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Chapter

A Review on the Dynamic
Response of Liquid-Storage Tanks
Associated with Fluid-Structure
Interaction
Ayman Mohammad Mansour and Moustafa Moufid Kassem

Abstract

Water tanks are considered one of the most important facilities in firefighting
systems and municipal water supply. These critical water storage and distribution
facilities should remain operable even after a severe seismic event or sustain only
damages that can be readily repaired. In recent years, the seismic design of storage
tanks has been aimed at fulfilling safety requirements and the environmental impact
on society. This paper provides a review of research work related to seismic response
of liquid-filled tanks. Major contribution from previous research works related to
dynamic behavior of liquid tanks are acknowledged in this review. This paper
encompasses the phenomenon of fluid-structure interaction and reviews several
equivalent mechanical models for liquid storage tanks that account for this phenome-
non. The application of each modeling approach and its accuracy in accounting for the
fluid-structure interaction are discussed based on available literature and applicable
international standards. It was shown that different equivalent modeling approaches
that consider the fluid-structure interaction effects can be used to reduce the compu-
tational cost and complexity of liquid-tank systems.

Keywords: liquid-storage tanks, infrastructure, fluid-structure interaction, liquid
sloshing, dynamic response, equivalent mechanical models

1. Introduction

Earthquakes result from abrupt release of energy by the slippage of two tectonic
plates. The sudden release of strain generates seismic waves that are transferred to the
earth’s surface and result in ground motions. These dynamic vibrations create lateral
movement in structures, which affects their strength and behavior. The infrastructure
system is very critical and should have extra immunity against possible disasters. And
natural hazards due its essential function in remaining serviceable to satisfy the water
demand for drinking and firefighting purposes [1].

The dynamic vibrations of liquid-containing structures create the phenomenon of
Fluid-Structure Interaction (FSI), where the momentum of the oscillating fluid generate
lateral pressure on the boundaries of the structure. The study of hydrodynamic pressure
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on structures can be traced back to the early 1930s. The research work by Westergaard
on “Water Pressure on Dams during Earthquakes” is considered the earliest study on
the behavior of FSI, where the impulsive pressure on vertical dams under the effect of
earthquake excitations was evaluated [2]. Subsequently, the dynamic response of liquid
contained tanks and the FSI phenomenon have been subjects for extensive experimental
and numerical investigations by many researchers. Such studies emerged by the efforts
of Jacobsen and Ayre [3], Housner [4], Veletsos [5] and later by other researchers such
as Mansour and Nazri [6], Shakib and Alemzadeh [7], Elansary and El Damatty [8], and
Moslemi et al. [9]. The aim of this study is to provide a comprehensive review for the
equivalent mechanical models of liquid storage tanks that account for FSI, including the
added-mass, single-lumped-mass, two-lumped-mass, spring-mass, three-mass, and
other models that were featured in the literature. The theoretical background, applica-
tion, application, and accuracy for each model were presented based on international
standards and available literature.

2. Methods

To “review” has been defined as: “To view, inspect, or examine a second time or
again” [10]. Review studies are amongst the most highly sought types of articles by
researchers and are the ones that provide the most substantial contribution [10]. The
body of a review study can be organized in a variety of ways depending on the type
and the method of the review study. The literature review refers to the generic term of
review which includes published resources that give an evaluation of recent or current
literature. Can cover a wide range of topics at varying levels of comprehensiveness
and completeness. It’s possible to include study findings. Analysis of the literature
review may have different structures, namely, chronological, conceptual, thematic,
etc. In a thematic approach, recurring central themes exists, in which the literature
review can be divided into subsections that address different aspects of the topic. For
the current study, a literature review with a thematic approach was conducted, in
which the study was divided into several section; a section for each equivalent
mechanical model for liquid-storage tanks associated with fluid-structure interaction.

