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Roads of Drug Resistance in Acute 
Myeloid Leukemia—Is It Dead End?
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and Margarita Guenova

Abstract

Acute myeloid leukemia (AML) is a biologically and clinically heterogeneous 
neoplasm, which is characterized by abnormal proliferation, impaired apoptosis, and 
differentiation of leukemic immature cells. Nowadays, the first line treatment of AML 
is the chemotherapy regimen, which combines both cytosine arabinoside and anthra-
cycline. Despite that complete remission (CR) can be achieved in 40–80% of patients 
depending on age, a considerable number will eventually relapse (acquired resis-
tance) or have refractory disease (primary resistance). Finally, the estimated 5-year 
overall survival (OS) is less than 30%. Recent investigations reveal various mecha-
nisms, responsible for drug resistance leading to AML persistence and recurrence. In 
order to improve clinical outcomes and develop successful therapeutic strategies, it 
is necessary to better explore the major adverse factors for escape from treatment, as 
well as to explore ways to predict and prevent or target drug resistance.
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1. Introduction

Acute myeloid leukemia (AML) comprises approximately 80% of all acute leukemias 
in adults [1]. The median age of the disease is about 69 years with a progressing incidence 
with advanced age [2]. AML represents a clinically and genetically heterogeneous disease, 
which is characterized by uncontrolled clonal proliferation, impaired apoptosis, and 
differentiation of leukemic immature cells. It has poor survival and fatal outcome in those 
who are untreated. Despite the progress in understanding the pathophysiology of AML 
and the discovery of novel therapeutic agents, the treatment approach has not changed 
essentially since the 1970s. According to the European LeukemiaNet (ELN) recom-
mendations for the diagnosis and management of AML in adults (2017), the first-line 
therapy for the patients, eligible for intensive chemotherapy remains the conventional 
“3 + 7 regimen” (3 days of anthracycline + 7 days of cytarabine) [3]. Unfortunately, recent 
studies report that the disease is curable in only 5–15% of patients above 60 years and 
35–40% in younger adults with intensive chemotherapy, which is unsatisfactory [4, 5]. 
Additionally, research data reveals that 10–40% of newly diagnosed AMLs fail to achieve 
CR after frontline therapy and are classified as primary refractory AML [6–8]. Lately, 
ELN determines primary refractory AML as a lack of obtaining CR or complete remission 
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with incomplete hematologic recovery (CRi) after at least 2 courses of intensive induc-
tion chemotherapy [3]. One of the major reasons for treatment failure is considered to be 
drug resistance. Besides, chemoresistance is basically divided into two groups intrinsic 
(primary) and acquired (secondary). The primary drug-resistant leukemic cells are pres-
ent already at diagnosis, while the secondary resistance emerges during or after therapy, 
probably as a result of additionally occurring genetic disorders. In 30–40% of relapsed 
AML patients, newly developed gene mutations occur, yet in about 25% no molecular 
alterations emerge [9]. So, these data raise the question that gene alterations are drivers 
of relapse or refractoriness of AML and whether mutational status is the only cause of 
disease progression. This review will discuss the potential molecular pathways underlying 
drug resistance in blast cells and the interactions with the leukemic microenvironment.

2. Leukemogenesis in AML

Two decades ago, Gilliland and Griffin introduced the “two-hit model”. In this 
model, the collaboration of two lesions of two different classes of mutations con-
tributes synergistically to inflict AML [10]. Class I mutations (FLT3, c-KIT, NRAS) 
comprise mutations that activate signal-transduction pathways and thereby give 
a proliferation advantage to the hematopoietic progenitor cells. Class II mutations 
(recurring chromosomal aberrations, which produce fusion transcripts) affect 
transcription factors and cause impaired differentiation and following apoptosis. 
However, recent studies report that it is difficult to divide functions between the two 
classes of mutations [11]. Further, in the last years, genomic sequencing research has 
encountered new epigenetic genes associated with AML (chromatin-modifying genes: 
MLL fusions, ASXL1, and EZH2 mutations; methylation-related genes: DNMT3A, 
TET2, IDH1/2 mutations), which expands the complexity and heterogeneity of AML 
[12, 13]. Thus, the “two-hit model” of Gilliland and Griffin turns out to be insufficient 
to explain AML leukemogenesis.

A novel hypothesis for AML development has been formulated recently, based 
on three types of AML-associated mutations, investigated in mouse models [14]. 
According to this functional classification the first “type A mutations” (fusion genes) 
are necessary to initiate or maintain the leukemic phenotype, “type B mutations” 
(ABL, PDGFR, KIT, FLT3, etc.) support the proliferation and survival of leukemic 
cells and “type C mutations” (epigenetic modifiers), also called “seed mutations”, 
provide a growth advantage, but still not sufficient to induce leukemia. The study 
research demonstrates that the combination of mutations of any two types, that is, 
A + B or A + C or B + C, may result in AML [14]. The model of clonal evolution of AML 
is considered to be a process of losing specific mutations or gaining a feature, which 
leads toward resistance. Emerging evidence has revealed that a relapse may present 
with re-occurring of the initial leukemic clone, assuming that the chemotherapy was 
unsuccessful or due to further clonal evolution following AML treatment [15, 16].

