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Chapter

Predictive Control, a Strategy for
Dissolved Oxygen Control in a
Wastewater Treatment Plant
Jose A. Muñoz Hernandez, Luis Eduardo Leguizamon

and Helmer Muñoz Hernandez

Abstract

This chapter presents a strategy for controlling the concentration of dissolved
oxygen (DO) in the bioreactor of a pilot wastewater plant (WWTP). The control
strategy being developed is model-based predictive control (MPC). To apply the
control algorithm, the estimation of the oxygen transfer function (KLa) is first
performed, then the model and linearization technique are determined and finally the
MBPC controller is designed. The results are simulated in MATLAB® and executed in
the plant control and supervision system Supervisory Control and Data Acquisition
(SCADA) in LabVIEWTM. This chapter is organized as follows: Section 1 presents a
brief introduction, and Section 2 determines and describes the model to be used and
its respective linearization, as well as the results obtained for the KLa parameter.
Finally, Section 3 describes the design methodology of the generalized predictive
control (GPC) controller proposed by Clarke, using the Model Predictive Control
Toolbox and the EPSAC strategy developed by De Keyser. It should be noted that the
simulations in each of the sections were performed in MATLAB® and executed in the
control and supervision system with the MATLAB® script interface in LabVIEWTM.

Keywords: predictive control, oxygen control, wastewater treatment plant, modeling,
linearization

1. Introduction

The WWTP treats water from a pipeline of a sector in a community, and the
activated sludge used comes from the wastewater plant (WWTP) of a nearby resi-
dential complex. Its main objective is to serve as a didactic and experimental means
for learning, simulation, and research in the area of control of this biological process.
Oxygen transfer is an important factor for aerobic biological water purification pro-
cesses; hence, the need to obtain a good estimation of this parameter. Consequently,
this chapter discusses a strategy for the control of dissolved oxygen (DO). The pro-
posed control strategy is the Model-Based Predictive Control (MPC). In this strategy,
a model of the process is used to predict how the system will behave under a proposed
sequence of control actions u(t). Traditionally, a linear model is used where an
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optimal control action can be calculated; however, when nonlinear models are used in
the algorithm, a numerical search algorithm is used to calculate an optimal sequence
uopt(t).

2. Process and modeling of wastewater systems

In this part, the generalities of the process are described, and some techniques for
obtaining important parameters in the modeling process of a wastewater treatment
plant are proposed and a linear version of the ASM1 model is proposed.

2.1 General concepts

In the application of predictive control techniques based on models, it is necessary
to have quality models; otherwise, you will have erroneous predictions and the control
system will not be good. The predictions are carried out using a model of the process,
with which the specification of a reference trajectory is obtained. De Keyser proposed
some process models that can be used in the implementation of predictive control
strategies (EPSAC Model) [1]. The output of the model can be seen in Figure 1.

Figure 1 shows schematically the representation of the system taking into account
the effect of noise n (colored noise), where the response to an input u can be obtained
with the Eq. (1):

y tð Þ ¼ x tð Þ þ n tð Þ (1)

The disturbance is represented by n(t) and corresponds to colored noise, a random
signal that removes the offset. x is the result of the process model, while y corresponds
to the measured value. The colored noise signal n(t) can be represented by Eq. (2):

n tð Þ ¼
C q�1ð Þ

D q�1ð Þ
e tð Þ (2)

With, e(t): White noise (uncorrelated noise with zero mean value).
The transfer function (TF) between e(t) and n(t) describes the disturbance class

and corresponds to the noise filter and is given by Eq. (3):

C q�1ð Þ

D q�1ð Þ
¼

1þ cq�1ð Þ

1þ dq�1
� �

1� q�1ð Þ
(3)

The output of model x can be written as Eq. (4):

x tð Þ ¼ f x t� 1ð Þ, x t� 2ð Þ, … , u t� 1ð Þ, u t� 2ð Þ, …½ � (4)

Figure 1.
Process model representation.
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A special kind of EPSAC Model is the CARIMA Model [2]. This model links the
process model and the disturbance model, as shown in Eq. (5):

A q�1
� �

y tð Þ ¼ B q�1
� �

u tð Þ þ
C q�1ð Þ

1� q�1

y tð Þ ¼
B q�1ð Þ

A q�1ð Þ
u tð Þ þ

C q�1ð Þ

A q�1ð Þ 1� q�1ð Þ

y tð Þ ¼ x tð Þu tð Þ þ n tð Þe tð Þ

(5)

x(t) represents a pulse transfer function and B(q-1) and A(q-1) are given by Eq. (6):

B q�1
� �

¼ b1q
�1 þ … þ bnbq

�nb

A q�1
� �

¼ 1þ a1q
�1 þ … þ bnaq

�na
(6)

The model can also be obtained using neural networks or Fuzzy modeling tech-
niques. The model obtained for the wastewater treatment plant is presented below.

