
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

168,000 185M

TOP 1%154

6,200

Chapter

Field Programmable
Reconfigurable Mesh (FPRM)
Esti Stein and Yosi Ben Asher

Abstract

Many application areas demand increasing amounts of processing capabilities.
FPGAs have been widely used for improving this performance. FPRM (Field Pro-
grammable Reconfigurable Mesh) is a technique we propose to improve FPGA per-
formance. A Reconfigurable Mesh (RM) consists of a grid of Processing Elements that
use dynamic reconfigurations to create varying bus segments between them. The RM
can thus perform computations such as Sorting or Counting in a constant number of
steps. It has long been speculated that the RM’s dynamic reconfigurations should
replace the FPGA’s static reconfigurations. We show that the RM is capable of not only
speeding up specific computations such as sorting or summing, but also of speeding
up the evaluation of Boolean circuits (BCs), which is the main purpose of the FPGA.
Our proposed RM algorithm can evaluate BCs without causing size blowup. Further-
more, tri-state switching elements can be used instead of PEs in a grid.

Keywords: FPGA, reconfigurable mesh, DNF, Boolean circuits, tri-state

1. Introduction

FPGAs are integrated circuits that form a matrix of conigurable logic units (CLUs)1

connected via programmable routing interconnects. By downloading different routing
configurations to the FPGA, any circuit C x0, … , xn�1ð Þ can be embedded and then
executed/evaluated. After embedding the circuit’s topology in the FPGA, the circuit is
executed every time a new input is received. Due to the FPGA’s routing interconnects
and CLUs, this evaluation mode makes the FPGA relatively slow compared to ASICs.

Assuming the circuit C x0, … , xn�1ð Þ that has been discussed previously, we wish
to examine the possibility of speeding up the evaluation of C by using a dynamic mode
of reconfiguration rather than the above-mentioned FPGA mode. Essentially, we
devised an algorithm that evaluates C x0, … , xn�1ð Þ faster than its depth [1] (the
longest path from the root/output to any leaf/input) 2. In a sequence of
reconfiguration steps this algorithm: 1) Spans bus segments on different subsets of
x0, … , xn�1f g in parallel; 2) Uses a single broadcast in each of these bus segments, and

computes in parallel the AND/OR/COUNTING-1 s(counting the # of ‘1’s) of each

1 See appendix A for all acronyms and abbreviations
2 A preliminary version of the following algorithm and results was presented as a poster in [1]

1

segment; 3) Computes C in a fixed small number of steps regardless of C‘s depth
based on the above computations. The above algorithm uses a platform based on
Reconfigurable Mesh (RM) [2], which is a 2D grid of Processing Elements (PEs) that
uses dynamic bus reconfiguration to create varying bus segments for fast communi-
cation. Consequently, computations such as summation and sorting can be expedited.

Reconfigurable Mesh (RM) has been demonstrated to be able to perform parallel
computations faster than the Parallel random access machine model (PRAM) [3],
which is an abstract model for parallel computation. This includes O 1ð Þ summing [4],
O logð Þ integer summing [5], O 1ð Þ multiplication [6], sorting [7], convex hall [8],
graph algorithms [9, 10] and image processing [11]. Despite this potential power of
the RM model, it has not yet been fully realized since the model assumes a signal can
be transmitted along a bus/connected component in a single step regardless of the
number of switches/ports. From this perspective, a variety of restricted RMs have
been proposed. These include the RMBM [12], where only the structure of the RM’s
switch has been simplified but still busses with a linear number of switches are used.
The SRGA [13, 14] proposed a mesh, where each row/column has a complete binary
tree of reconfigurable switches, allowing to route messages between the leaves of this
tree. [15] proposes a linear RM (LR-Mesh) bending cost, where the delay of a bus
varies as a function of how many times it bends between rows and columns. It showed
that for busses with a reasonable delay of at most D ¼ Nε bends they can simulate

algorithms for LR-Meshes in constant time. A bus of length d nð Þ ¼ n1=k was suggested
in [16], also showing that restricted RM algorithms can be directly coded in Verilog.
This way of programming RM-algorithms overcomes most of the drawbacks of the
C-like programming style proposed so far for RM-algorithms (e.g.,ARMlang [17]).
However, they only addressed the problem of COUNTING-1 s. Our method of evalu-
ating the circuit is partially based on the solution for COUNTING-1 s. [18] shows that
integrating branching program with Boolean circuits is better than using each of them
separately. Other realizations of the RM [19] were mainly to a small-size grid of Soft-
CPUs and cannot be synthesized for large values of n.