3. Mechanisms underlying drug resistance

Relapsed and refractory AML (R/R AML) is associated with unfavorable prog-
nosis, due to poor response to conventional antileukemic therapy [17, 18]. Thus, a 
better understanding of the mechanisms, underlying drug resistance, would improve 
the therapeutic approach using novel strategies. Data are available showing that 
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chemoresistance in AML may be due to numerous factors, which include proteins and 
enzymes with altered function, dysregulation of signaling pathways, mutations in cell 
cycle control genes, epigenetic modifiers, microRNA as well as impaired interactions 
with the bone marrow environment, and changes in the immune tolerance (Table 1).

3.1 Proteins and enzymes with altered function

Overexpression of the transporter proteins P-glycoprotein (P-gp) and multidrug 
resistance-related protein (MRP) 1 plays an important role in cross-resistance to 
drugs. In 1976 Juliano and Ling firstly described the ATP-dependent membrane 
P-gp, which acts as an efflux pump conferring resistance [19]. P-gp is a 170-kDa 
protein, encoded by the MDR1 gene (multidrug resistance gene 1) and belongs to 
the ABC transporter family. It pumps out chemotherapy drugs, maintaining lower 
drug concentrations intracellularly continuously, so that drug resistance is developed 
[20]. P-gp is considered to be an independent adverse prognostic factor for response 
and survival in newly diagnosed or R/R AML [21, 22]. However, according to other 
research studies, no correlation was identified between the MDR parameters and 
overall survival of the AML patients [23] and also P-gp activity is not consistently 
upregulated in relapsed AML [24]. Broxterman et al. found no correlation between 
the expression of P-gp and the complete response rate, event-free survival, or overall 
survival after idarubicine-containing induction [25]. The steady-state cellular accu-
mulation of lipophilic idarubicine may circumvent the P-gp-mediated drug resis-
tance in AML patients. The increased expression of P-gp and MRP1 are associated 
with advanced age, leukocytosis, poor chromosomal abnormalities, shorter overall 
survival, and also are detected with higher incidence in R/R and secondary AML 
comparing with de novo cases [26, 27]. Interestingly, an association has been observed 
between the expression of P-gp and MRP1 and the flow cytometric antigens (CD34 
and CD7) and the FAB (French-American-British) classification of AML morphology 

Factors Molecules Function Reference

Proteins and enzymes P-gp, GST, MCL-1, MRP1/

LRP, Topo II, PKC

Affect the drug transport; 

altered enzyme function

[19–43]

Signal pathways NF/kB, PI3K/Akt/mTOR Coordinate complex cellular 

changes

[44, 45]

Genes and epigenetics ASLX1, DNMT3, EZH2, FLT3, 

IDH1/2, TET2, WT1

Cell proliferation and 

differentiation; regulation of 

DNA and histones

[46–53]

microRNA miRNA-155, miRNA-125, 

miRNA-100, miRNA-223

Control of cell division, self-

renewal, DNA damage

[54–56]

Microenvironment CD44, FGF2/FGFR1, SDF1/

CXCR4, VCAM/VLA4

Cell-to-cell, cell-to-matrix 

interactions

[57–66]

ASXL1, additional sex combs-like 1; CXCR4, C-X-C motif chemokine receptor 4; DNMT3A, DNA methyltransferase 
3A; EZH2, enhancer of zeste homolog 2; IDH1/2, isocitrate dehydrogenase 1/2; FGF2, fibroblast growth factor 2; 
FGFR1, fibroblast growth factor receptor 1; FLT3, FMS-like tyrosine kinase 3; GST, glutathione S-transferase; LRP, 
lung resistance protein; MCL-1, myeloid cell leukemia 1; microRNA, microribonucleic acid; MRP1, multidrug 
resistance-related protein; mTOR, mammalian target of rapamycin; NF/kB, nuclear factor kappa B; P-gp, 
P-glycoprotein; PI3K, phosphatidylinositol-3-kinase; PKC, protein kinase C; SDF-1, stromal cell-derived factor 1; 
TET2, ten eleven translocation methylcytosine dioxygenase 2; Topo II, topoisomerase II; VLA-4, very late antigen-4.

