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Chapter

Chromatin Dynamics: Chromatin 
Remodeler, Epigenetic 
Modification and Diseases
Guofei Cui, Qing Dong, Kexin Gai and Shaohua Qi

Abstract

The gene transcription patterns are regulated in response to extracellular stimuli and 
intracellular development programs. Recent studies have shown that chromatin dynam-
ics which include nucleosome dynamics and histone modification play a crucial role in 
gene expression. Chromatin dynamic is regulated by chromatin modification enzymes 
including chromatin remodeling complex and histone posttranslational modifications. 
Multiple studies have shown that chromatin dynamics dysregulation and aberrant 
and histone modifications resulted in the occurrence of various diseases and cancers. 
Moreover, frequent mutations and chromosomal aberrations in the genes associated 
with subunits of the chromatin remodeling complexes have been detected in various 
cancer types. In this review, we highlight the current understanding of orchestration of 
nucleosome position, histone modification, and the importance of these properly regu-
lated dynamics. We also discuss the consequences of aberrant chromatin dynamic which 
results in disease progression and provides insights for potential clinic applications.

Keywords: chromatin dynamic, chromatin remodeler, epigenetic modification, gene 
regulation

1. Introduction

In eukaryotic cells, chromatin is the genetic material carrier which packaged of 
DNA with histone and non-histone proteins. The simplest form of chromatin struc-
ture is the nucleosome core particle. Each nucleosome is composed of 147 bp of DNA 
wrapped around an octamer of histone proteins (two copies each of core histones 
H2A, H2B, H3, and H4) plus a linker histone (H1) involved in higher-order chromatin 
compaction [1]. In general, chromatin assembly limits the accessibility of genomic 
sequences, and thus it creates inherent barriers for nuclear events such as transcrip-
tion, DNA replication, and DNA repair. Consequently, chromatin structure must be 
regulated dynamically, and its compaction and assembly are regulated by multiple 
mechanisms, including DNA methylation, histone post-translational modification, 
histone variant incorporation, chromatin remodeling, histone eviction, and non-
coding RNA pathways [2–4]. During the DNA replication, DNA damage repair, and 
transcription process, the assembly and disassembly of chromatin structure stay on a 
dynamic and balanced status-first, the core histones in front of the replication fork or 
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activated transcription region need to be released from the nucleosome to allow the 
DNA replication and RNA polymerase II machinery to passage and then reassemble 
again after these processes are completed, as the events of DNA replication and RNA 
transcription occurring, the chromatin assembly and reassembly also keep a dynamic 
and balanced process [5–8]. Meanwhile, the nucleosome position is not randomly 
arranged; instead, it is regulated by chromatin remodeling complex to either con-
dense or loosen status at different loci of the nucleus. Chromatin is compacted into 
higher-order structures-named chromosomes, including loosely packaged euchro-
matin that is open and functionally active and more condense packaged status that is 
relatively repressive heterochromatin and maintains genomic integrity [9–11].

The chromatin remodeling complexes are the second major class of chromatin reg-
ulators. They are involved in different biological events such as DNA replication and 
transcription, through altering the components, positions, and numbers of nucleo-
somes around the gene. It also involves diverse modulators and protein domains for 
the various processes: nucleosome organization, disorganization, ejection, or changes 
in nucleosome composition [12, 13]. These chromatin remodeler complexes constitute 
a highly related family of multi-subunit complexes, and the core catalytic subunit 
is comprised of the ATPase domain that hydrolyzes ATP. Therefore, the chromatin 
remodeler complexes are ATP-dependent chromatin-remodeling enzymes that use 
the energy of ATP hydrolysis to remodel nucleosomes. Other substrate recognizing 
subunits direct the nucleosome sliding, facilitate the access of transcription factors 
to nucleosome DNA, change the DNA topology on specific nucleosomes targets, and 
generate distinct remodeling outcomes [14, 15].