3. Equivalent mechanical models for the liquid-tank system

Analysis of hydrodynamic pressure in structures such as liquid-storage tanks is more
complicated than that of other structures. In the 1960s, Housner [4] provided a practi-
cal idealization for evaluating the hydrodynamic pressure within rectangular and cylin-
drical tanks that are subjected to horizontal ground motion while assuming the tank
walls to be rigid. The Chilean earthquake, that took place in 1960 and damaged several
large water tanks, was the main plot behind the paper by Housner [4]. FSI can be
simulated using different simplified modeling approaches (added-mass approach, two
lumped-mass model, spring-mass model, etc.). Livaoğlu and Doğangün [11] presented a
comparison and evaluation of some of these modeling methods.

3.1 The added-mass approach

The impulsive hydrodynamic pressure is usually accounted for by introducing
added masses. The added mass concept is one of the simplest methods to account for
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the impulsive hydrodynamic component of liquid pressure. This method has been
used for decades in the design of seismic resistant structures, such as gravity dams [2]
and liquid tank containers. The Added-Mass Approach (AMA) relies on few main
assumptions, which are water incompressibility and the rigidity of the boundary
conditions of the structure. This approach neglects the stiffness effects in the fluid and
in general leads to conservative results [12]. The use of AMA is proven to be a more
appropriate technique for finite element modeling than other assumptions such as
those characterized using the lumped mass models [13].

3.2 The single-lumped-mass model

The representation of a single-lumped-mass model for Elevated Water Tanks
(EWTs) can be seen in Figure 1. This concept was introduced in the 1950s [14] and
has two main assumptions. First, for a completely full liquid tank, the water sloshing
behavior will not have any vertical movement thus allowing the system to behave as a
system with a Single Degree-Of-Freedom (SDOF). Second, the supporting structure
acts as a cantilever and is considered to have uniform rigidity along its elevation.

According to ACI-371R [15], this model should be used if the weight of water
equals or exceeds 80% of the overall weight of the system. The lumped mass consists
of the own-weight of the tank, two-thirds (at maximum) of the own-weight of the
supporting structure, and the weight of the contained water.

Previous studies have shown that the use of single lumped-mass model represen-
tation of EWTs yields similar results relative to experimental testing and other
mechanical models [13]. In addition, the convective mass may have negligible influ-
ence on the natural characteristics of EWTs depending on the geometrical shape
of the tank.

Figure 1.
An EWT and its single lumped-mass representation.
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3.3 The two-lumped-mass model

The addition of a convective lumped mass relies on the assumption that was
presented by Housner [16] on the relative motion between the storage tank, contained
liquid, and the ground. According to his concept, analysis of EWTs can be performed
by considering three conditions. First, if the water tank is empty then the sloshing
water effect is absent, or if the tank is completely filled with water, then the sloshing
effect in the tank is negligible. In this case the EWT will behave as a system with a
SDOF, or a one-mass structure. However, the sloshing effect is not neglected where
the tank is partially filled. Thereby, this gives the EWT an additional degree-of-
freedom, making it a two-mass structure. Consequently, the dynamic analysis of
equivalent models must include at least a two-mass system. More lumped convective
masses may also be added for ground supported water tanks.

In the simplified analysis procedure for fixed-base EWTs ([17], ACI-371R), a two
lumped masses model usually used to represent the fluid-tank system (Figure 2).
Housner [4] assumed that the two masses to be uncoupled and the seismic forces on
the support were evaluated by assuming two separate SDOF systems. The upper mass
represents the convective mass of water, which characterizes the motion of the free-
liquid-surface. The lower mass represents the impulsive mass of the fluid and the mass
of the structure, which is derived by the own-weight of the storage tank plus a portion
of the supporting structure’s own-weight [11]. Lu et al. [13] showed in his study that
the equivalent two-mass model can predict the natural characteristics of water
sloshing effect with reasonable accuracy similar to that derived by the much more
advanced fluid Finite-Element (FE) technique.