Table 1. 
Different mechanisms of drug resistance.
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(M2, M5a, and M7 types) [26]. Moreover, a recommendation to observe the higher 
MRP1 expression by flow cytometry as an adverse prognostic marker in AML was 
proposed by Legrand et al. [28]. In contrast, another study revealed that AML 
patients relapse despite the lower expression of MRP1, suggesting the involvement of 
other intracellular mechanisms, possibly leading to cytarabine resistance [29].

LRP (lung resistance protein), a drug efflux transporter, is also assumed to play a 
role in drug resistance. However, the published data show conflicting evidence of the 
involvement of LRP in the process of chemoresistance. The overexpression of LRP is 
found to predict an inferior response in AML, but another study described that higher 
bone marrow expression of LRP predicts significant favorable therapeutic outcome 
with increased CR rate and 1-year DFS (disease-free survival) and OS [22, 30, 31].

Glutathione S-transferase (GST) is a drug-metabolizing enzyme, consisting of α, 
μ, θ, and π-types. It is responsible for controlling cellular oxidative balance, catalyz-
ing the reduced glutathione which leads to diminished cytotoxic drug effects. The 
decreased enzymatic activity due to GST polymorphisms is associated with cancero-
genesis and AML [32]. Indeed, changed detoxification contributes toward drug resis-
tance in AML. Furthermore, patients with higher expression of GSTμ tend to have 
also MRP1 overexpression which results in increasing the survival of tumor cells and 
protects them from apoptosis [33, 34]. Recent investigation by Pei et al. demonstrated 
that primitive leukemic cells acquire aberrant glutathione metabolism and may be 
selectively eliminated by target therapy against the glutathione pathway [35].

Topoisomerase II (Topo II) is an essential ribozyme that alters the topological 
properties of DNA. The inhibitors of Topo II may trigger chromosomal translocations 
that are associated with therapy-related secondary leukemia, often bearing 11q23 
translocations involving the MLL gene [36]. Decreased or increased expression or 
mutation in the topoisomerase II genes may lead to chemoresistance to topoisomerase 
II inhibitors [37, 38].

Somatic mutations in protein kinase genes play a significant role in proliferation, 
resistance, and apoptosis. The overexpression of PKC (protein kinase C) in AML 
results in a decline in CR induction and DFS by diminishing intracellular concentra-
tion of daunorubicine [39]. The connection between the activation of PKC and the 
upregulation of P-gp further contributes to chemoresistance in AML [40].

As a BCL-2 family protein member, MCL-1 (myeloid cell leukemia 1) prevents 
apoptosis. It is upregulated in several hematologic malignancies such as multiple 
myeloma, AML, and non-Hodgkin lymphoma and is associated with treatment 
resistance and inferior prognosis [41]. The increased expression or amplification 
of MCL-1 gene protects tumor cells from programmed cell death and decreases 
their sensitivity to conventional chemotherapy which appears to be a potential drug 
resistance mechanism [42]. Besides, the overexpression of MCL-1 correlates with 
resistance to venetoclax [41]. MCL-1 is described to be regulated by cyclin-dependent 
kinase (CDK). Recent studies reveal that the treatment with both MCL-1 inhibitors 
and BCL-2 inhibitors may overcome the acquired resistance to BCL-2 inhibition [43].

3.2 Signaling pathways

Knowledge of aberrantly regulated signal pathways in AML allowed the identifica-
tion of novel therapy targets. The combination of conventional chemotherapy with tar-
geted agents may potentially overcome resistance. An example is the PI3K/Akt/mTOR 
signal pathway which is responsible for cell metabolism, proliferation, differentiation, 
and survival. The upregulation of the PI3K/Akt/mTOR pathway in AML is caused by 
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mutations in the receptor tyrosine kinases. The FLT3 mutation leads to deregulation 
of PI3K/Akt/mTOR signaling which results in cytokine-independent survival and 
proliferation of hematopoietic cells and myeloproliferative neoplasms [44]. In addition, 
according to lately published data the PI3K/Akt/mTOR pathway plays a significant role 
in the regulation of therapy-resistant leukemic cells through the pro-inflammatory 
transcription factor NF-κB (nuclear factor-kappa-light-chain-enhancer of activated B 
cells). Thus, the mediated chemoresistance is caused by upregulation of anti-apoptotic 
genes, which leads to tumor cell growth and resistance of apoptosis [45].