Here, we focus on the studies on the related chromatin remodeling complexes and 
epigenetic modification and summarize recent advanced knowledge on the power of 
chromatin remodelers and its associated dynamically epigenetic regulation. Moreover, 
we explored the correlations between chromatin dynamic regulation and diseases 
progression, highlighted the importance of various chromatin modifiers targets for 
disease therapy. We also discuss emerging evidence of the new roles for chromatin 
regulators in developmental transitions in the future clinic application. Given that 
most knowledge about the chromatin remodeling complexes are described in yeast; 
therefore, the text below will be defined as yeast if there is no extra interpretation.

2. Chromatin remodeler

As we know, the position and status of chromatin structure are not permanently 
stable; conversely, it is dynamically regulated by chromatin remodeling complexes, 
by using the energy of ATP hydrolysis to create a force to promote the local reposi-
tioning of nucleosomes and alter the accessibility of DNA elements to transcription 
factors and (or) other proteins [16, 17]. The activity of the ATP-dependent chromatin 
remodelers includes the exchange of core histones/histone variants, the eviction of 
histones from nucleosomes, and the repositioning or sliding of nucleosomes along 
DNA [18–20].

All the ATP-dependent chromatin remodeling complexes are multi-subunit com-
plexes containing an ATPase subunit of the Snf2 (sucrose non-fermenting 2)-type 
of helicase. Based on the structural characteristics of this catalytic ATPases subunit, 
the ATP-dependent chromatin-remodeling complexes can be classified into four 
subfamilies, including SWI/SNF (switch/sucrose non-fermentable), ISW1 (imita-
tion switch), CHD (chromodomain-helicase DNA-binding protein), and INO80 
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(inositol requiring 80) (Figure 1) [21–27]. Currently, the most thoroughly studied 
remodelers are SWI/SNF subfamily [28, 29], which is defined by its N-terminal 
HSA (Helicase-SANT–associated) domain working for binding actin and other 
actin-related proteins [30]. The histone acetylated-lysine binding domain is located 
at C-terminal, named bromo domain [31]. This remodeler family is large, multi-
subunit complex that contains more than eight proteins.

Here in Table 1, we summarized these four chromatin-remodeler families and 
their subunits, and other functional domains are also described.

The formation of nucleosome structure is the natural obstacle for the processes of 
DNA replication and transcription (*please keep in mind that nucleosome structure 
also protects the fragile DNA from insult). How does the cell work for transcription 
under the condition of chromatin? One of the mechanisms is histone exchange or 
removal from nucleosomes mediated by histone chaperon and/or chromatin remod-
eler. For example, when activated transcription occurs, chromatin remodelers such as 
the Remodels the Structure of Chromatin (RSC) complex maintain these nucleosome-
depleted regions (NDRs) by sliding nucleosomes away from the promotor region, 
allowing the binding of RNA polymerase II to the promoter [32, 33]. In addition, chro-
matin remodeling complexes promote the binding of transcription activators on gene 
promoters or enhancers region, finally resulting in the gene activation. However, the 
formation of the NDR alone does not ensure Pol II-mediated transcription initiation 
on special gene locus. This indicates that other mechanisms may be involved in this 
process. For example, it is shown that histone variant H2A.Z is specially located on the 
two nucleosomes flanking the NDR (denoted as −1 and +1 with respect to the NDR) 
at certain genes, promoting or inhibiting gene expression. The incorporation and 
removal of H2A.Z into +1 and −1 nucleosomes are mediated by chromatin remodeling 
complex SWR and INO80 [34, 35].

Both the processes of DNA replication and RNA transcription involve nucleosome 
assembly and organization, the histone complexes (H3–H4 tetramers and H2A–H2B 
dimers) are delivered by histone chaperones for chromatin-remodeler (including 
ISWI and CHD subfamily). After DNA is exposed from histones, access subunit(s) 

Figure 1. 
Composition of the chromatin remodeler complexes.
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of the remodelers will direct the binding of transcription activators or repressors on 
gene promoters or enhancers region. Meanwhile, remodelers also help to protect the 
“naked” DNA by recruiting other protein complexes, including the histone modi-
fication, transcription activator, or repressor complex, and during this process, the 
electrostatic environment and space surrounding the chromatin are also involved.