ACI 350.3 (ACI-350.32006) permits the idealization of EWTs as uncoupled single-
lumped masses in order to estimate the natural characteristics of the convective and
impulsive components of EWTs. Mansour and Nazri [6] evaluated the FSI effect on

Figure 2.
(a) The two mass model for EWT proposed by Housner [4] and (b) the equivalent uncoupled system.
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the dynamic response of EWTs. The periods of vibration corresponding to the impul-
sive and convective components of the EWTs were predicted using the equivalent
two-mass model to validate the developed Three-Dimensional (3D) models. By con-
sidering the supporting structure of EWTs as a vertical cantilever, the periods of
vibration the significant modes (i.e.,Ti and Tc, which are mi and ms related, respec-
tively) of EWT systems can be obtained using the equations presented in Table 1.

3.4 The spring-mass model

The FE model for a liquid-tank system can be represented by the spring-mass
concept, which was originally proposed by Housner [4]. In the spring-mass model,
also referred to as the equivalent mechanical model, the liquid is replaced by two
lumped masses: the impulsive and convective masses. The impulsive mass is rigidly
connected to the tank walls and the convective mass is connected using elastic springs.
Figure 3 illustrates the spring-mass model representation for EWTs based on the
principle proposed by Housner [4]. This modeling technique has been used by
researchers as a simplified approach for the assessment of the seismic vulnerability of
liquid tanks as opposed to much more complex and computationally intensive
approaches, such as the continuum liquid-medium models [4, 6, 18].

The parameters of the mechanical spring-mass model are calculated based on the
aspect ratio of the liquid-filled tank [19]. According to American Concrete Institute
(ACI) (ACI-350.32006), the parameters of this model models can be evaluated using
the equations presented in Table 2.

The spring-mass model representation of liquid-tank system based on Housner’s
analogy is considered adequate for modeling of EWTs and is a widely used concept in
many international guidelines for seismic design of tanks and buildings such as
Eurocode, ACI, and NZS ([20, 21], ACI-350.32006, [15]). These design guidlines have
tweaked Housner’s method with a few changes due to the findings of the subsequent
studies on the seismic design of liquid-containing tanks [22, 23]. The accuracy and
efficiency of the two-mass representation of the EWTs was proved by Shepherd [24],
who compared the theoretical results of a prestressed RC EWT to the experimental
testing results. A detailed study conducted by Dutta, Dutta et al. [25] on RC EWTs
integrating soil-structure-fluid interaction shows relatively small differences in in
total structural response represented using Westergaard’s AMA and the lumped-mass
mechanical analogy.

The equivalent spring-mass model has been used by many researchers to simulate
the dynamic behavior of EWTs using a simplified approach. Mansour et al. [1] inves-
tigated the non-linear seismic vulnerability of a set of EWTs with structural variables

Equations for the period of vibration

The impulsive component Ti ¼ 2π
ffiffiffiffiffiffiffiffiffiffiffi

miþms

Ks

q

(1)

The convective component Tc ¼ 2π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3:68 tanh 3:68
HL
Dð Þ

p

ffiffiffi

D
g

q

(2)

*Where: Ks is the horizontal translation stiffness of the EWT’s supporting structure, ms is the lumped structural mass,
whivelech includes mass of water tank and two-thirds of staging mass, mi is the impulsive mass, g is the acceleration due
to gravity, equal to 9.81 m/s2, and HL and D correspond to the tank’s geometry, i.e., the height and the diameter.

Table 1.
The vibration period of the significant modes of the EWT system.
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(i.e., variable staging patterns and contained liquid fill levels) using the performance-
based earthquake engineering methodology. The study utilized a developed seismic
evaluation tool – the collapse margin indicator – to investigate the dynamic behavior

Figure 3.
The spring mass model representation of an EWT.

Equations for the parameters of the spring-model

The impulsive and convective weights (Wi and Wc,

respectively) can be obtained using Eqs. (3) and (4)

where,

D is the inside diameter of a circular tank, and

HL is the maximum water level.

W i

W l
¼

tanh 0:866 D
HL

� �h i

0:866 D
HL

� �

(3)

Wc

W l
¼ 0:23 D

HL

� �

tanh 3:68 HL

D

� �� � (4)

The heights of the impulsive and convective masses from

the bottom of the tank wall can be determined from

Eqs. (5)–(7)

where,

Hi is the height of the center of gravity of the impulsive

mass measured from above the base of the tank wall, and

Hc is the height of the center of gravity of the convective

mass measured from above the base of the tank wall.