A number of dynamic reconfiguration (DR) FPGAs have also been proposed,
mainly for the purpose of speed acceleration. However, the main challenge was the
reconfiguration delay. The use of DR is therefore rare [20]. There is also a method of
addressing this problem, and it is commonly referred to as partial reconfiguration
(PR) at runtime. PR can be implemented through external FPGA interfaces as well as
special internal interfaces such as the ICAP on Xilinx devices [21]. Even so, PR is still
primarily an auxiliary feature in modern commercial FPGAs rather than something
with which the architecture is designed [22, 23]. Thus, PR design involves many
details related to low-level architecture that require a high level of expertise. [24]
proposed time-multiplexed DRFPGA, where registers are added to store computa-
tional states and partial results. Yet, only a few contexts are allowed because of area
overhead. Memristors (RRAM), have also been applied as a programmable switch, as
they are naturally more delay-efficient and lead to higher-performance FPGA archi-
tectures. However, [25, 26] only focus on the architectural repercussions of this
technology. Very limited works investigate realistic RRAM-based circuit design con-
straints, while these have a strong impact on the final architectural performances.
Fine-grain DR (FDR), described in [27], consists of homogeneous reconfigurable logic
elements (LEs). It is possible to configure each LE as either a lookup table (LUT) or as
an interconnect, or even as a combination of both. While this improves flexibility for
allocating hardware resources between LUTs and interconnects, it still consumes a
large amount of space. At first glance, this model seems to be close to what we have

2

Field-Programmable Gate Arrays

proposed, but one of the main difference lies in the algorithm for evaluating the
Boolean Circuit C x0, … , xn�1ð Þ faster than its depth.

Our approach to the speed-up evaluation problem is to use the Reconfigurable
Mesh (RM). We propose an infrastructure called FPRM (Field Programmable
Reconfigurable Mesh) which is a sub-model of the RM model based on current CMOS
technology and adapted to the proposed algorithm. The FPRM consists of two-
dimensional grids of switches pei,j, with each switch connected to four neighbors

pei�1,j,peiþ1,j,pei,j�1,pei,jþ1 via four links. It allows reconfiguration of its internal links in

different reconfiguration modes S0,S1,S2,… as depicted in Figure 1 (upper left). Each
pei,j has four registers used to read/write to each of the four links: Nr to read/write to

the link connecting pei,j to pei�1,j and Sr=Wr=Er to read/write to peiþ1,j=pei,j�1=pei,jþ1

respectively. Each pei,j executes a program based on its current state, its coordinates i,j

and the values of Nr,Sr,Wr,Er. Upon execution, each pei,j can change its

reconfiguration mode, its state, and the content of its registers Nr,Sr,Wr,Er. Figure 1
contains a four instructions program (bottom left side) for executing COUNTING-1 s
of a four bits input. As depicted in Figure 1 right side, the execution of this program
creates a bus whose bendings corresponds to the 010s input values. By examining the
exit point (row number) of a signal sent through S> we obtain the number of 1� bits
in the input.

The second step of the FPRM computation is shown in Figure 2 computing the
DNF (Disjunctive Normal Form): x0∧x1∧x2ð Þ∨ x0∧x3ð Þ∨ x1∧x3ð Þ∨ x2∧x3ð Þð Þ where each
and-term (minterm) is computed in a different row. As with COUNTING-1 s, we
broadcast the input values along the columns in the first step. If pei,j is associated with

∧xi∧… in an and-term (minterm) and the input xi ¼¼ 1 then pei,j switches to a

connect mode selecting S2, alternatively on (xi ¼¼ 0) it switches to a disconnect mode
selecting S4. The opposite is performed if pei,j is associated with ∧xi∧… . A true signal

is sent from S> for every row, while each disconnected pei,j broadcasts a false signal

from its Er. The or-term of these and-terms is computed in another broadcast along
the last column. Obviously, the FPRM can be used to execute the O 1ð Þ RM algorithms
such as summing of n numbers, multiplication [6, 28], sorting, convex hull [2], graph

Figure 1.
The FPRM switches and a program to compute COUNTING-1 s using a 4� 4 FPRM.