In addition, the nucleosome structure can be remodeled by the interaction 
between histones (variants) modifications and special recognizing subunits of the 
chromatin remodeler. The remodeler-specific domains recognizing and binding 
histone modifications, generally reference as reader domains. It is shown that the 
remodelers have a greater affinity for the nucleosome than naked DNA, which means 
the recognizing subunits have a priority to bind the modified histones [16]. For 
example, the PHD (plant homeodomain) finger domain, discovered over a decade 
ago in the Arabidopsis protein HAT3.1, is found in many chromatin-remodeling 
proteins. It functions as an “effector” that can recognize histone H3 tail peptides at 
lysine 4 (H3K4me2 and H3K4me3) [36–39], further recruiting transcription factors 
and nucleosome-associated complexes to chromatin. Bromo domain, another protein 
recognition module, recognizes and binds acetyl-lysine residues on histone tails 
protruding from the nucleosome [40, 41].

Meanwhile, the histone variants also influence the affinity of these remodeler sub-
families, and certain histone modification variants markers can recruit specific chromatin 
remodeling complexes and further reinforce the remodeling. During this process, the 
chromatin remodelers play an important role in the “position effect” of gene expression 
[42, 43]. There are also some other protein recognition modules that have been described 
in the past two decades; however, we will not describe them one by one here in this chapter.

Chromatin-

remodeler 

families

Subunits Domains Functions

SWI/SNF SWI1, SNF11, Swp82, SWI2/SNF2, Swp73, 

SWI3, Arp9, SNF5, Arp7, SNF6, Swp29

HSA Actin binding

DExx ATPase

HELICc ATPase

BROMO Acetylated lysine 

binding

ISWI ISW1, P74, p110, p105, ACF, RSF, CERF, 

CHRAC, NURF, NoRC, WICH, b-WICH

DExx ATPase

HELICc ATPase

SANT Histone binding

SLIDE Histone binding

CHD CHD1, CHD2, CHD3, CHD4, CHD9, 

NuRD

CHROMO Histone binding

DExx ATPase

HELICc ATPase

INO80 Arp8, Arp4, Taf14, Ies4, Actin, Ino80, 

RvB1/2, Ies3, Ies1, Ies2, Arp5, Nhp10, Ies5, 

Ies6, SRCAP

HSA Actin binding

DExx ATPase

HELICc ATPase

Table 1. 
Four chromatin-remodeler families, subunits, and their respective functional domains.
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3. Chromatin dynamics and histone modifications

Both histone tails and globular domains are subject to a vast array of different 
posttranslational modifications including acetylation, methylation, phosphoryla-
tion, deamination, β-N-acetylglucosamine, ADP ribosylation, (de)ubiquitylation, 
and SUMOylation [44]. Histone methylation frequently occurs at lysine (K) and 
arginine (R) residues, which is mediated by histone methyltransferase such as SET-1 
(H3K4me), SET-2 (H3K36me), and PRMT5 (H3R8, H4R3); histone acetylation 
occurred at lysine residues is mediated by acetyltransferase, such as GCN5 (H3K9, 
K14, and K18) and HAT1 (H4K5 and K12). Phosphorylation occurred at serine and 
threonine residues is achieved by MSK1/2 (H3S28). Ubiquitination occurred at lysine 
residues is mediated by ubiquitinase such as RNF20/RNF40 (H2B120K). Histone 
modifications that are associated with active transcription are commonly referred to 
as euchromatin modifications, such as acetylation of histone 3 and histone 4 (H3 and 
H4) or di- or trimethylation of H3K4 [18, 44]. However, histone modifications that 
are occurred at inactive genes or regions are often termed heterochromatin modifica-
tions, such as H3K9me and H3K27me. There are two well characterized mechanisms 
for the function of histone modifications. The first is the disruption of contacts 
between nucleosomes and nucleosomes or DNA in order to “unravel” chromatin; 
the second is the recruitment of nonhistone proteins to bind to chromatin or to help 
remove histone/histone variant from chromatin [18]. Given the diversity of covalent 
modifications, it has been proposed that individual histone modifications or modi-
fication patterns might be read by other proteins that influence chromatin dynamics 
and function.