2.2 Oxygen transfer function estimation, KLa

In a wastewater treatment system, oxygen must be available at a rate equivalent to
the oxygen demand load exerted by the wastewater entering the plant. The process
consists of bringing the wastewater in contact with oxygen, transferring it across the
gas-to-liquid interface to dissolve it in the liquid, and then transferring the dissolved
oxygen through the liquid to the microorganisms. The dynamics of DO concentration
change can be represented by Eq. (7):

dSo

dt
¼ KLa Sosat � Soð Þ (7)

where So is the dissolved oxygen concentration DO, Sosat is the oxygen saturation
concentration, KL is the oxygen transfer coefficient, and a is the total interfacial
contact area per unit volume of liquid. Since it is admittedly impossible to measure the
interfacial area a, the total term KLa is estimated [3]. To obtain the KLa parameter, the
integration, differentiation, and with oxygen consumption methods were initially
used in transient regime [4], assuming negligible biomass concentrations, proceeding
first to deoxygenate the wastewater, bringing the DO to a value close to zero. Then
aeration is restarted, measuring the increase in DO concentration over time using the
DO sensor. In Figure 2, it can be seen how the DO concentration increases at different
airflow rates until reaching a steady state.

The determination of KLa with the integration method proposes to separate vari-
ables and integrate Eq. (7). Assuming that KLa does not depend on the sampling time,
it is obtained Eq. (8):

ln Sosat � Soð Þ ¼ �KLat (8)

With this equation, a straight line can be obtained from a semi-logarithmic graph
(Sosat - So) as a function of time, where KLa is its slope, as shown in Eq. (9):

KLa ¼ �
ln Cf=Ci

� �

tf � ti

∗

60 (9)
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where ti and tf are the initial and final time selected for the slope, Ci = (Sosat - So)
in ti and Cf = (Sosat - So) in tf. It is multiplied by 60 to convert from minutes to hours,
when the samples have been taken in minutes. The results obtained can be seen in
Figure 3. Here, it is observed that the greater the airflow, the greater the slope (KLa).

With these results, Figure 4 shows the curve obtained from KLa, whose behavior
resembles a first-order system.

The differentiation method is based on the difference of (Sof - So), where Sof is the
last sampled OD data. KLa is obtained from Eq. 10:

KLa ¼
d ln Sof � So

� �� �

dt

∗

60 (10)

Figure 3.
Slope (-KLa). Left: Function on time. Right: Function on time and airflow.

Figure 4.
KLa integration method.

Figure 2.
DO concentration. Left: Function on time. Right: Function on time and airflow.
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The results are shown in Figure 5, where it is observed that the slope for the
different levels of airflow can be obtained in the first 300 seconds, during which
period the slope remains constant.

In a similar way, the KLa curve is obtained, as a function of the airflow, observing
a behavior similar to that of a first-order system, as shown in Figure 6.

In activated sludge processes, when the wastewater under treatment has a signifi-
cant concentration of microorganisms, it is necessary to take into account the oxygen
consumption (respiration) [4], since the mass balance presented in Eq. (7) is affected
as show in Eq. (11):

dSo

dt
¼ KLa Sosat � Soð Þ � R (11)

where R is the rate of oxygen utilization (respiration rate). Then Eq. (11) can be
written as Eq. (12):

dSo

dt
¼ KLaSosat � Rð Þ � KLaSo (12)

Eq. (12) indicates that the derivative term dSo/dt as a function of So provides a
straight line whose slope is equal to KLa and its cutoff point with the ordinate is (KLa.
Sosat - R), value from which R can also be calculated. Figure 7 shows the derivative

Figure 5.
Slope ln(Sof - So). Left: Function on time. Right: Function on time and airflow.

Figure 6.
KLa differentiation method.
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dSo/dt with respect to So, the value of KLa (slope), and the value of R (cutoff point on
the ordinate).

Figure 8 shows that the behavior of KLa as a function of the airflow obtained by
this method also follows a dynamic similar to that of a first-order system.