3.3 Genes and epigenetic modifiers

FLT3 is normally expressed by hematopoietic stem and progenitor cells, but in AML 
acts as a protooncogene that stimulates cell proliferation, differentiation, and survival. 
In approximately 30% de novo AML patients mutations in FLT3 gene emerge. There 
are two types of mutations, that is, internal tandem duplication (ITD), which is present 
in about 25% of cases with adverse prognostic impact, and the tyrosine kinase domain 
(TKD) in about 5%, which prognostic value remains disputable [46]. According to the 
2016 revision of the WHO classification of myeloid neoplasms and acute leukemia, the 
potent significance of the FLT3-ITD mutation depends on the allelic ratio and the pres-
ence of NPM1 (nucleophosmin) gene mutations [47]. Published data demonstrated that 
FLT3-ITD mutation can constitutively activate the receptor and force uncontrollable 
cell proliferaton, which turns leukemic cells resistant to conventional chemotherapeutic 
agents [48, 49]. In addition, authors suggested that the mechanisms of drug resistance 
consist of clonal evolution of resistant leukemic cells, adaptive cellular mechanisms and 
a protective leukemic microenvironment [50]. FLT3-inhibitors the relapse may occur 
due to leukemic cells harboring FLT3-TKD mutations or non-FLT3 clones, carrying epi-
genetic mutations such as IDH1/2, ASXL1, or TET2 [50]. By the advanced methods of 
whole genome or exome sequencing, several epigenetic modifiers have been determined 
in AML, regulating DNA methylation (DNMT3A, IDH1/2, TET2) and histone modifi-
cation (EZH2 and ASXL1) [51]. Research data suggest that epigenetics-modifying gene 
mutations promote genetic instability and induce FLT3-ITD, leading to drug resistance 
and relapse [52]. However, the prognostic impact and the precise contribution of these 
genes to leukemogenesis have not been fully elucidated yet [53].

3.4 microRNA

MicroRNAs are small, 19–24 nucleotide-long, non-coding single-stranded RNAs 
which play a key role in the control of the expression of several genes involved in the 
differentiation of hematopoietic stem cells and the development of cancers [54, 55]. 
The impaired regulation of microRNAs may contribute to the chemoresistance of 
tumor cells by affecting cell survival and apoptosis-related signaling pathways [56]. 
Research efforts in the last decade have demonstrated the unquestionable role of 
microRNAs in reversing drug resistance. However, their implementation into clinical 
practice is hampered by the inability to ensure sufficient safe and specific entry into 
tumor cells and further studies are needed [56].

3.5 Tumor microenvironment

The bone marrow microenvironment supports normal hematopoiesis through sig-
naling cascades and affects the evolution, progression, and chemotherapy resistance 
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of AML [57]. The bone marrow consists of two distinct niches, that is, the osteoblastic 
(endosteal) and the vascular (endothelial), which act synergistically in order to 
regulate cell self-renewal, proliferation, and differentiation [58]. Hematopoietic stem 
cells are maintained by stem cell factor (SCF), CXCL12 (C-X-C Motif Chemokine 
Receptor 4), Notch ligands, and transforming growth factor-β [59]. Mesenchymal 
stromal cells secrete SCF and CXCL12, which regulate leukocyte migration [60]. The 
binding of CXCL12 to its receptor CXCR4 initiates the phosphorylation of CXCR4 and 
activates prosurvival signaling pathways such as MEK/ERK, JAK/STAT, and PI3K/
AKT cascades [58]. Of note, CXCR4 signaling is associated with increased retention to 
the bone marrow, enhanced chemoresistance of leukemic cells, and poor prognosis in 
AML [61]. The interaction between the very late antigen-4 (VLA-4) and fibronectin 
take part in chemokine-mediated homing and mobilization [62]. The adhesion recep-
tor VLA-4 binds to the fibronectin and vascular cell adhesion molecule-1 (VCAM-1), 
resulting in the retention of the leukemic cells within the bone marrow niche [63]. 
Wang et al. observed that a higher level of expression of VLA-4 is characterized 
by poorer survival [58]. The surface marker CD44 is a glycoprotein, that mediates 
cell adhesion, migration, and homing of leukemic cells [64, 65]. The antigen CD44 
is expressed on both hematopoietic and leukemic cells, binding to E-selectin and 
L-selectin. The inhibition of E-selectin strengthens the influence of the chemothera-
peutics daunorubicin and cytarabine [66], and lowers the leukemia burden [57]. As 
components of the microenvironment have been shown to contribute to drug resis-
tance in AML, novel targeted therapies have been advanced in order to overcome it.

4. Conclusion

The development of drug resistance has emerged as an insurmountable challenge 
in the treatment of patients with R/R AML. The incompletely understood molecular 
mechanisms which cause therapeutic failure remain аs a major obstacle to the long-
term success of leukemic therapy, inferior prognosis, and reduced survival. Further 
investigations are needed to delineate more precise, genomic-guided, individualized 
clinical approaches.
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DNMT3A DNA methyltransferase 3A
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FGFR1  fibroblast growth factor receptor 1
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NPM1  nucleophosmin
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VCAM-1 vascular cell adhesion molecule-1
VLA-4  very late antigen-4
WHO  World Health Organization
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