Many histone-modifying enzymes are components of chromatin remodeler 
complexes. For example, the Bdf1 subunit of chromatin remodeling complex SWR 
contains two bromodomains that bind to acetylated-lysine in H3 and H4 [45]. This 
indicates that the various kind of histone modifications cooperate with chromatin 
remodelers to modulate gene expression by altering the chromatin structure. From a 
genome-wide of view, histone H3K4me3 and H3ac are strongly correlated with active 
transcriptional start sites [46, 47]. Conversely, H3K9me3 are usually located on CpG 
island and mediates heterochromatin formation and gene silencing [48, 49].

In most cases, the chromatin-associated factors have been shown to specifically 
interact with modified histones rather than DNA, then chromatin remodelers are 
recruited to DNA locus independently. For the recruitment of chromatin remodeler 

Chromatin remodeler readers/domains Histone target(s) Example

Bromodomain Acetylation Lysine H3K14ac [50]

Chromo domain Methylation Lysine H3K4me, H3K9me, H3K27me, 

H3K36me [51]

PWWP (Pro-Trp-Trp-Pro motif) Methylation Lysine H3K36me [52]

PHD finger Methylation Lysine H3K4me [53, 54]

MBT (malignant brain tumor) repeat Methylation Lysine H4K20me [55]

SANT domain non-modified histone 

tails

[56, 57]

Table 2. 
The major chromatin remodeler readers/domains and their binding histone targets.



Epigenetics - Regulation and New Perspectives

6

complexes to chromatin, the transcription factors with distinct DNA binding domains 
work to direct the target selectivity and functional specificity.

Here, we summarize the chromatin remodeler readers and their histone targets 
with various modifications (Table 2).

In fact, all the epigenetic modifications cooperate with each other to guarantee 
an accurate regulation of gene expression. Certain histone modification markers can 
recruit specific chromatin remodeling complexes and further reinforce the remodel-
ing of nucleosomes. During this process, the chromatin remodelers play an important 
role in the “position effect” of gene expression [16].

4.  Crosstalk among chromatin dynamics, epigenetic modifications, and 
gene regulation

How to determine a gene’s expression status? What extent should it be silenced 
or activated? The answer may depend on the chromatin position or the state of the 
target gene. Generally, each type of epigenetic modifications is dynamic and keeps 
on changing within the cell, and it is driven by cell signals induced by alterations 
in the cellular environment, including changes in nutrients, stress, hormone levels, 
and cell damage, etc. The cross-talk among chromatin dynamics, epigenetic modi-
fication, and gene expression regulation is an extra complex process via multiple 
possible mechanisms: (1) these events may be dependent on another; (2) they may 
work competitive; and (3) one factor disruption/mutation do not necessarily have 

Figure 2. 
Dynamic of epigenetic modifications.
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effect on another directly. In addition, most of the genes, especially those involved in 
cell differentiation and proliferation, may have various layers of regulatory mecha-
nisms [58]. For example, DNA methylation can reinforce histone modifications and 
strengthen chromatin structure, to ultimately activate or silence the expression of 
specific genes [59]. In some cases, they may function in competition to “check” each 
other to maintain homeostasis [60, 61]. A promotive histone modification marker 
and a repressive chromatin structure can co-exist to either keep gene expression 
at a moderate level or switch it “on and off” at different time points, quickly and 
efficiently [62, 63] (Figure 2). The histone modifications can direct the gene expres-
sion regulation by the chromatin remodeler. It was reported that H3K56Ac alters 
the substrate specificity of SWR-C, resulting the random switch of either H2A.Z/
H2B with free H2A/H2B dimers from nucleosomes [64, 65]. Yeast INO80-mediated 
genome-wide distribution of H2A.Z facilitates DNA repair, transcription, and 
replication [65, 66]. On the other hand, the DNA sequence-directed transcriptional 
activators interact with chromatin remodelers and affect their activities. For exam-
ple, the interaction between yeast SWI/SNF and a DNA-bound activator can promote 
nucleosome eviction in vitro [67–69].

5. Aberrant chromatin dynamics and disease

To remain healthy status, our bodies must maintain homeostasis by adjusting 
the expression levels of genes to resist the detrimental effect from the stimuli of the 
biological environment both inside and outside of the body. Epigenetic modifications 
could regulate the expression level of corresponding gene(s), ultimately achieving 
homeostasis.