Hi

HL
¼ 0:5� 0:09375 D

HL

� �

for D
HL
< 1:333 (5)

Hi

HL
¼ 0:375 for D

HL
> 1:333 (6)

Hc

HL
¼ 1� cosh 3:68

HL
Dð Þ½ ��1

3:68
HL
Dð Þ sinh 3:68

HL
Dð Þ½ � for all tanks

(7)

The stiffness of convective mode can be obtained by

Eqs. (8)–(10)

where,

λ is the circular frequency coefficient,

g is the gravitational acceleration taken as 9.81 m/s2,

ωc is the circular frequency of oscillation of the first

sloshing mode (convective mode), and

Kc is the spring stiffness of convective mode.

λ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3:68g tanh 3:68 HL
D

� �� �

q

(8)

ωc ¼ λ
ffiffiffi

D
p (9)

Kc ¼ Wc

g ωc
2 (10)

Alternatively, the stiffness of the convective mode can be

obtained using the combined Eq. (11)
Kc ¼ 3:68Wc

D tanh 3:68 HL

D

� �

(11)

Table 2.
The equations and calculation procedure of the spring-mass model parameters.
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of frame supported EWTs and considered the FSI effect by adding lumped masses that
are connected to the tanks’ walls either rigidly or elastically through oscillators as
shown in Figure 4.

3.5 The three-mass model

Earlier studies considered rigid tank walls when evaluating the hydrodynamic
pressure induced by ground motion records [4, 18, 26]. However, following a series of
powerful earthquakes in Japan and the United States that caused severe damage to
liquid storage tanks, it was realized that modeling tanks using the rigid-tank concept is
insufficient since real tanks experienced significant deformation when subjected
earthquake loads. Subsequently, multiple studies were conducted, and it was
established that accounting for the tank flexibility and the interaction between the
contained fluid and the vibration of the walls can significantly affect the hydrody-
namic pressure and consequently the impulsive component of the structural response
[27, 28]. Over time, assumptions concerning tank properties have been refined pro-
gressively to take account of the tank deformability and flexibility of the container
and soil interaction effects [27].

Haroun and Housner [27] proposed the three-mass model representation for
cylindrical tanks subjected to seismic loading as illustrated in Figure 5. The three
masses in this equivalent mechanical model correspond to the impulsive mass, the
convective mass, and the mass representing the tank wall’s flexibility. In the following
studies, Haroun and Ellaithy [23] imple1mented the three-mass model to evaluate the
dynamic response of EWT and to assess the influence of the tank walls’ flexibility on
the dynamic behavior of EWTs. The effect of higher modes of convective masses on
the pressure exerted on the vessel may be not significant, even when the fundamental
frequency of the structure is close to the natural frequency of convective mode. A later
study by Jaiswal et al. [29] show negligible differences in the parameters of the
equivalent spring-mass mode obtained from rigid and flexible tank wall.

Figure 4.
The spring-mass model for an EWT [1].
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Some studies have identified the hydrodynamic pressure developing inside
deformable cylindrical tanks. Haroun and Housner [27] analyzed the response of
flexible liquid-containing tanks using modal superposition. The tank’s walls were
modeled as shell elements using the finite element method and the fluid domain was
considered using a mathematical boundary solution technique. Previous studies
showed that the flexibility of tank causes it to experience rocking wall and base
translation, which result in longer impulsive periods and increased effective damping.
However, due to convective mode having long period of oscillation, the convective
mass can be computed without considering the tank wall and supporting soil flexibil-
ities [30]. Using two-dimensional space FE modeling, Ghaemmaghami and Kianoush
[31] examined the seismic behavior of two different tank configurations, tall and
shallow, while taking the effects of FSI and wall flexibility into account. The results
show that incorporating the fluid damping properties and the wall flexibility can
drastically affect the dynamic response of the liquid tanks.

