þ=g xð Þ: (7)

2.2.3 Decoding of RS codes

Consider a n, kð Þ RS code with the symbols from GF qð Þ. Suppose that a codeword

c xð Þ ¼ c0 þ c1xþ⋯þ cn�1x
n�1 is transmitted, and the transmission error result in the

following received vector r xð Þ ¼ r0 þ r1xþ⋯þ rn�1x
n�1. Let e xð Þ ¼ e0 þ e1xþ⋯þ

en�1x
n�1 be the error pattern which have relationship with c xð Þ and r xð Þ as,

e xð Þ ¼ r xð Þ � c xð Þ: (8)

Assume that error pattern e xð Þ contains τ errors (nonzero components) at locations
xj1 , xj2 , … , xjτ , where 0≤ j1 < j2 <⋯< jτ ≤ n� 1. Then,

e xð Þ ¼ ej1x
j1 þ ej2x

j2 þ⋯þ ejτx
jτ (9)

Field elements Vector Field elementst Vector

0 0000½ � α7 ¼ 1þ α þ α3 1101½ �

1000½ � α8 ¼ 1þ α2 1010½ �

α 0100½ � α9 ¼ α þ α3 0101½ �

α2 0010½ � α10 ¼ 1þ α þ α2 1110½ �

α3 0001½ � α11 ¼ α þ α2 þ α3 0111½ �

α4 ¼ 1þ α 1100½ � α12 ¼ 1þ α þ α2 þ α3 1111½ �

α5 ¼ α þ α2 0110½ � α13 ¼ 1þ α2 þ α3 1011½ �

α6 ¼ α2 þ α3 0011½ � α14 ¼ 1þ α3 1001½ �

Table 1.
Galois field GF 2

4ð Þ with the primitive polynomial 1þ α þ α4 ¼ 0.
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where xji denotes error-location and eji is error values, 1≤ i≤ τ. And the specific

decoding steps are given as follows,
Step 1. Compute the syndrome. The syndrome is a 2t-tuple vector as,

S ¼ S1, S2, … , S2tð Þ ¼ r �HT

¼ r0, r1, … , rn�1½ � �

1 1 1 ⋯ 1

α α2 α3 ⋯ α2t

α2 α2ð Þ
2

α3ð Þ
2

⋯ α2tð Þ
2

⋮ ⋮ ⋮ ⋱ ⋮

αn�1 α2ð Þ
n�1

α3ð Þ
n�1

⋯ α2tð Þ
n�1

2

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

5

:
(10)

Evidently, Si ¼ r αi
� �

1≤ i≤ 2tð Þ.

Step 2. Determined the error-location polynomial σ xð Þ and the error value evalua-
tor Z0 xð Þ based on Euclidean algorithm.

(1) From Eq. (8) and (10), we obtain,

Si ¼ r αi
� �

¼ e αi
� �

þ c αi
� �

¼ e αi
� �

: (11)

From Eq. (9), all 2t syndromes are obtained,

S1 ¼ ej1 αj1
� �1

þ ej2 αj2
� �1

þ⋯þ ejτ αjτ
� �1

,

S2 ¼ ej1 αj1
� �2

þ ej2 αj2
� �2

þ⋯þ ejτ αjτ
� �2

,

⋮

S2t ¼ ej1 αj1
� �2t

þ ej2 αj2
� �2t

þ⋯þ ejτ αjτ
� �2t

,

(12)

where αji is called the error location number and eji is the error value 1≤ i≤ 2tð Þ. Let

βi≜α
j1 , δi≜eji , Eq. (12) can be simplified as,

S1 ¼ δ1β1 þ δ2β2 þ⋯þ δτβτ,

S2 ¼ δ1β
2
1 þ δ2β

2
2 þ⋯þ δτβ

2
τ ,

⋮

S2t ¼ δ1β
2t
1 þ δ2β

2t
2 þ⋯þ δτβ

2t
τ :

(13)

(2) To solve these 2t equations, the error-location polynomial is firstly defined as:

σ xð Þ ¼ 1� β1xð Þ 1� β2xð Þ⋯ 1� βτxð Þ

¼ σ0 þ σ1xþ σ2x
2 þ⋯þ στx

τ:
(14)