The oxygen transfer function KLa describes the rate at which oxygen is transferred
to the activated sludge by the aeration system. This function is nonlinear and depends
on several factors, the main one being the airflow rate. Eq. (7) can be written as
Eq. (13):

dSo

dt
¼ KLa qA tð Þ

� �

Sosat � Soð Þ (13)

where qA(t) is the airflow rate entering the bioreactor. Here, it is assumed that
KLa depends on the nonlinearity of the airflow rate. A typical function of KLa is
shown in: Figure 4, Figure 6, and Figure 8, where it is observed that the slope of KLa
changes when the airflow rate changes [3]. Based on the behavior of KLa observed in
these figures, it can be assumed that it corresponds to a first-order system that can be
represented by the differential equation, Eq. (14):

b
dKLa qA tð Þ

� �

d qA tð Þ
� � þ KLa qA tð Þ

� �

¼ au qA tð Þ
� �

(14)

Figure 7.
Slope (dSo/dt). Left: Function on time. Right: Function on time and airflow.

Figure 8.
KLa oxygen consumption method.
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where b is the time constant of the system, a is the gain of the system, and u(qA
(t)) is the input of the system. Applying the Laplace transform to Eq. (14), the
transfer function of the system is modeled with Eq. (15):

KLa sð Þ

u sð Þ
¼

a

bsþ 1
(15)

The step response of the system is obtained with of the inverse Laplace transform,
as shown in Eq. (16):

KLa qA tð Þ
� �

¼ a 1� e
�qA tð Þ

b

� �

(16)

The values of the parameters a and b are determined by identification using the
Smith model [5]. In this model, it is proposed that the steady state gain a can be easily
obtained from the graph of the step response of the system, while the system constant
b corresponds approximately to the time in which 63.2% of the final steady state
response is reached [6].

The gains (a) at steady state are determined to be 30.05, 61.38, and 61.66 for the
integration, differentiation, and oxygen consumption methods, respectively. On the
other hand, the constants of qA(t) are 1.386, 0.214, and 0.2042. These constants are
calculated by linear interpolation or by a cubic spline. The identified models for
integration, differentiation, and with oxygen consumption correspond to the follow-
ing transfer functions, as shown in Eq. (17), Eq. (18), and Eq. (19):

KLa sð Þ

u sð Þ
¼

30:05

1:386sþ 1
(17)

KLa sð Þ

u sð Þ
¼

61:38

0:214sþ 1
(18)

KLa sð Þ

u sð Þ
¼

61:66

0:2042sþ 1
(19)

The verification of the models is performed by comparing the process signal (red)
with the model signal (blue), as shown in Figure 9, in which it can be seen that there
is a good tracking and consequently the error is low. The value of KLa is found by
applying Eq. (16), for a given value of airflow qA(t).

Figure 9.
Transfer function KLa. Left: integration. Center: differentiation. Right: with oxygen consumption.
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For data acquisition, supervision, and control of theWWTP, a Supervisory Control
and Data Acquisition (SCADA) system is designed in LabVIEWTM [7]. The block
diagram and the front panel of the virtual instrument (VI) in the control and moni-
toring system are shown in Figure 10.

2.3 Modeling and linearization of the WWTP

The use of the ASM1 model [8] is proposed to obtain the mathematical models
(mainly for the biological model and the dissolved oxygen model). Among the main
variables to be controlled in a WWTP are the control of the organic content in the
effluent (BOD) and the control of nutrients (nitrogen and phosphorus). However,
given the low concentrations found of these last two compounds in the wastewater to
be treated, this chapter will focus on DO control in the bioreactor. This leads us to
conclude that the proposed model can be simplified, eliminating for example the
equations that have to do with the rate of change of nitrogen concentration and some
other differential equations and variables that would not be necessary to take into
account in this study.

Figure 11 shows the configuration and ratio of the activated sludge WWTP inlet
and outlet flows, where part of the effluent biomass (XR) is recycled to the bioreactor.
The effluent from the bioreactor (QBS) feeds the clarifier (settler), used to separate
substrate and biomass. On the other hand, part of the biomass in the clarifier is fed
back to the bioreactor (QR), while the excess biomass (QW) is removed from the
process.

Figure 10.
Left: block diagram integration. Right: front panel of the virtual instrument (VI).

Figure 11.
Configuration and flow ratio at the WWTP.
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where,
Qf = Inflow (300 l/min = 18 m3/h).
QBS = Flow from bioreactor to settler (QBS = 1.5 Qf).
QR = Biomass recirculation flow (QBS – Qf), approximately 50% del Qf.
Qe = Output flow (Qe = 0.6QBS).
QW = Residual biomass flow (QW = QBS – QR – Qe), approximately 20% of QR.
QA = Airflow.
V = Bioreactor volume (1.2 m3).
The mass balances for substrate, dissolved oxygen, and heterotrophic biomass

concentrations in the bioreactor are represented by the differential equations
Eqs. (20)-(22).