Chromatin dynamics play a central role in regulating various key biological 
phenomena. Recently, it was reported that various mutations occur in these chro-
matin-remodeling families, resulting in the chromatin dysregulation and aberrant 
expression of target genes, and ultimately lead to various disorders. Chromatin dys-
regulation by abnormal remodelers is often linked to neurodevelopmental disorders 
[70–72] and intellectual disabilities [73, 74], and also result in immunodeficiency [75] 
and muscle wasting syndromes [76], and various cancers [22, 77–80].

Although the pathology is beyond the scope of this chapter, to illustrate some of 
these possibilities, we only take the cancer, CNS disorder, and aging as examples to 
highlight the chromatin dysfunction mechanisms below.

5.1 Cancer

Most of the published genome-wide chromatin modification studies indicate 
that malignant metamorphosis of cells is governed to a large degree by the fluctuat-
ing cellular environment. Chromatin remodelers work as gatekeepers to control the 
accessibility of DNA binding transcription factors and ensure the variety of biologi-
cal functions within the cell. Crudely speaking, the tumorigenesis can occur via at 
least two mechanisms: (i) altering gene expression, and (ii) fragile genome integrity 
and/or chromosome segregation. Thus, any aberration on chromatin remodeling 
complexes has been linked with genome instability. Chromosome segregation defects 
are related with the malignant transformation and progression of tumors. Loss-
of-function SWI/SNF subunit mutations are detected in most prevalent in various 
cancers. It is shown that ~20% of all human cancers contain mutations on subunits 
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of the SWI/SNF complex. The mutation of SWI/SNF subunit occur in ovarian clear 
cell carcinoma (75%), clear cell renal cell carcinoma (57%), hepatocellular carcinoma 
(40%), gastric cancer (36%), melanoma (34%), and pancreatic cancer (26%) [81, 
82]. Among these ATP-dependent chromatin remodelers, SWI/SNF complex was first 
implicated in oncogenesis due to the discovery that its subunit SMARCB1 (also known 
as SNF5 and BAF47) is inactivated by biallelic mutations in nearly all cases of rhab-
doid tumor [83]. Subsequently, accumulating researches reported that other subunits 
of SWI/SNF are mutated in various cancer types even though the mutated frequency 
is different in specific cancer type. For example, ARID1A is the most frequently 
mutated SWI/SNF subunit across cancer types [84, 85]; however, PBRM1 subunit 
mutations are much more common than ARID1A mutations in clear cell renal cell car-
cinoma [86]. Unlike the well-known role of SWI/SNF in cancers, the involvement of 
the other three subfamilies in cancer has not been well characterized. However, recent 
researches showed that all of the four chromatin remodeler subfamilies are implicated 
in pancreatic cancer (PDAC) by either mutation and/or chromosomal alterations [87]. 
Collectively, chromatin remodeling complexes is a potential target for therapeutic 
drugs design in the future.

Besides the point mutation or chromatin depletion, lots of mutations in epigenetic 
modifications occur in cancer cells compared to the normal healthy cell, which are epi-
genetic trademarks in earlier cancer development [88, 89]. With the abnormal epigene-
tic modifications, the cancer cells can maintain a portrait of self-renewal and unlimited 
proliferation. It has been found that cancer cells are usually marked with a loss of active 
H3K4me3 as well as repressive H4K20me3 and a gain of the repressive mark H3K9me3 
or K3K27me3 [90, 91]. No matter altered gene expression or the instability of genome 
integrity during the process of tumorigenesis, questions then arise as to how do these 
aberrations changed the chromatin opening status and further influence the corre-
sponding gene expression? Can we find out some methods like DNMT (DNA methyl-
transferases) inhibitor, HDAC (histone deacetylases) inhibitor, kinase inhibitors, etc., 
to reduce the detrimental effect? Or it is also worthy to modulate the balance between 
maturation and correction, thus favoring a status of recovery. Here, we did not expand 
into details and just attempt to take a short of paragraph on the chromatin dysfunction 
as well as some prospective pipelines for the fight against cancers.