The roots of σ xð Þ are β�1
1 , β�1

2 , … , β�1
τ , which are the inverses of the error-location

numbers [11].
(3) Define error-value evaluator Z0 xð Þ. Firstly, the syndrome polynomial S xð Þ is

defined as,

S xð Þ≜S1 þ S2xþ S3x
2 þ⋯þ S2tx

2t�1 þ S2tþ1x
2t þ⋯ ¼

X

∞

j¼1

Sjx
j�1: (15)
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Then, S xð Þ can be further simplified as,

S xð Þ ¼
X

∞

j¼1

xj�1
X

τ

l¼1

δlβ
j
l ¼

X

τ

l¼1

δlβl

X

∞

j¼1

xδlð Þj�1: (16)

Since 1
1�βlx

¼
P

∞

j¼1 xβlð Þj�1, Thus Eq. (16) comes to,

S xð Þ ¼
X

τ

l¼1

δlβl

1� βlx
: (17)

Then, we have,

σ xð ÞS xð Þ ¼ 1þ σ1xþ⋯þ στx
τð Þ S1 þ S2xþ S3x

2 þ⋯
� �

¼ S1 þ S2 þ σ1S1ð Þ

þ S3 þ σ1S2 þ σ2S1ð Þx2 þ⋯þ S2t þ σ1S2t�1 þ σ2S2t�2 þ⋯þ στS2t�τð Þx2t�1

þ S2tþ σ1S2t�1 þ σ2S2t�2 þ⋯þ στS2t�τð Þx2tþ⋯:

(18)

Therefore,

Z0 xð Þ ≜
Y

τ

i¼1

1� βixð Þ

( )

�
X

τ

l¼1

δlβl

1� βlx

( )

¼
X

τ

l¼1

δlβl

1� βlx
�
Y

τ

i¼1

1� βixð Þ

¼
X

τ

l¼1

δlβl �
Y

τ

i¼1, i 6¼l

1� βixð Þ:

(19)

Step 3. Solve the key equation based on the Euclidean algorithm. In the expansion
of σ xð ÞS xð Þ, only the coefficient of the first 2t terms (from x0 to x2t) are known. Let
Z0 xð Þ ¼ σ xð ÞS xð Þ½ �2t denote the first 2t terms of σ xð ÞS xð Þ. Then, σ xð ÞS xð Þ � σ xð ÞS xð Þ½ �2t
is divisible by x2t. This simply says that if σ xð ÞS xð Þ is divided by x2t, the remainder is
Z0 xð Þ.

Therefore, we obtain,

σ xð ÞS xð Þ ¼ Z0 xð Þ mod x2t, (20)

which is called the key equation in decoding BCH code. Thus, the key equation can
be expressed in the following forms:

σ xð ÞS xð Þ ¼ Q xð Þx2t þ Z0 xð Þ ) Z0 xð Þ ¼ �Q xð Þx2t þ σ xð ÞS xð Þ: (21)

Setting,

a xð Þ ¼ x2t, b xð Þ ¼ S xð Þ: (22)

Then the key equation is exactly in the form given as follows,

Z0 xð Þ ¼ �Q xð Þa xð Þ þ σ xð Þb xð Þ: (23)

6
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Therefore, σ xð Þ and Z0 xð Þ can be found by the Euclidean iterative division algo-
rithm. Let

Z
ið Þ
0 xð Þ ¼ ri xð Þ, σ ið Þ xð Þ ¼ gi xð Þ, γ ið Þ xð Þ ¼ �Q ið Þ xð Þ ¼ f i xð Þ: (24)

To find σ xð Þ and Z0 xð Þ, we carry out the iteration process as follows:
(1) Firstly, the initial conditions are given as,

Z
�1ð Þ
0 xð Þ ¼ x2t a xð Þ ¼ x2t

� �

,

Z
0ð Þ
0 xð Þ ¼ S Xð Þ b xð Þ ¼ S xð Þð Þ,

γ �1ð Þ xð Þ ¼ σ 0ð Þ xð Þ ¼ 1,

γ 0ð Þ xð Þ ¼ σ �1ð Þ xð Þ ¼ 0::

(25)