3.6 Other equivalent models

While simplified models, such as those developed by Housner [4] and Haroun and
Housner [27], generate a dynamic response similar to that of a continuum liquid 3D-
tank-model [32], it may not, however, take into account certain aspects that affect the
accuracy of the analysis results. In a recent study, Papadrakakis and Fragiadakis [33]
investigated the seismic performance of unanchored liquid-storage tanks having var-
iable tank diameters and liquid-filling heights using two nonlinear FE computational
methods; coupled Eulerian-Lagrangian and spring-mass analogy. Results show that
the traditional equivalent masses-springs analogy does not consider the effect of
uplifting history for ground unanchored liquid tanks and its influence on the tank’s
dynamic behavior.

Studies by Sweedan and El Damatty [34] and El Damatty et al. [35] verified the
application of the previously established analytical and numerical models on com-
bined conical tanks by experimentally identifying their dynamic characteristics. In
order to further improve the seismic study of EWTs, Sweedan [36] suggested a
mechanical model to duplicate forces produced in combined EWTs experiencing

Figure 5.
Equivalent 2D system for liquid-filled storage tank with flexible tank wall behavior.
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vertical ground excitation. A schematic of the equivalent idealization is shown in
Figure 6.

Vathi and Karamanos [37] studied the base uplifting behavior of ground cylindrical
liquid tanks subjected to strong horizontal seismic excitations. A simplified liquid-
tank model was developed using the spring-mass model improved by an appropriate
rotational spring at its base to take into consideration the tank’s rotation, or rocking,
by the impulsive motion due to uplifting (Figure 7). The results from this study mark
a significant influence of tank base uplifting on the dynamic response of unanchored
tanks.

Algreane et al. [38] introduced an alternative impulsive masses configuration to
the dynamic behavior of reinforced concrete EWTs. The proposed model suggests

Figure 6.
Equivalent model for vertically excited combined tanks proposed by Sweedan [36].

Figure 7.
A simplified model for an unanchored liquid storage tank accounting for base uplifting [37].
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the distribution of the impulsive mass by different alternative configurations in an
effort to simplify Westergaard’s AMA technique and reduce computational time.
The impulsive mass is divided into 4, 8, 16, 24 and 48 masses, and distributed
into wall panels of the tank at the center of gravity of an empty container as
shown in Figure 8.

4. Conclusion

The functionality of liquid-storage tanks should be ensured during and after natu-
ral disasters, e.g., earthquakes, such that under intense ground motions the structural
collapse is prevented. Therefore, it is crucial to quantify the safety margin against the
structural collapse state for water tanks, which are considered as lifeline structures.
Furthermore, the literature shows that the dynamic behavior of these structures is
governed by many factors including the tank shape, fluid properties, structural
flexibility. Soil characteristics, and the type of supporting structure.

Researchers tend to prefer simple and straightforward modeling techniques for the
FE analysis of liquid-tank systems. Different simplified modeling approaches that
consider the FSI effects can be used to reduce the complexity and computational cost
of liquid-tank systems. The dynamic behavior of liquid-tank systems that is obtained
using these modeling techniques can have high accuracy that can match that obtained
from continuum liquid-tank systems. A simplified single-mass model could be used if
the weight of water equals or exceeds 80% of the overall weight of the liquid-tank
system. In the two-mass model representation of liquid-tank system, the hydrody-
namic pressure developing within the liquid resulting from the dynamic motion of the
liquid tank can be divided into two parts. The liquid mass in the top zone of the tank,
called the convective mass, characterizes the motion of the free-liquid-surface. The
liquid in the bottom zone of the tank, called the impulsive mass, represents the
remaining mass of the fluid and the mass of the structure. A FE model can be
represented by a spring-mass model based on Housner’s analogy in which the liquid is
replaced by two lumped masses: the impulsive and convective masses. The impulsive
mass is connected to the tank walls using rigid links and the convective mass is

Figure 8.
Alternative masses distribution proposed by Algreane et al. [38].
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connected through elastic springs. This modeling approach is effective in reducing
the reduce the computational cost and complexity of liquid-tank systems while
resulting in moments and forces that are comparable to that obtained from continuum
liquid-medium models subjected to the same ground motion records.
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