3

Field Programmable Reconfigurable Mesh (FPRM)
DOI: http://dx.doi.org/10.5772/intechopen.107425

algorithms [9] and image processing [11]). However, here we consider the problem of
parallel evaluation of circuits with large depths for which no previous RM algorithm
exists. Preliminary results demonstrate the FPRM feasibility and that it is likely to
outperform FPGAs.

According to the proposed algorithm, boolean circuits C x0, … , xn�1ð Þ can be eval-
uated in a constant number of FPRM steps regardless of C‘s depth. During compila-
tion, we calculate the minimized DNF formula dnf y for every possible result of

COUNTING-1 s, which is y ¼ Pn�1
0 xi. An FPRM program is generated for each of the

DNFs (dnf y) using the algorithm described in Figure 2. Each of these DNFs (dnf y) is

compiled into an FPRM program working in a similar manner to the algorithm
described in Figure 2. At run-time, after performing COUNTING-1 s of the input, the
FPRM selects the DNF-program dnf y for y and executes it. Thus, in a constant number

of steps this algorithm computes C x0, … , xn�1ð Þ, using dymamic reconfiguration
(DR). By first applying COUNTING-1 s, we get that the size of the FPRM grid needed
to execute each of the dnf y¼0,… ,n�1 is less or equal to the size of the original

C x0, … , xn�1ð Þ. This is expected since each dnf y in C x0, … , xn�1ð Þ is restricted to the

case where y ¼
Pn�1

0 xi. Further, the and-terms of dnf y are packed in a 2D-FPRM

layout with multiple and-terms computed in a single row (unlike Figure 2, where
each and-term is computed separately).

The rest of the chapter is organized as follows. The following section describes
the use of COUNTING-1 s operation in order to reduce the formula size. The
next step describes the problem of fitting as many and-terms as possible into an
FPRM grid, which is one of the most challenging aspects of the technique. The
results of the experiments will be presented next, followed by a summary of the
conclusions.

2. Using the counting-1 s operation to reduce formula size

For every possible outcome of y ¼
P

0
∗ n� 1xi, the proposed algorithm starts by

obtaining the minimized DNF formula, dnf y. The input is divided into k segments

containing fracnk bits, and the number of 1-bits is counted for each segment. For each

of the n
k þ 1
� �k

possible COUNTING-1 s results y1,… ,yk yi ¼ 0… n
k

� �

, we compute a

minimized DNF dnf y1,… ,yk
by:

1.Building a truth table Ty1,… ,yk
of C x0, … , xn�1ð Þ for all the binary numbers

x0,… ,xn�1 with yi
010s in the i segment.

2.Our initial DNF is formed by the nonzero entries of Ty1,… ,yk
, which we simplify

using the Logic Friday Espresso package [29].

3.Using reduced DNF, dnf y, monochromatic rectangles M� V are created by

searching for all minterms in M, and variables in V in such a way that any
minterm in M contains all variables in V. We obtain a smaller version of dnf y by

replacing each variable in M by a new variable (which is the AND of all variables
in M). A separate step needs to be performed in order to compute the value of
the new variables corresponding to monochromatic rectangles.

4

Field-Programmable Gate Arrays

Consider the truth table T of the address-function of n ¼ 6 boolean variables given
in Figure 3.

F a, b, c, d, e, fð Þ ¼

c < a, b> ¼ 0, 0

d < a, b> ¼ 0, 1

e < a, b> ¼ 1, 0

f < a, b> ¼ 1, 1

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

T is arranged by COUNTING-1 s in < a,b,c> (y1 a, b, cð Þ∈ 0,1,2,3f g), and
COUNTING-1 s in < d,e,f > (y2 d, e, fð Þ∈ 0,1,2,3f g). Since the address function has a
very small formula to begin with

F a, b, c, d, e, fð Þ ¼ ca0b0 þ da0bþ eab0 þ fab

(where x0 is¬x), it is not expected that using COUNTING-1 s can significantly

reduce the size of the remaining circuits Cy1 a, b, cð Þ¼i,y2 d, e, fð Þ¼j a, b, c, d, e, fð Þ. Indeed,
the results in Figure 3 shows that the minimal boolean formula for

Cy1 a, b, cð Þ¼2,y2 d, e, fð Þ¼1 a, b, c, d, e, fð Þ is a0bcde0f 0 þ ab0cd0ef 0 þ abc0d0e0f which is even

larger than the original formula for the whole function ca0b0 þ da0bþ eab0 þ fab.
However, this happens only for four out of the sixteen possible cases of
y1 a, b, cð Þ ¼ i,y2 d, e, fð Þ ¼ j. In all the remaining 12 cases the boolean formula has one
or no variables.