(2) Step i: at the i-th step,

Z
i�2ð Þ
0 xð Þ ¼ q1 xð ÞZ

i�1ð Þ
0 xð Þ þ Z

ið Þ
0 xð Þ,

) Z
ið Þ
0 xð Þ ¼ γ ið Þ xð Þx2t þ σ ið Þ xð ÞS xð Þ,

(26)

where

σ ið Þ xð Þ ¼ σ i�2ð Þ xð Þ � qi xð Þσ i�1ð Þ xð Þ, γ ið Þ xð Þ ¼ γ i�2ð Þ xð Þ � qi xð Þγ i�1ð Þ xð Þ: (27)

(3) Finally, iteration stops when the iteration reaches a step ρ for which

deg Z
ρð Þ
0 xð Þ<deg σ ρð Þ xð Þ≤ t: (28)

Therefore, Z0 xð Þ ¼ Z
ρð Þ
0 , σ xð Þ ¼ σ ρð Þ are obtained.

Step 4. Evaluate error location numbers and error values.
(1) Determine error-location numbers αji from σ xð Þ. The error-location numbers

are the inverse of the roots of σ xð Þ.

(2) Determine the error values δl, 1≤ l≤ τ from Z0 xð Þ and σ xð Þ. Subsitituting β�1
l in

Z0 xð Þ, then,

Z0 β�1
l

� �

¼
X

τ

l¼1

δlβl

Y

τ

i¼1, i 6¼l

1� βiβ
�1
l

� �

¼ δlβl

Y

τ

i¼1, i 6¼l

1� βiβ
�1
l

� �

(29)

(3) Compute the derivative of σ xð Þ as,

σ0 xð Þ ¼
d

dx

Y

i¼1

τ 1� βixð Þ ¼ �
X

τ

l¼1

βl

Y

τ

i¼1, i6¼l

1� βixð Þ: (30)

Moreover, substitute β�1
l in Eq. (30) and obtain,

σ0 β�1
l

� �

¼ �βl

Y

τ

i¼1, i 6¼l

1� βiβ
�1
l

� �

: (31)
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Hence, the error values δl at location betal is evaluated as,

δl ¼ �
Z0 β�1

l

� �

σ0 β�1
l

� � : (32)

The Euclidean decoding algorithm is terminated [12].
Example 2. Consider the triple-error-correcting RS code of length n ¼ 15 over

GF 24
� �

, α be a primitive element of GF 24
� �

such that α4 þ αþ 1 ¼ 0. The generator

polynomial has α, α2, α3, α4, α5, α6 as roots; that is,

g xð Þ ¼ xþ αð Þ xþ α2
� �

xþ α3
� �

xþ α4
� �

xþ α5
� �

xþ α6
� �

¼ α6 þ α9xþ α9x2 þ α4x3 þ α14x4 þ α10x5 þ x6:
(33)

Suppose that the codeword of all zero is transmitted, and the received polynomial
is r xð Þ ¼ α7x3 þ α11x10. The decoding procedures are shown as follows,

Step 1. Compute the syndromes S1, S2, … , S6ð Þ. The syndrome components are
exhibited as,

S1 ¼ r αð Þ ¼ α7 � α3 þ α11 � α10 ¼ α7,

S2 ¼ r α2
� �

¼ α7 � α2
� �3

þ α11 � α2
� �10

¼ α12,

S3 ¼ r α3
� �

¼ α7 � α3
� �3

þ α11 � α3
� �10

¼ α6,

S4 ¼ r α4
� �

¼ α7 � α4
� �3

þ α11 � α4
� �10

¼ α12,

S5 ¼ r α5
� �

¼ α7 � α5
� �3

þ α11 � α5
� �10

¼ α14,

S6 ¼ r α6
� �

¼ α7 � α6
� �3

þ α11 � α6
� �10

¼ α14:

(34)

The syndrome polynomial is S xð Þ ¼ α7 þ α12xþ α6x2 þ α12x3 þ α14x4 þ α14x5.
Step 2. Determine the error-location polynomial σ xð Þ and the error-value evaluator

Z0 xð Þ based on the Euclidean algorithm.
(1) Firstly, the initial conditions are acquired as,

Z
�1ð Þ
0 xð Þ ¼ x6,

Z
0ð Þ
0 xð Þ ¼ S Xð Þ ¼ α7 þ α12xþ α6x2 þ α12x3 þ α14x4 þ α14x5,

γ �1ð Þ xð Þ ¼ σ 0ð Þ xð Þ ¼ 1,

γ 0ð Þ xð Þ ¼ σ �1ð Þ xð Þ ¼ 0::

(35)