• Substrate balance:

dSs

dt
¼

Q f

V
Ssf � Ss
� �

�
μH

YH

Ss

KS þ Ss

� �

So

KOH þ So

� �

XH (20)

• Oxygen balance:

dSo

dt
¼

Q f

V
Sof �

Q f þQR

V
Soþ

YH � 1

YH
μH

Ss

KS þ Ss

� �

So

KOH þ So

� �

XH þ a 1� e
�QA
b

� �

Sosat � Soð Þ

(21)

• Heterotrophic biomass balance:

dXH

dt
¼

Q f

V
XHf �

Qw

V

Q f þ QR

Qw þ QR

� �

XH þ μH
Ss

KS þ Ss

� �

So

KOH þ So

� �

XH � bHXH (22a)

These equations represent a nonlinear system, where KLa ¼ a 1� e
�QA
b

� �

in accor-

dance with the foregoing, being QR, Qw y QA the manipulated variables, where,
Ss = Substrate concentration in the bioreactor.
Ssf = Substrate concentration in inflow.
So = Oxygen concentration.
Sof = DO concentration in the inflow.
XH = Heterotrophic biomass concentration.
XHf = Heterotrophic inflow biomass.
YH = Yield Heterotrophic biomass.
μH= Maximum specific biomass growth rate.
KS = Average Monod saturation constant for the substrate.
bH = Biomass decay rate.
KOH = Mean Monod saturation constant for oxygen for heterotrophs.
To simplify the system of equations, the following constants are formed:

D ¼
Q f

V
,D1 ¼

μH

YH
,D3 ¼

Q f þ QR

V
,D4 ¼

YH � 1

YH
μH,D5 ¼

Qw

V

Q f þ QR

Qw þ QR

� �

K1 ¼
Ss

KS þ Ss
, K2 ¼

So

KOH þ So

(22b)
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When replacing, you have Eqs. (23)–(25):

dSs

dt
¼ D Ssf � Ss

� �

�D1K1K2XH (23)

dSo

dt
¼ DSof �D3SoþD4K1K2XH þ a 1� e

�QA
b

� �

Sosat � Soð Þ (24)

dXH

dt
¼ DXH f �D5XH þ μHK1K2XH � bHXH (25)

The results obtained with the nonlinear model are shown in Figure 12, which
shows the accumulation of biomass until the adaptation of the microorganisms in the
bioreactor, once they begin to grow the substrate decreases. On the left without
airflow and on the right supplying 3.3985 m3/h, for integration (blue), differentiation
(red), and with oxygen consumption (green).

Eqs. (23)–(25), linearized by Taylor series, result in Eqs. (26)–(28):

Δ _Ss ¼ � DþD1K2oK3XHo
ð ÞΔSs� D1K1oK4XHo

ð ÞΔSo

� D1K1oK2oð ÞΔXH

(26)

Δ _So ¼ D4K2oK3XHo
ð ÞΔSsþ D4K1oK4XHo

�D3 � a 1� e
�QAo

b

� �h i

ΔSoþ …

D4K1oK2Oð ÞΔXH þ
a

b
Sosat � Sooð Þe

�QAo
b

h i

ΔQA

(27)

Δ _XH ¼ μHK2oK3XHo
ð ÞΔSsþ μHK1oK4XHo

ð ÞΔSo

þ μHK1oK2o �D5 � bHð ÞΔXH

(28)

Here Sso, Soo, XHo, QAo, K1o, and K2o are the parameters and constants evaluated at
the point of operation. The constants K3 y K4 correspond to the partial derivatives of
K1 and K2, respectively. The incremental variables are: ΔSs ¼ Ss� Sso, ΔSo ¼ So� Soo
y ΔXH ¼ XH � XHo.