Yet, COUNTING-1 s is very helpful for the multiplication function

F a, b, c, d, e, fð Þ ¼ 1 iff a � 2þ bð Þ � c � 2þ dð ÞÞ mod 4 ¼ e � 2þ fð Þ

The results depicted in Figure 4 shows that in all sixteen cases, the minimal

boolean formula for Cy1 a, b, cð Þ¼i,y2 d, e, fð Þ¼j a, b, c, d, e, fð Þ is very small.
Figure 5 depicts the largest dnf y for C ¼ STCON x0, … , x48ð Þ of a seven nodes

directed graph where the input is 7 � 7 adjacency matrix of the graph. In this case we

Figure 2.
Computing a DNF formula using a 4� 4 FPRM.

5

Field Programmable Reconfigurable Mesh (FPRM)
DOI: http://dx.doi.org/10.5772/intechopen.107425

selected k ¼
ffiffiffiffiffiffi

49
p

¼ 7, hence y ¼ < y1,… ,y7 > yi ¼ 0… 7. Out of all the COUNTING-
1 s cases for STCON x0, … , x48ð Þ, Figure 5 depicts the worst/largest dnf y obtained.

The dnf y of Figure 5 should be read as follows:

• stcon e n means STCON for graph of size n, while e is the number of entries in the
adjacency matrix of the graph.

• :i e is the number of variables denoted by e (a variable for every entry in the
adjacency matrix).

• :p mwherem denotes the number of rows where the function is evaluated to TRUE.

• The rows are composed of e variables a0,… ae�1, where �=1=0 denotes
don0t� care=ai=ai0 .

Figure 3.
Truth table of the address function arranged by COUNTING-1 s results.

Figure 4.
Truth table of the mult function arranged by COUNTING-1 s results.

6

Field-Programmable Gate Arrays

As shown in Figure 5, the dnf y contains only 16 minterms (and-terms), each

containing 10 variables (or negation of variables) omitting some all don0t� care col-
umns at the end of each row. To compare, we obtained the full circuit for
STCON x0, … , x48ð Þ using VIVADO-HLS on the following C-code:

#define SQM 7
for k ¼ 0; k< SQM; kþþð Þf
#pragma HLS unroll factor ¼ 7
for i ¼ 0; i< SQM; iþþð Þf
#pragm HLS unroll factor ¼ 7
for j ¼ 0; j< SQM; jþþð Þf
#pragma HLS unroll factor ¼ 7
if mat i½ � j½ �∥∥ mat i½ � k½ �&&ðð

mat k½ � j½ �ÞÞ mat i½ � j½ � ¼ 1; g
g

g
return mat 1½ � SQM� 1½ �ð Þ;

The synthesys results of the Verilog code obtained for the above code are:
clock� latency ¼ 6ns, #registers ¼ 591, #LUTs ¼ 742 and #MUXes ¼ 782. This is sig-
nificantly larger than dnf y of Figure 5which is a DNF with 143 gates and clock latency

of less than 1ns. The experiments show that using a fast pre-computation function of
the inputs (COUNTING-1 s) can significantly reduce the size of max y ∣dnf y∣ compare

to the size of the complete circuit.
The above dnf y could have been further simplified by replacing monochromatic

rectangles with new variables. As illustrated in the Figure 6, it is possible to simplify
the largest dnf y of a five node graph by replacing eight monochromatic rectangles

(left-side) with new variables. The result is a reduction from 94=14ð Þ=simeq6 to
49=14ð Þ=simeq3 in the average number of variables per minterm. As each rectangle is
evaluated at runtime, its subset of variables is logically ANDed. This can be achieved
with a sub-bus of the FPRM that allows a zero-xi to broadcast, on the value of 0.