(2) When l = 1, then,

Z
�1ð Þ
0 xð Þ ¼ q1 xð ÞZ

0ð Þ
0 xð Þ þ Z

1ð Þ
0 xð Þ,

) x6 ¼ q1 xð Þ α7 þ α12xþ α6x2 þ α12x3 þ α14x4 þ α14x5
� �

þ Z
0ð Þ
0 xð Þ,

) q1 xð Þ ¼ αxþ α,Z
1ð Þ
0 xð Þ ¼ α6x4 þ α5x3 þ α5x2 þ α3xþ α8,

(36)

where,

σ 1ð Þ xð Þ ¼ σ �1ð Þ xð Þ � q1 xð Þσ 0ð Þ xð Þ ) σ 1ð Þ xð Þ ¼ αxþ α (37)

8
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(3) When l = 2,

Z
0ð Þ
0 xð Þ ¼ q2 xð ÞZ

1ð Þ
0 xð Þ þ Z

2ð Þ
0 xð Þ,

) α7 þ α12xþ α6x2 þ α12x3 þ α14x4 þ α14x5

¼ q2 xð Þ α6x4 þ α5x3 þ α5x2 þ α3xþ α8
� �

þ Z
2ð Þ
0 xð Þ,

) q2 xð Þ ¼ α8xþ α11,Z 2ð Þ
0 xð Þ ¼ α2xþ α3,

(38)

where,

σ 2ð Þ xð Þ ¼ σ 0ð Þ xð Þ � q2 xð Þσ 1ð Þ xð Þ ) σ 2ð Þ xð Þ ¼ α9x2 þ α8xþ α11 (39)

Observe that degZ 2ð Þ
0 xð Þ< degσ 2ð Þ xð Þ≤ 3 ¼ t. Hence, The iteration is terminated,

and we can acquire,

Z0 xð Þ ¼ Z
2ð Þ
0 xð Þ ¼ α2xþ α3, σ xð Þ ¼ σ 2ð Þ xð Þ ¼ α9x2 þ α8xþ α11 (40)

Step 3. Evaluate error-location numbers and error values. The all roots of σ xð Þ are

α5 and α12. Then, the error location numbers are α5ð Þ
�1

¼ α10, α12ð Þ
�1

¼ α3. The error
values at these locations are

e3 ¼
�Z0 α�3ð Þ

σ0 α�3ð Þ
¼

α3 þ α2α�3

α11α3 1þ α10α�3ð Þ
¼

1

α8
¼ α7,

e10 ¼
�Z0 α�10ð Þ

σ0 α�10ð Þ
¼

α3 þ α2α�10

α11α10 1þ α3α�10ð Þ
¼

α4

α8
¼ α11:

(41)

Step 4. Perform error correction.
Therefore, the error polynomial is e xð Þ ¼ α7x3 þ α11x10. the decoded coded poly-

nomial is c0 xð Þ ¼ r xð Þ � e xð Þ ¼ α7x3 þ α11x10ð Þ � α7x3 þ α11x10ð Þ ¼ 0, which is all-zero
codeword.

The end of Example 2.

3. General distributed RS coded-cooperative systems

Coded cooperative diversity is an efficient technique combining channel coding
and cooperative diversity to combat the influence of channel fading and improve the
performance of the systems [13]. Generally, the coded cooperation is composed of
three terminals, i.e., source, relay, and destination. Hence, the channel codes
employed in each terminal are named distributed channel codes. Many distributed
channel codes are applied in the coded-cooperative systems. For short-to-medium-
length transmission information blocks, the RS channel coding may be a promising
candidate which illustrates a superior performance [13–16].

Figure 1 demonstrates the general distributed RS coded-cooperative scheme. Evi-
dently, all three terminals transmit and receive signals through one antenna and the
entire transmission requires two-time slots. During time slot-1, the binary information
sequence b1 is first converted to the M-ary symbol vector u1 of length K1 over the

GF 2M
� �

. Then, u1 is encoded by the RS1 N,K1, d1ð Þ encoder to obtain the systematic
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codeword c1 of length N, where d1 ¼ N � K1 þ 1 and the generator polynomial g1 xð Þ

of RS1 is given as,

g1 xð Þ ¼ x� γð Þ x� γ2
� �

⋯ x� γN�K1
� �

, (42)

where γk ∈GF 2M
� �

, k ¼ 0, 1, … ,N � K1. Then, c1 is further modulated to the sig-

nal v1 by the M-ary quadrature amplitude modulation (M-QAM). Subsequently, v1 ¼

v0, v1, … , v N�1ð Þ�
�

generated at the source is transmitted to the both relay and desti-

nation through the respective fading channels where the signals r1 ¼ r10, r
1
1, … , r1N�1

� �

and r2 ¼ r20, r
2
1, … , r2N�1

� �

are obtained at the relay and destination, respectively.