Figure 12.
Concentrations nonlinear system Top: OD. Center: substrate. Bottom: biomass.
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As a result, the linear model is obtained with Eq. (29):

Δ _Ss

Δ _So

Δ _XH

2

6

4

3

7

5
¼

Ss1 Ss2 Ss3

So1 So2 So3

XH1 XH2 XH3

2

6

4

3

7

5

ΔSs

ΔSo

ΔXH

2

6

4

3

7

5
þ

D1 0 0 0

0 D1 0 So4

0 0 D1 0

2

6

4

3

7

5

ΔSsf

ΔSof

ΔXHf

ΔQA

2

6

6

6

4

3

7

7

7

5

(29)

where,

Ss1 ¼ � DþD1K2oK3XHo
ð Þ

Ss2 ¼ � D1K1oK4XHoð Þ

Ss3 ¼ � D1K1oK2oð Þ

(30a)

So1 ¼ D4K2oK3XHo
ð Þ

So2 ¼ D4K1oK4XHo
�D3 � a 1� e

�QAo
b

� �h i

So3 ¼ D4K1oK2Oð Þ

So4 ¼
a

b
Sosat � Sooð Þe

�QAo
b

h i

XH1 ¼ μHK2oK3XHo
ð Þ

XH2 ¼ μHK1oK4XHo
ð Þ

XH3 ¼ μHK1oK2o �D5 � bHð Þ

The linear model obtained in incremental variables is Eq. (30).

Δ _Ss

Δ _So

Δ _XH

2

6

4

3

7

5
¼

‐14:8622 ‐0:1117 ‐0:0028

‐4:8220 ‐0:5977 ‐0:0009

9:7902 0:0748 ‐0:0856

2

6

4

3

7

5

ΔSs

ΔSo

ΔXH

2

6

4

3

7

5
þ

0:25 0 0 0

0 0:25 0 143:9339

0 0 0:25 0

2

6

4

3

7

5

ΔSsf

ΔSof

ΔXHf

ΔQA

2

6

6

6

4

3

7

7

7

5

(30b)

3. Predictive control strategy

3.1 Concepts

Model-based predictive control, MBPC, corresponds to a control strategy that uses
a model of the system dynamics to predict the future behavior of the system over a
finite time window called horizon. The predictive control strategy corresponds to an
optimal control algorithm, which asks how best to control the system and calculates
the future control action “u(t)” as a function of a penalty or cost function. The
optimization of predictive control is limited to a moving time interval and is carried
out continuously online.

Based on the model predictions and the actual measurement or estimation of the
system state, the optimal control inputs are calculated, based on the defined control
objective, and subject to the imposed constraints. After a time interval, the measure-
ment, estimation, and calculation processes are repeated using a shifted horizon.
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Among the advantages is that the controller can anticipate future disturbances and
can be applied to systems with high nonlinearities without the need to perform system
liberalization and finally can explicitly consider operational, physical, or safety con-
straints of the system.

The following are the three ingredients of an optimal control problem.
Model: the model will be used to predict the evolution of the state for a given

sequence of inputs, as shown in Eq. (31):

xtþ1 ¼ f xt, utð Þ (31)

Given a sequence of inputs, if you have a model, you can predict the evolution of
the trajectory, that is, the evolution of the state in the future.

Objetive is used to assign a cost to a given trajectory and qualifies how good a
given trajectory is for the task to be performed. The objective is written as a cost
function, which depends on the sequence of states x and inputs u, mapping it to a
scalar, as shown in Eq. (32):

J x1:T, u1:Tð Þ ¼
X

t∈ T½ �

gt xt, utð Þ (32a)

where,

x1:T ≔ x1, … , xTð Þ; u1:T ≔ u1, … , uTð Þ

Restrictions codify the allowed domains for states and entries:

xtþ1 ¼ f xt, utð Þ,∀t∈ T � 1½ �

xt ∈X t,ut ∈U t; ∀t∈ T½ �

x1 ¼ xinit

(32b)

3.2 Solution of the optimization problem

In general, there is no closed solution to this type of problem, and in general
numerical methods must be used to solve MATLAB and Python.

Using an optimal control strategy does not guarantee success due to several rea-
sons. Firstly, the prediction model will always have errors, since it is an abstraction of
the real system. Errors accumulate over time resulting in divergent predictions. If the
control sequence u is applied to the open-loop prediction model, it will follow a
different trajectory than the actual one and the task will not be carried out accurately.
Secondly, even if you have a perfect model, knowing how the system behaves to the
inputs that are applied, but you have a very long task horizon, if you want to apply an
optimal control strategy to the entire sequence that is too long, you have the problem
of having many time steps to consider in the optimization. Thus, you have a problem
that is too long and too difficult to solve in a limited amount of time.

3.3 Model-based predictive control

Model-based predictive control adds an idea to the optimization problem
explained in the previous section. Instead of optimizing for the complete trajectory in
the future, the following receding horizon control is done:

12
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You start at the current time step, considering only the current state.
From there, you only look ahead and only consider a limited preview, e.g. the next

50 steps.
Only the first entry is applied, then plan again.
Figure 13 shows a general scheme of the predictive control strategy, where it is

observed that first the state is measured, then the task is assigned to the optimizer, to
optimize for example the next 50 steps in time in the future, and from these 50 steps
in time, the optimal solution is taken, taking only the first input to be applied to the
system, to then measure the new state, that is, re-planning from there. The advantage
is that errors can be taken into account because replanning introduces feedback and
reduces the size of the problem, because you only need to plan for the next 50 time
steps, for example.