3. Computing the FPRM layout of dnfy

Using the algorithm of Figure 2, we can evaluate the dnf ys on the FPRM in three

steps. Broadcasts representing the minterms of dnf y are used to evaluate the DNF. As a

Figure 5.
Resulting formula for worst COUNTING-1 s case of 7� 7 STCON.

7

Field Programmable Reconfigurable Mesh (FPRM)
DOI: http://dx.doi.org/10.5772/intechopen.107425

result, we can evaluate the DNF using the n� k grid of sub-FPRM, where n is the
number of rows (minterms), and k is the number of variables (14� 17 for the DNF
shown in Figure 6 right). There are two steps involved: broadcasting the values of
each xi over the columns in the sub-FPRM; and configuring each row as a single bus
and computing the logical AND on each row. We can, however, pack several
minterms/bus segments in one row, reducing the size of the FPRM sub-grid needed
for the computation. Our 2D layout of a dnf y can be optimized by swapping minterms

in each level and arranging the literals in each minterm (node).
Figure 7 illustrates the optimized (by hand) layout of the DNF of Figure 5 (called

LG), wherein the minterms are arranged in six levels, each containing 1–4 minterms.
Straight busses are used to broadcast the values of the literals in this layout. According

to Figure 7, this layout also includes the extra duplications of 0b0 and 0n0 required.
There is a significant improvement in the total area and max-switching length when
compared to the simple method of arranging all minterms in one column. The opti-
mized (by-hand) layout of Figure 7 is also better compared to that of Figure 5 when
used as an LG. In the following sections, we describe the details of the proposed
algorithm to find a minimized LG.

3.1 First stage: find the level arrangement of minterms in the final FPRM layout

1.We build an intersection graph G0 where each node corresponds to one minterm
and each edge corresponds to an intersection between two such minterms.
Figure 8 (left) illustrates this graph for the DNF of Figure 6. The edges are
labeled by the intersection size.

2.Next, we compute a maximal independent set (MIS) in G0 that also maximizes
the highest label edge in each of its nodes (as depicted in Figure 8). This MIS will
be used as the first level in the FPRM layout we seek to build. Note that all the
minterms in this MIS have no intersection in their variables, thus can be safely
mapped to the same level of the layout.

Figure 6.
Reducing the DNF size of a dnf y by pre-computing monochromatic rectangles.

8

Field-Programmable Gate Arrays

3.We remove the MIS from G0 creating G1 and as depicted in Figure 9. compute

the next MIS in G1 creating the next level in the FPRM layout. This process of
extracting MIS, forming the next level of minterms in the layout is repeated until
there are no more MISs. Figure 10 depicts the last step of this process.

3.2 Second stage: rearranging the minterms in each level

The position/index of each node/minterm in the final layout is computed as follows:

• Create a leveled graph LG whose nodes V level,index correspond to the minterms in
each column of the layout previously obtained.

Figure 7.
Optimized FPRM layout.

Figure 8.
The intersection graph G0 and extracting first MIS.

9

Field Programmable Reconfigurable Mesh (FPRM)
DOI: http://dx.doi.org/10.5772/intechopen.107425

Figure 9.
G2 and extracting the next level in the layout.

10

Field-Programmable Gate Arrays

Figure 11 depicts the resulting LG.

• Rearrange the minterms in each level of LG by: Finding a set of nodes (called
“mid-cut”), one from each level of LG, and a partition of the remaining nodes in
each level into a “left-part” and a “right-part” such that:

◦ The number of edges between the left-part and the right-part is minimal.

◦ The number of nodes in the left-part in each level is about the same as the
number of nodes in the right-part of that level.

Figure 12 depicts finding a mid-cut and the resulting partition to a left-part and

right-part. As can be seen, only one edge (the 0b0) crosses from the left-part to the
right-part in Figure 12. In the final FPRM layout, the mid-cut minterms will be
stacked one on top of the other. Recursively, the process is applied to the left-part and
the right-part until all nodes of LG are arranged in 2D.

Figure 10.
G5 and extracting the last level in the layout.

Figure 11.
The leveled graph (LG) of the MIS arrangment.