Moreover, each signal symbol r
j
i i ¼ 0, 1, … ,N � 1, j ¼ 1, 2ð Þ is modeled as,

r
j
i ¼ h

j
ivi þ n

j
i, (43)

where h
j
i is the complex Gaussian variable satisfying zero mean and 1=2 variance

per dimension, and n
j
i represents the complex Gaussian variable with zero mean and

N0=2-variance per dimension. Note that N0 denotes the power spectral density (PSD)
of the noise.

During time slot 2, r2 is demodulated and decoded subsequently to obtain the
estimated information sequence ~u1. If the source-to-relay channel is ideal, then,
~u1 ¼ u1. For the system, the information symbols at the relay are only from the source.
Therefore, the K2 symbols are simply chosen from ~u1 of length N through the ‘Symbol
Selection’ block. Note that different selection patterns contribute to a different mini-
mum distance of the resultant code at the destination and further affect the overall
performance of the RS coded-cooperative scheme, which will be elaborated on in the
next section. After that, the selected message vector u2 is also encoded by the
RS2 N,K2, d2ð Þ to acquire the c2, where d2 ¼ N � K2 and the generator polynomial
g2 xð Þ of RS2 is provided as,

Figure 1.
The system model of the general distributed RS-coded cooperation.
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g1 xð Þ ¼ x� γð Þ x� γ2
� �

⋯ x� γN�K2
� �

, (44)

Similarly, the codeword c2 is modulated by an M-QAM modulator and further
transmitted to the destination. The received signal r3 is also modeled similarly to
Eq. (43).

At the destination, the obtained signals r1 and r3 are concatenated is series as,

r ¼ r1jr3ð Þ, (45)

where ‘∣’ denotes that the two signals are conjunct in series during two-time slots.
Following that, r passes to the ‘M-QAM Demodulator’ block to get the joint
demodulated message sequence (~c1∣~c2) and then decoded by the joint RS decoding
algorithm that will be introduced in detailed later. Finally, the estimated information

sequence û1 is transformed to the extensive bit sequence b̂1.

4. The optimized codes resulted at destination by proper selection at relay

The different relay selection patterns determine the different minimum dis-
tance of the final joint code at the destination, which influences the performance of
the system. Therefore, we need to consider the proper selection approach at the
relay to capture the resulting code with a minimum distance as large as possible.
The following will introduce two proper selection approaches, detailed content can
refer to [13].

Obviously, we should consider the worst-case scenario and aim to avoid as many of
them as possible. Since the minimum weight of the code at source is already deter-
mined as d1, only the minimum weight of the codeword selected by the relay needs to
be considered. Firstly, some nomenclatures are described below before providing
design steps:

1.The first scenario is expressed as the minimum weights of code is wt c1ð Þ ¼ d1,
wt c2ð Þ ¼ 0 for the source and relay, respectively, resulting in the final code at the

destination has the minimum free distance d
1ð Þ
3 ¼ d1, which is the worst case.

2.The second scenario is described as wt c1ð Þ ¼ d1 and wt c2ð Þ ¼ d2. Hence the

minimum weight of the final codeword is d
2ð Þ
3 ¼ d1 þ d2 that is the second-worst

case.

3.The third scenario is the weight of the resultant code d
3ð Þ
3 is greater than d

2ð Þ
3 at the

destination.

4.Define w1, w2 and w3 as the number of times three scenarios occur, respectively.

4.1 Exhaustive search approach

The exhaustive search approach is performed for all information sequences with
the weight 0<wt u1ð Þ≤ d1 that may be encoded to the codeword with the weight d1.
The preceding are the particular steps of this approach.
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1.Define the set ψ ¼ u1jwt c1ð Þ ¼ d1f g to store the information sequence u1 that
generate the exactly the codeword with weight d1.