Figure 14 shows a general scheme corresponding to the predictive control strat-
egy, MBPC. The method consists of a computerized algorithmic control software
based on optimization, where the best control policy is chosen so that it meets a
defined criterion, for example, after 10 samples is desired that the output y is on the
set point.

Figure 14 shows that past information is available, past control policy data (u(t-1),
u(t-2)… ) and past process output information (y(t-1), y(t-2)… ). Two cases are
shown on how the process output will evolve in the future for two future inputs u to
the process and the reference output r is shown. N2 corresponds to the prediction

Figure 13.
General block diagram of a MBPC strategy.

Figure 14.
General scheme of a MBPC strategy.
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horizon and corresponds to one of the MBPC design parameters. In this strategy, u is
selected such that the shaded area corresponding to the evolution of the process
output in the future is minimal.

The MBPC algorithm can be described as follows:

• Input: Objective (cost function) J, Dynamics model f, horizon T, initial guess û1:T;

1.u1:T  û1:T;

2.While task not completed do

xinit  Get current state ();

u1:T Solve optimization problem

u first u1:Tð Þ

ApplyInput uð Þ to the system

3.Start again

The Diophantine equations propose the generalized predictive control (GPC)
strategy, while the EPSAC strategy [1] proposes filtering techniques, where the pre-
diction of the process output is given by:

y tþ k=tð Þ, k ¼ 1, 2, … , N2
� 	

(33a)

and is based on available measurements of the control input u and the output y at
instant t:

y tð Þ, y t� 1ð Þ… , u t� 1ð Þ, u t� 2ð Þ, …
� 	

(33b)

What the control algorithm must calculate is the last value of the input u(t).
Similarly, future values of the control input u must be postulated:

u t=tð Þ, u tþ 1ð Þ=t, u tþ 2=tð Þ…f g (33c)

• Output prediction: The process output prediction is given by two terms, namely
the model output prediction and the disturbance prediction, as shown in Eq. (33):

y tþ k=tð Þ ¼ x tþ k=tð Þ þ n tþ k=tð Þ

Model prediction can be obtained using the parallel method as it is simpler and is
used in stable processes, as shown in Figure 15.

• Disturbance prediction: In Eq. (34), the disturbance prediction can be obtained
by defining a hypothetical filter nf (the signal does not exist), and this value must
be stored in the computer memory, as it will be needed at time instant t + 1:

nf ¼
D q�1ð Þ

C q�1ð Þ
n tð Þ

¼ �c1nf t� 1ð Þ � c2nf t� 2ð Þ � …

… þ n tð Þ þ d1n t� 1ð Þ þ d2n t� 2ð Þ þ …

(34)
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All the information in Eq. (34) is known, it is from the past and is in the computer’s
memory, and the value of n(t) can be found from (1) for k = 0, as shown in Eq. (35):

n tð Þ ¼ y tð Þ � x tð Þ (35)

The future prediction of nf is given by Eq. (36):

nf tþ k=tð Þ � 0,k ¼ 1…N2 (36)

In Eq. (37), the average of this signal is zero (0), because,

nf tð Þ ¼
D q�1ð Þ

C q�1ð Þ

C q�1ð Þ

D q�1ð Þ
e tð Þ ¼ e tð Þ (37)

White noise is an uncorrelated signal, so it cannot be predicted (μe = 0), while n(t)
corresponds to a correlated colored noise signal, where there is trend, then its value
can be predicted (the prediction corresponds to the mean, μe 6¼ 0). The forward
prediction of n(t) is given by Eq. (38):

for k ¼ 1 : N2

n tþ k=tð Þ ¼
C q�1ð Þ

D q�1ð Þ
nf tþ k=tð Þ

(38)

The best prediction of the future random n signal is obtained using Eq. (39):

n tþ k=tð Þ ¼ d1n tþ k� 1=tð Þ � d2n tþ k� 2=tð Þ � …

þnf tþ k=tð Þ þ c1nf tþ k� 1=tð Þ
(39)

• Base/Optimizing response: according to the superposition principle, the
forward response of the system can be written as Eq. (40):

y tþ k=tð Þ ¼ ybase tþ k=tð Þ þ yoptimize tþ k=tð Þ (40)

• ybase t þ k=tð Þ : it takes into account the effects of past control actions, {u(t-1), u
(t-2) … }, the effects of a basic future control scenario (u_base (t + k/t)), which is
chosen for linear systems, and in nonlinear systems it is different, and finally the
effect of future perturbations n(t + k/t).