11

Field Programmable Reconfigurable Mesh (FPRM)
DOI: http://dx.doi.org/10.5772/intechopen.107425

3.3 Third stage: rearranging the order of literals in each minterm

1.For the current order of literals in each minterm, we expand the edges of the
current LG to show the duplication of each literal from one level to another. We
also add source-edges (arrows in Figure 13) depicting that the source of each
literal comes from the lowest level below the present 2D layout of the LG.
Figure 13 illustrates the resulting graph called the literals graph TG.

2.Crossing edges between minterms that are in the same index at their level are
eliminated by rearranging the literals inside one minterm.

3.Next we eliminate crossing edges by:

• Replacing one pair of crossing edges with a down-going source-edge.

• Reordering literals in the two minterms of the crossing edge. Crossing edges
between minterms with the same level-index are resolved by rearranging
the literals in those minterms.

The next edge selected to be replaced by a source edge is the one with the maximal
number of crossings. For example, in Figure 13 the first edge to be replaced by a

source edge is the edge connecting the left 0b0 in the first level to the right 0b0 in the
fourth level, as this edge cut acrosses seven edges. The process is repeated until there
are no crossing edges, as shown in Figure 14. Since source edges will be aligned
vertically later, crossing with source edges is not counted.

3.4 Fourth stage: completing the alignment

At this stage, the minterms in each level and the literals in each minterm have been
arranged so that no crossing edges exist. Aligning the literals such that all the edges
form straight vertical columns leads to the final FPRM layout:

Figure 12.
Rearanging the minterms in LG‘s levels via mid-cuts.

12

Field-Programmable Gate Arrays

1.We start by placing the bottom leftmost literal/source-edge at the bottom
leftmost corner of the FPRM layout. We align all the edges connected to the left
corner at a vertical “duplication” column (for duplicating literals, if needed).

2.Let vi be the nearest node to the last aligned duplication column. We align vi and
the literal/source edges connected to it, into an adjacent vertical duplication
column.

3.This is repeated until all edges are aligned into adjacent duplication columns.

Figure 15 illustrates the resulting layout with a total area of about 143, which
includes the area for broadcasting the duplicated literals (c,h,b,k,n,l).

Since the FPRMs constructed with literals as control entries into the tristate switches.

4. Realization and results

Tri-state switch is the natural candidate for the infrastructure logic realization of
the final FPRM layout, as other switching devices such as NMOS are not supported by

Figure 13.
Expanding current level graph LG to a literal graph TG.

Figure 14.
Final arrangement of literals in each minterm.

13

Field Programmable Reconfigurable Mesh (FPRM)
DOI: http://dx.doi.org/10.5772/intechopen.107425

ASIC synthesis tools. For control input of ‘1’, the output of the tri-state is exactly
identical to its input, but for control input of ‘0’ the output is high impedance
(disconnected or ‘z’).As a result, multiple tri-states can share the same output wires.

The DNF is simply a ∨n
i¼1mi, where mi represent a minterm mi ¼ ∧

∣mi∣
j¼1aj, and aj is a

literal. For each literal, a minterm can be represented conceptually by a list of
connected tri-states. The leftmost tri-state outputs ‘1’ or ‘z’ based on input of ‘1’ and
control from the literal. The next tri-state, produces the input according to the next

literal value in mi, thus performs the operation of ∧∣mi∣
j¼1aj. Since the output of each

minterm mi is ‘1’ or ‘z’, their output wires can be connected directly, performing
∨n
i¼1mi. Figure 16 illustrates the FPRM for the DNF of two minterms

M ¼ a1∧a2ð Þ∨ a2∧a3ð Þ, where the literal values are represented by thick vertical lines
(dark-gray for ‘1’ and light-gray for ‘0’). Each (potential) literal aj in a minterm mi

residing in row r consists of 6 tri-states and one encoder (depicted in the dashed line
rectangle). The cnr,j tri-state is connecting the literal value to minterm mi, providing

Figure 15.
Completing the alignment.

Figure 16.
Tri-state configuration of the FPRM.

14

Field-Programmable Gate Arrays

that aj appears in mi. Otherwise, cnr,j will pass the incoming signal to the next literal.
The output of cnr,j is the control of tlr,j, transferring the input from aj�1 or
disconnecting (producing ‘z’) given the value of aj. According to the encoder’s er,j
input, trr,j will pass/hold the current signal to ajþ1, or cir,j will start a new minterm
calculation, sending ‘1’ to the next literal on the right. Finally, the role of cor,j is to send
down the output of the current minterm, providing that it is the rightmost literal in
the current minterm. Note that the outputs of the minterms are connected together
since these are outputs of tri-states (‘1’ or ‘z’). The output of the DNF is indicated by
M on the right-bottom side.