2.Determine the set ϕ ¼ ξg

n o

which stores all selection patterns

ξg ¼ ξ1, ξ2, … , ξK2

� �

, where ξi ∈ 1, 2, … ,K2, g ¼ 1, 2, ξ,L and L is given as,

L ¼ K1
K2

¼
K1!

K2! K1 � K2ð Þ!
: (46)

3.For each selection pattern ξg, determine the value of w1. If ∣Γ∣ ¼ 1, Moreover, save

the selection patterns corresponding to the min w1ð Þ to the set Γ. If then skip step 6
otherwise come to the next step, where ∣ � ∣ denotes the cardinality of the set.

4.From the set Γ, determine the selection patterns ξg that correspond to the

min w2ð Þ and are stored to the set Ω. Similarly, if ∣Ω∣ ¼ 1, proceed to step 6, else
move to the next step.

5.Determine the selection patterns ξg corresponding to min w3ð Þ from the set Ω and

are further saved in the set Ψ. If ∣Ψ∣ ¼ 1, then, come to step 6, otherwise add the
wt c2ð Þ by 1 and move on to step 5 until ∣Ψ∣ ¼ 1.

6.The optimized selection pattern ξ ESð Þ ¼ ξg is captured. The selection is terminated.

Example 3. In the distributed RS-coded cooperative system, consider the
RS1 15,11,5ð Þ and RS2 15,7,9ð Þ are employed in the source and relay, respectively. The

symbol elements of the RS1 and RS2 are chosen from GF 24
� �

shown in Table 1. The
exhaustive search for selecting the information symbol of K2 ¼ 7 from K1 ¼ 11 is
demonstrated below.

1.Find all information sequences u1 that generate the codewords c1 with weight
d1 ¼ 5. And store them to the set ψ . By numerical simulation, ∣ψ ∣ ¼ 45045.

2.Store all selection patterns ξg ¼ ξ1, ξ2, … , ξ7½ � in the set ϕ. And calculate

∣ϕ∣ ¼ L ¼ 330.

3.Through simulation, min w1ð Þ and its corresponding selection patterns are
obtained and saved in the set Γ as exhibited in Table 2. Since ∣Γ∣ ¼ 4 6¼ 1, then
come to the next step.

No. Selection pattern w1 w2

1 456891011½ � 840 17,010

2 457891011½ � 840 17,280

3 467891011½ � 840 17,535

4 567891011½ � 840 16,635

Table 2.
The procedure of exhaustive search approach to obtain an optimized selection pattern.
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4.For the four selection patterns, determine the min w2ð Þ ¼ 16635 that
corresponding to a selection pattern ξg ¼ 5,6,7,8,9,10,11½ �. Thus, ∣Ω∣ ¼ 1 and the

optimized ξ ESð Þ ¼ 5,6,7,8,9,10,11½ � is determined.

The end of Example 3.

4.2 Partial search approach

The exhaustive search approach can choose the optimal selection pattern with the
final codeword at the destination having a better weight distribution. However, the
complexity of determining the information sequence set ψ and the selection pattern
set ϕ increases rapidly when the information length and code length become large.
Therefore, we need to consider a low-complexity search approach, i.e., a partial search
approach [16]. This approach reduces the search range of the information sequences
and the scope of the selection patterns.

First, divide the information positions into two parts illustrated in Figure 2. Case
(a): the first part is greater than the other part one symbol. Case (b): the last part is
greater than the first part symbol. In two cases, make sure the symmetric structure of
the K1 information symbols. Hence, it is reasonable to position the information sym-
bols appropriately. Note that the message sequence generating the codeword with the
weight d1 has at least θ ¼ K1 � min K1, d1ð Þ zero symbols. Thus, we focus on selecting
the distribution positions of the θ zero symbols and K2 selection pattern.

1.Determine the distribution positions of the θ zero symbols. For case (a), take
ε θ=2d e≤ εθmin K1=2d e, θð Þð zero symbols set in the first part randomly, and the
other θ � ε distribute in the last part uniquely. For case (b), ε zero symbols are
uniquely assigned in the first part and the remaining θ � ε zero symbols are
randomly set in the last part, where �d e represent ceil operation. Consider two
cases, the set ψ that stores partial information sequences generating the
codeword with d1 is determined.