• yoptimize t þ k=tð Þ: it takes into account the effect of optimization of future control

actions, {δu t=tð Þ, δu tþ 1=tð Þ,… δu tþNu � 1=tð Þ}.

Figure 15.
Parallel model prediction.
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Figure 16 shows the past, base, and sought control actions u(t + k/t). In order to
reduce the number of computations and the size of the matrices, another design
parameter is introduced, the control horizon Nu.

The control algorithm finds by optimization (minimizing the prediction errors),
the future values of δu(t + k/t)(vector with Nu elements), adds them to the control
signal ubase, to obtain the values of u(t + k/t).

yoptimize(t + k/t) can be calculated using the impulse response coefficients up to
the value of Nu, with the last coefficient given by the value of the step response
coefficient given by Eq. (41):

yoptimize tþ k=tð Þ ¼ hkδu t=tð Þ þ hk�1δu tþ 1=tð Þ þ …

… þ gk�Nuþ1
δu tþNu � 1=tð Þ

(41)

According to [1], the basic equation for the EPSAC algorithm can be written in
Eq. (42):

Y ¼ Y þG:U (42)

Y ¼ y tþN1=tð Þ… y tþN2=tð Þ½ �T

Y ¼ ybase tþN1=tð Þ, … ybase tþN2=tð Þ

 �T

U ¼ δu t
t

� �

… δu tþNu � 1=tð Þ…

 �T

8

>

>

<

>

>

:

9

>

>

=

>

>

;

The objective of the predictive controller consists of finding the control vector, {u
(t + k/t), k = 0… N2–1}, that minimizes the following cost function, as shown in Eq. (43):

X

N2

k¼N1

r tþ k=tð Þ � y tþ k=tð Þ½ �2 (43)

Figure 17 shows the error between the forward trajectory of the process and the
postulated reference.

EPSAC proposes the following solution for an unconstrained linear system, as
shown in Eqs. (44) and (45):

X

N2

k¼N1

r tþ
k

t

� �

� y tþ
k

t

� �� 
2

¼ R�Y �G:U

 �T

R� Y �G:U

 �

(44)

Figure 16.
u, past, base, and optimum control actions.
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U ∗ ¼ GTG

 ��1

GT R�Y
� �
 �

(45)

The actual control action applied to the process is shown in Eq. (46):

u tð Þ ¼ ubase t=tð Þ þ δu t=tð Þ ¼ ubase t=tð Þ þ U ∗ 1ð Þ (46)

3.4 Predictive control of DO concentration in the WWTP

The basic MPC strategy consists of estimating the error of the future to determine
the value of the control signal, predicting the future outputs, by means of the past
outputs and the control signals. GPC control will be used, starting from the CARIMA
prediction model based on a transfer function (TF) model [9], Eq. (44):

y tð Þ ¼ x tð Þ þ n tð Þ ¼
B z�1ð Þ

A z�1ð Þ
u t� 1ð Þ þ

C z�1ð Þ

ΔD z�1ð Þ
e tð Þ (47)

where,
x(t) = process transfer function, n(t) = disturbance transfer function, Δ = integra-

tor in the disturbance, e tð Þ = white noise, and u(t-1) = control action (intrinsic delay in
the process). With A(z�1), B(z�1), C(z�1), and D(z�1), polynomials are obtained by
identification. Following the procedure described in (Aguado A), Eq. (47) is
transformed into Eq. (48):

ŷ tþ i=tð Þ ¼ GiΔu tþ i� 1ð Þ þ ΓiΔu
f t� 1ð Þ þ Fiy

f tð Þ (48)

This expression allows us to know at instant t, the value of the predicted output at
instant t + i. Here, Gi yΓi y Fi are polynomials FIR in z�1. Δuf and yf are filtered inputs
and outputs, respectively. The vector expression of the prediction model is shown in
Eq. (49):

Y ¼ Guþ ΓΔUf þ FY f (49a)

where,

ΔUf ¼ Δuf t� 1ð Þ…Δuf t� 2ð Þ…Δuf t� ntð Þ

 �T

(49b)

Y f ¼ yf tð Þ… yf t� 1ð Þ… yf t� nað Þ

 �T

Figure 17.
Objective of the predictive control strategy.
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The N present and future control actions are calculated from the minimization of
the quadratic cost index, as shown in Eq. (50):