5.2 CNS disorder

In the central nervous system (CNS) disease, epigenetic mechanisms serve as 
key regulators of development, homeostasis, and plasticity, all of which are highly 
sensitive to local and more global environmental, vascular, systemic, and intrinsic 
CNS factors [92, 93]. Not surprisingly, epigenetic modifications are involved in the 
molecular and cellular mechanisms underlying CNS pathogenesis and recovery, 
including the adult neurogenesis, response of initiate immunology, and neural plas-
ticity. Disruption in the status of chromatin dynamics can lead to the changes in the 
site and the number of gene dysfunction. Thus, the gene regulation in chromatin level 
has an important role in the development of brain development. Abnormal chromatin 
is a key feature of necrotic cell death and apoptotic cell death, which are both associ-
ated with neural injury like stroke [94].

A growing body of evidence suggests that chromatin remodeling complexes 
that play a key role in vascular biology are involved in defining and transducing 
cardiovascular disease inheritability. The role of chromatin remodeling complexes 
in the transcriptional unit of protein-coding genes, especially the role of intragenic 
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chromatin modifications, is underappreciated and not well characterized in the cur-
rent era of genome-wide studies. The role of chromatin remodelers in CNS develop-
ment and recovery is multifaceted. It is involved in the vulnerability of the brain cells 
to injury, the sensitivity of neurons to inflammation stimuli, and the immune system 
recovery ability after injury. Currently, epigenetic modifications mechanisms have 
been applied in preclinical and clinical trials due to its critical roles in the regulation 
of immune responses process. It also become a potential therapeutic method for 
risk, onset, and progression of CNS disease. The initiate immunology within brain 
implicated in sophisticated cognitive functions, including neuronal-glial differentia-
tion, the modulation of neural behavior and in higher brain functions like cognition, 
learning, and memory. It is worth noting that epigenetic mechanisms are involved in 
brain immune system development, homeostasis, and plasticity.

Importantly, it has been shown the practical application of epigenetics in car-
diovascular disease therapeutics [94–96]. There is increasing interest in the role of 
chromatin remodelers in disease pathobiology, especially about whether and how 
pharmacological manipulation of epigenetic processes may allow for ischemic neuro-
protection [97, 98]. It is possible that epigenetic modification may serve as a sensitive 
and specific biomarker to predict the CNS disease progression. Furthermore, several 
epigenetic agents are currently being evaluated in some fields such as neural cell 
survival and brain tissue repair and functional reorganization. Therefore, epigenetic 
mechanisms have been served as key regulators for mediating neuron development, 
homeostasis, and plasticity.

5.3 Aging

Aging is a major risk factor for many of the most prevalent diseases all over the world 
[99, 100]. Epigenetic dysregulation may contribute to aging in mammals [101]. An obvi-
ous correlation between aging and DNA methylation was observed in various mouse 
tissues. It was reported that the genes (EDARADD, TOM1L1, and NPTX2) responsible 
for aging are usually hypermethylated in the promoter CpG islands [102, 103].

As we all known, at the earlier development stage of the embryonic stem cells 
(ESCs) occupy a global “open” and dynamic chromatin state. When the cell differen-
tiation is on the way to be mature, the chromatin configuration will transit from “open 
state” to a more compact and repressive state, which correlates with less dynamic 
exchange of chromatin proteins [104, 105]. There are clear changes to both the global 
and specific histone mark patterns with organisms increasing aging. For example, 
H3K9me3 is a hallmark of heterochromatin, and it is globally reduced in fibroblasts 
from HGPS patients [106]. H4K20me3 is also a mark of heterochromatin and tran-
scriptional repression, but it tends to increase in fibroblasts from HGPS patients with 
increasing aging [106]. In addition, H3K27me3 is altered in a variety of cell types and 
species during aging. For example, there are increased levels of H3K27me3 in brain 
tissue from the senescent accelerated mouse SAMP8 with increasing age [107]. A 
fundamental question about aging is how chromatin dynamics are passed to relatively 
less active through a couple of generation cell divisions.