2.Determine the selection positions of K2 information symbols from the K1

positions. For case (a), randomly choose ζ K2=2d e≤ ζ≤ min K1=2d e,K2ð Þð Þ
positions out of the first part and the left K2 � ζ positions are fixed at the last
part. For case (b), select ζ positions randomly from the last part and the other
K2 � ζ positions are uniquely chosen from the first parts. Hence, the reduced

selection patterns ξg are stored in the set ϕ.

Figure 2.
The symmetric division structure of the positions of K1 information symbols, case (a) one more symbol in the first
part, case (b) one more symbol in the last part.
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Based on the reduced sets ψ and ϕ, the subsequent steps are same as the Step
3–6 of the exhaustive search approach.

Example 4. This example uses the same codes as Example 4.1. Evidently, the
information sequence that can be encoded to the codeword with weight 5 includes at
least 6 zero-symbols. The division structure of the partial search approach is shown in
Figure 3.

1.Determine the distribution positions of the 6 zero symbols. For case (a), take
ε ε ¼ 3,4,5,6ð Þ zero symbols set in the first 6 positions randomly, and the other 6� ε

distribute in the last 5 positions uniquely. For case (b), ε zero symbols are uniquely
assigned in the first part and the remaining 6� ε zero symbols are randomly set in
the last part. Consider two cases, the set ψ is determined and ∣ψ ∣ ¼ 24075.

2.Determine the selection positions of 7 information symbols from the 11 positions.
For case (a), randomly choose ζ ζ ¼ 4,5,6ð Þ positions out of the first 6 positions,
and the left 7 � ζ positions are fixed at the last 5 positions. For case (b), select ζ
positions randomly from the last 6 positions, and the other 7 � ζ positions are

uniquely chosen from the first 5 positions. Hence, the set ϕ of the partial

selection pattern is determined, and ∣ϕ∣ ¼ 44.

3.Through simulation, minw1 ¼ 360 and its corresponding selection patterns are
stored in the set Γ as demonstrated in Table 3. Since ∣Γ∣ ¼ 3 6¼ 1, then come to
the next step.

4.For the three selection patterns, determine min w2ð Þ that corresponds to two
selection patterns. Thus, ∣Ω∣ ¼ 2 6¼ 1, go to the next step.

5.Obtain the min w3ð Þ ¼ 6540 and corresponding selection pattern from the set Ω
and are further saved in the set Ψ. Since ∣Ψ∣ ¼ 1, then, the optimized selection

pattern ξ PSð Þ ¼ 123691011½ � is acquired. The partial search stops.

Figure 3.
The symmetric division structure of the positions of 11 information symbols, case (a) 6 symbols in the first part,
case (b) 6 symbols in the last part.

No. Selection pattern w1 w2 w3

1 123491011½ � 360 10,035 6615

2 123691011½ � 360 10,035 6540

3 123891011½ � 360 10,035 ����

Table 3.
The procedure of partial search approach to obtain an optimized selection pattern.
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The end of Example 4.
Based on Examples 3 and 4, the BER performance of the distributed RS-coded

cooperative scheme over the Rayleigh fast-fading channel employing the exhaustive
search and partial search is exhibited in Figure 4 where the 16-QAM modulation is
employed and the source-to-relay channel is ideal. The result reveals that the scheme
with two different approaches illustrates almost identical performance, which further
shows the feasibility of the reduced-complexity approach. More simulation results can
refer to [13].

4.3 Complexity comparisons

First, the complexity comparisons of the two search approaches are listed in
Table 4, where λþ1 , λ

�
1

� �

and λþ2 , λ
�
2

� �

represent the number of the operations of the

addition and the multiplication required to encode the information sequence from the
set ψ and ψ at the source and relay, respectively, and λtotal denotes the total operations.

5. Joint decoding algorithms and error performance analysis

The section introduces the two joint decoding algorithms, namely, the naive algo-
rithm and the smart algorithm. The two decoding algorithms may enhance the overall

Figure 4.
The BER performance comparison of the distributed RS-coded cooperative scheme with two selection approaches at
the relay over the fast-fading channel.
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performance by making full advantage of the two signals from the source and relay,
respectively.

5.1 Nave decoding algorithmm

The detailed steps for the naive algorithm are listed as follows:

1.For the received demodulated signal ~c1j~c2ð Þ, ~c1 and ~c2 are decoded by RS1 and
RS2 decoders, respectively, to acquire the estimated information sequences u0

1

and u0
2.