J uð Þ ¼
X

N

i¼1

αi ŷ tþ i=tð Þ � w tþ ið Þ½ �2 þ
X

N

j¼1

λj Δu tþ j� 1ð Þ½ �2 (50)

The index in vector form is shown in Eq. (51):

J uð Þ ¼ Y �Wð ÞTα Y �Wð Þ þ uTλu (51)

α and λ are diagonal matrices of NxN, with:

Y ¼ ŷ tþ 1=tð Þ… ŷ tþ 2=tð Þ… ŷ tþN=tð Þ½ �T (52)

u ¼ Δu tð Þ…Δu tþ 1ð Þ…Δu tþN � 1ð Þ½ �T (53)

W ¼ W tþ 1ð Þ…W tþ 2ð Þ…W tþNð Þ½ �T (54)

Substituting Eq. (49) into equation Eq. (51), we obtain the expression that calcu-
lates the N future changes of the control action that minimizes the quadratic cost
index, as shown in Eq. (55):

u ¼ GTαGþ λ
� ��1

GTα W � ΓΔUf � FY f
� �

(55)

Although the N control actions are computed, the linear controller only imple-
ments the first Δu(t), converting u into:

Δu tð Þ ¼ hW � hΓΔUf � hFY f (56)

where h is the first row of GTαGþ λ
� ��1

GTα.
The Z-transform of Δu tð Þ allows us to obtain the configuration of the GPC con-

troller, as shown in Figure 18, represented by Eq. (57):

u zð Þ ¼
T z�1ð Þ

T z�1ð Þ þ R z�1ð Þz�1ð ÞΔ
H zðð ÞW zð Þ �

S z�1ð Þ

T z�1ð Þ
y zð Þ

� 


(57)

From the linear system found, the gain matrix of the KMPC controller was found
using the Model Predictive Control Toolbox:

Figure 18.
GPC controller (green).
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KMPC ¼ 0:0058156 1:9218e‐006 ‐6:0503e‐006 ‐1:209e‐007 1:8134e‐006 2:4445e‐006½ �

To determine the robustness of the GPC, simulations were performed with and
without perturbation for different reference values of the DO. In all of them, the
performance achieved was adequate. By way of explanation, the case is reproduced
when there is no disturbance in Figure 19, where the set point (red) of 2, 1, 4, and
1 mg/l of DO is reached in the upper part, while the lower part shows the control
actions sent to the valve that regulate the airflow.

If disturbances to the controller and to the process output are involved, the block
diagram shown in Figure 20 [10] is obtained.

When the plant is subjected to disturbances, as shown in Figure 21, a faster control
action is observed, causing the response to have a slight overshoot. However, the DO
set point is reached.

The MPC controller design methodology has a great acceptance in the control of
the different variables that are present in the wastewater treatment processes, thanks
to its great robustness and the availability of software that allows the development and
execution of the algorithms necessary for its implementation.

This chapter shows the possibility of controlling the concentration of DO in a
WWTP from a GPC, whose algorithm has been programmed in MATLAB and exe-
cuted in a LabVIEW supervisory system.

Figure 19.
Left: no valve restrictions. Right: with valve restrictions.

Figure 20.
GPC controller, with disturbances.
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4. Conclusions

The MPC controller design methodology is widely accepted in the control of the
different variables that occur in wastewater treatment processes, thanks to its great
robustness and the availability of software that allows the development and execution
of algorithms necessary for its implementation. One of its advantages is to guarantee
lower energy consumption due to the fact that the steps of the control action are
smaller and of an anticipated type, resulting in lower opening values of the airflow
valve.

This work shows how to control the concentration of DO in a WWTP from a GPC,
whose algorithm has been programmed in MATLAB and executed in a LabVIEW
SCADA system. It was based on the step response of the system and the description in
state space, with or without restrictions in the airflow (manipulated variable) and/or
in the concentration of DO (controlled variable), either in the presence or not of
disturbances in the system (concentrations of dissolved oxygen, substrate, and bio-
mass in the inlet flow to the bioreactor). In the different simulations and tests in the
implemented controller, it was found that when there are no restrictions neither in the
airflow valve nor in the DO sensor, even if disturbances are present, the set point is
adequately reached in all cases. On the contrary, when physical restrictions are pre-
sent in the airflow and/or the oxygen concentration, there are moments in which the
desired value of the controlled variable is not adequately reached.
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Figure 21.
Left: no valve restrictions. Right: with valve restrictions.
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