Based on the description in [30], the FPRM implementation is compared to an
Island FPGA routing architecture. Figure 17 shows a variant that contains: A logic unit
with and/or-gate that is connected to a grid of 4� bits N vertical buses� 4�
bits N horizontal buses via two connection units. Any vertical-bus can be connected to
any horizontal-bus using a crossbar-like routing unit. Additionally, vertical/horizontal
busses can be disconnected, so that bends will not consume the entire bus.

All connections/disconnections and fuse operations are made by a back-to-back
pair of tri-state devices, allowing bi-directional signals. ASIC synthesis results
obtained with Synopsys Design compiler using a 160 nm cell library. As shown in
Table 1, the FPRM architecture is 4X faster and more efficient in both power and
area3 than the FPGA routing infrastructure. Based on the FPRM of Figure 16 and

Figure 17.
The FPGA routing architecture used for the experiments.

Size Area Power Clock latency

FPRM FPGA FPRM FPGA FPRM FPGA

16� 16 6156 uC 38,256 uC 66 uW 161 uW 6.98 ns 14.36 ns

12� 12 3463 uC 21,528 uC 52 uW 149 uW 4.75 ns 11.27 ns

8� 8 1221 uC 9579 uC 34 uW 148 uW 2.85 ns 8.18 ns

4� 4 333 uC 2411 uC 12 uW 80 uW 1.36 ns 5.09 ns

Table 1.
Synthesis results comparing the FPRM vs. the FPGA routing infrastructure.

15

Field Programmable Reconfigurable Mesh (FPRM)
DOI: http://dx.doi.org/10.5772/intechopen.107425

the assumption that the counting stage requires two cycles. When the expected
latency of the FPGA is added, we get about twice as fast performance from the
FPRM.

A chain of switches (tri-states) selects whether values should be passed on or not in
the circuit we designed. This idea will obviously work faster than a chain of and and or
gates as implemented in FPGA. The fact that there are no switches along the wire that
ends with M further accelerates the speed of receiving the output. This is triggered
when a value of 1 comes out from one of the minterms. Given that the tri-state
consumes power as an ordinary buffer, and the and=or operations (∨n

i¼1mintermi) are
implemented simply by merging the tri-states outputs, the power consumption is
likely to be a function of the number of tri-state buffers. On the other hand, the FPGA
needs to be powered for the and=or gates as well as the switching systems to connect
the logical blocks. Compared to a real FPGA, we have simplified our implementation,
but this can only reduce power. Conversely, the FPRM is general, assuming that any
Boolean Circuit can be represented as a DNF.

5. Conclusions

As part of the contribution of this work, we developed the algorithm to evaluate
boolean circuits on the RM; a method to compute an optimized FPRM layout; and a
method for realizing the FPRM as a tri-state circuit with comparable performance to
the conventional FPGA implementation. A tri-state (MOSFET transistor) acts as a
switching element in both the FPGA and FPRM. Passing a signal through a chain of k
switches (that is, a chain of k source-drain connected transistors) incurs a quadratic

delay of k2

2 r � c (where r is the resistance and c is the capacitance of each transistor). As
a result of the reconfiguration of the FPRM, a relatively long chain of transistors can
be created. Due to the short chains involved in the circuit evaluation problem
discussed here, the FPRM will be able to execute the circuit evaluation process fairly
quickly. In order to compare the FPRM with the FPGA/ASIC realization of
f x1, … , xnð Þ, a SPICE simulation of the FPRM can be carried out. This includes
selecting the most appropriate MOSFET transistor technology to minimize signal
propagation delays through the FPRM bus.

This research can be furthered by comparing the synthesized results with those
obtained from HLS (High Level Synthesis) of the f x0, … , xn�1ð Þ C-code. Analyzing
other functions that can be efficiently computed using the FPRM in O 1ð Þ. Finally, study
how the partitioning into segments affects the size of the resulting formulas, and build a
decision tree that computes f x0, … , xn�1ð Þ on the FPRM in an even smaller size.