2.Determine the SNR cross-point of the RS1 and RS2 point-to-point coding scheme
over the fast-fading channel, denoted η.

3. If SNR ≤ η, û1 ¼ u0
1 due to the better performance of RS1 code than that of RS2

code at the low SNRs. Otherwise, u0
2 replaces u

0
1 at the corresponding selected

positions to obtain a re-combined €u1, then, û1 ¼ €u1. This is because the RS2 code
with more parity-check symbols outperforms the RS1 code at high SNRs. Finally,
the estimated sequence û1 is obtained.

5.2 Smart decoding algorithm

The specific steps for the smart algorithm are described below:

1.For the received demodulated signal ~c1j~c2ð Þ, only decode the last part ~c2 to get
the systematic non-binary message sequence u0

2.

2.For the first part ~c1 comprising of the check-parity sequence ~p1 and information
sequence ~u1, replace the non-binary symbols of ~u1 with u0

2 in the corresponding
K2 positions to obtain the re-combined sequence c1 due to the reliability of u0

2

than original message symbols.

3.Decode c1 by the RS1 decoder to acquire the final estimated information
sequence u1.

Figure 5 illustrates the BER performance of the distributed RS-coded cooperative
scheme under two different decoding algorithms over a fast fading channel, where
16-QAM is applied in the scheme and the partial search approach is employed in the

Approaches Operations λ
þ
1 , λ

�
1

� �

λ
þ
2 , λ

�
2

� �

λtotal

Exhaustive Search K1 N � K1ð Þ∣ψ ∣ð , K2∣ψkϕ∣ N � K2ð Þð , 2∣ψ ∣ NK1 þNK2∣ϕ∣½

K1 N � K1ð Þ∣ψ ∣Þ K2∣ψkϕ∣ N � K2ð ÞÞ � K1ð Þ2 � K2ð Þ2∣ϕ∣�

Partial Search K1 N � K1ð Þ∣ψ ∣ð , K1 N � K1ð Þ∣ψ ∣Þ K2∣ψkϕ∣ N � K2ð Þ
�

,

K2∣ψkϕ∣ N � K2ð ÞÞ 2∣ψ ∣ NK1 þNK2∣ϕ∣
�

� K1ð Þ2 � K2ð Þ2∣ϕ∣�

Table 4.
Complexity comparisons of two approaches.
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relay. From the simulated result, the scheme under the smart decoding algorithm is

superior to that of the naive by a gain of over 1.5 dB at BER≈4� 10�5.

5.3 Error performance of distributed RS coded-cooperative systems

This section presents the average error probability (AEP) bound for the distributed
RS coded-cooperative scheme over the Rayleigh fast-fading channel. First, the uncon-
ditional error probability is provided as follows [5, 17, 18],

Pb Eð Þ ¼
1

π

ðπ=2

0
1þ

Λ1

sin 2φ

� 	d1

1þ
Λ2

sin 2φ

� 	d2

dφ, (47)

where Λ1 and Λ2 denote the average signal-to-noise ratio (SNR) per information
bit from the source-to-destination and relay-to-destination links. The integral in
Eq. (47) is calculated by the available computer package. Then, the upper bound may

be acquired by assuming sin 2φ ¼ 1, shown as,

Pb Eð Þ≤
1

2

1

1þ Λ1

� 	d1 1

1þ Λ2

� 	d2

, (48)

Therefore, based on Eq. (48), the upper bound of the bit error probability Pb is
further given as [6],

Figure 5.
The performance comparison of the distributed RS-coded cooperative scheme under two different joint decoding
algorithms over the fast-fading channel.
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Pb ≤
X

N

ϖ¼d1þd2

Jϖ
K1

Pb Eð Þ, (49)

where Jϖ represents a weight enumerating factor for each codeword with weight w
which is obtained by exhaustive computer search.

6. Conclusions

The chapter first introduces the encoding and decoding procedure of the BCH
codes and RS codes. Then, the system model of the distributed RS-coded cooperation
is presented which improves the anti-interference transmission performance of the
short-to-medium-length information block. In the scheme, the exhaustive and partial
search approaches are introduced and employed in the relay to choose an optimized
selection pattern that results in a final code with a better weight distribution at the
destination. In addition, two joint decoding algorithms are provided to further
enhance the performance and the performance analysis validates the system.
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