6. Therapeutic value targeting chromatin modification

Over the past decade, rapid progress has been made in the field of epigenetics 
research with the development of powerful technologies such as high-resolution 
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microscopy and genome-wide next-generation gene sequencing [108–110]. It is also 
very promising to use epigenetic modification changes as a diagnostic tool before the 
related disease develops. Several drugs designed according to the epigenetic modifica-
tion have been already approved by the US Food and Drug Administration [111, 112]. 
Currently, epigenetic therapy is successfully applied in clinics for the treatment of 
hematological malignancies, but little success has been achieved in the treatment of 
solid tumors. However, notwithstanding the role of epigenetic regulation in the patho-
physiology is not well characterized, emerging evidence suggests that it is extremely 
important to provide the strategies of clinic therapeutics.

7. Future perspective

Given that the various mutations occurred at different chromatin modification 
enzymes in different human cancers and other diseases, the investigation of specific 
mechanisms underlying the mutation of chromatin modification enzymes in different 
cancers/diseases will pave the way toward new therapeutic strategies for a range of 
human cancers with significant unmet medical need. In addition, from the perspec-
tive of the canonical role of chromatin remodeling complex in chromatin regulation 
[27], the following aspects will be the goals to develop the novel therapeutic drugs for 
parents with aberrant chromatin dysregulation by targeting the chromatin regula-
tor or its associated protein. (1) designing the small molecular inhibitor against the 
chromatin regulators such as some specific subunits of SWI/SNF chromatin remodel-
ing complex base on the fact that the subunits of mSWI/SNF (ARID1A, PBRM1, 
SMARCA4, and ARID2) are frequently mutated in many common human cancers, 
such as ovarian, colon, kidney, lung, prostate, breast, and others [113]; (2) designing 
the novel drugs targeting the transcription factor interacting with mutated chromatin 
remodeling complex is a potential alternative strategy to inhibit a variety of tumors 
driven by the interaction between oncogenic transcription factors and mutated 
chromatin remodeling complex; (3) given the critical role of chromatin remodel-
ing complex in DNA replication and damage repair, it is also a potential therapeutic 
strategy to therapy the parents with tumor driven by aberrant chromatin regulator 
by targeting the replication- or repair-associated factors interacting with chromatin 
regulators. With increasing genetic, biochemical, and physiological understanding 
of chromatin remodeling complexes, their links to human diseases will continue to 
expand, providing new therapeutic opportunities across multiple disease areas. Given 
the fundamental role of chromatin regulators in normal physiology, future thera-
peutic approaches should focus on identifying the specific regulatory mechanisms 
of chromatin regulators in specific cancers/diseases to enhance overall therapeutic 
benefits.

8. Conclusion

Chromatin regulators are involved in priming transcriptional responses, and many 
chromatin modifiers and remodelers have been implicated in various human diseases. 
However, some chromatin alterations are potentially plastic and reversible, which 
raises the possibility of correcting chromatin states as a therapeutic strategy.

Probably the major debate is the association and order among gene expression, 
histone modification, and chromatin remodeler/dynamics, and it seemed impossible 
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to control only one factor and hence detect the target mechanisms selectively. 
Further, open question reminds what is the perfect feature of these factors to guaran-
tee a so-called healthy condition?

Despite these contentions, the progress that made by the researchers have move 
forward to the intrinsically epigenetic regulators with the high-throughout gene 
sequencing and screening technology, the scientific data supplied from various 
database till date will form the ladder for the future therapeutic options.

Nevertheless, studies of epigenetics are increasing, and epigenetic therapies 
have become exciting and promising. The rise of new technologies such as CRISPR/
Cas9 gene editing and next-generation sequencing in recent years allows us to better 
understand the interplay among epigenetic changes, gene regulation, and human 
disease, and it will lead to development of new approaches for molecular diagnosis 
and treatments across the clinical spectrum.

The use of epigenetics as a major contributing factor in the development of 
normal and abnormal cells will open new sights for the advent of new therapeutic 
approaches.

Epigenetic therapy can be combined with the traditional therapies to provide cer-
tain treatments for reversal of the drug-resistant tumors. Also, with this therapeutic 
approach, the drug dosages can be reduced to eliminate the side effects of treatment 
and, consequently, the patient’s healing problems and increase the patients’ quality of 
life.
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