Appendix

A. List of acronyms and abbreviations

• ASIC: Application Specific Integrated Circuit

• BC: Boolean Circuit

• CLU: Configurable Logic Unit

16

Field-Programmable Gate Arrays

• CMOS: Complementary Metal-Oxide Semiconductor

• DNF: Disjunction Normal Form

• DR: Dynamic Reconfiguration

• DRFPGA: Dynamic Reconfiguration FPGA

• FDR: Fine-Grain Dynamically Reconfigurable Architecture

• FPRM: Field Progammable Reconfigurable Mesh

• HLS: High Level Synthesis

• LE: Logic Elements

• LR-Mesh: Linear Reconfigurable Mesh

• LUT: Lookup Table

• MIS: Maximal Independence Set

• MOSFET: Metal-Oxide Semiconductor Field-Effect Transistor

• NMOS: N-type Metal-Oxide Semiconductor

• PE: Processing Elements

• PR: Partial Reconfiguration

• PRAM: Parallel Random Access Machine

• RM: Reconfigurable Mesh

• RMBM: Reconfigurable Multiple Bus Machine

• RRAM: Resistive Random Access Memory

• SRGA: Self Reconfigurable Gate Array

• STCON: st-connectivity

17

Field Programmable Reconfigurable Mesh (FPRM)
DOI: http://dx.doi.org/10.5772/intechopen.107425

Author details

Esti Stein1*† and Yosi Ben Asher2†

1 Department of Computer Science, The Academic College of Tel Aviv-Yaffo, Jaffa,
Israel

2 Department of Computer Science, Haifa University, Haifa, Israel

*Address all correspondence to: esterst@mta.ac.il

†These authors contributed equally.

© 2022TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms of
theCreative CommonsAttribution License (http://creativecommons.org/licenses/by/3.0),
which permits unrestricted use, distribution, and reproduction in anymedium, provided
the originalwork is properly cited.

18

Field-Programmable Gate Arrays

References

[1] Asher Y, B, Stein E. Evaluation of
circuits on the reconfigurable mesh. In:
2019 IEEE International Parallel and
Distributed Processing Symposium
Workshops (IPDPSW). Rio De Janeiro,
Brazil: IEEE; 2019. pp. 71-74

[2] Vaidyanathan R, Trahan J. Dynamic
Reconfiguration: Architectures and
Algorithms. US: Springer Science &
Business Media; 2004

[3]Matias Y and Schuster A. On the
Power of a 2-Band Reconfigurable
Network. Unpublished Manuscript. 1992

[4] Chen G, Wang B, Li H. Deriving
algorithms on reconfigurable networks
based on function decomposition.
Theoretical Computer Science. 1993;
120(2):215-227

[5]Nakano K, Wada K. Integer summing
algorithms on reconfigurable meshes.
Theoretical Computer Science. 1998;197:
57-77

[6] Jang J, Park H, Prasanna VK. An
optimal multiplication algorithm on
reconfigurable mesh. In: Proc. Symp. On
Parallel and Distributed Processing.
Beverly Hills, CA: IEEE; 1992. pp. 381-391

[7] Jang J, Prasanna VK. An optimal
sorting algorithm on reconfigurable
mesh. In: Proc. Inter. Parallel Processing
Symp. Beverly Hills, CA: IEEE; 1992.
pp. 130-137

[8] Elmesbahi M, KJ, Errami A,
Bouattane O. Theta(1) time parallel
algorithm for finding 2d convex hull on a
reconfigurable mesh computer
architecture. Global Journal of Computer
Science and Technology. 2021;21:1-9

[9] Trahan JL, Subbaraman CP,
Vaidyanathan R. List ranking and graph

algorithms on the reconfigurable
multiple machine. In: Proceedings
of International Conference on
Parallel Processing. NY: Syracuse
University, CRC Press; 1993. pp.
III–224-III–247

[10]Wang B-F, Chen G-H. Constant time
algorithms for the transitive closure and
some related graph problems on
processor arrays with reconfigurable bus
systems. IEEE Transactions on Parallel
and Distributed Systems. 1990;1(4):
500-507

[11]Miller R, Prasanna-Kumar VK,
Reisis DI, Stout QF. Image computations
on reconfigurable VLSI arrays. In:
Proceedings of the Conference on Vision
and Pattern Recognition. Ann Arbor, MI:
IEEE; 1988. pp. 925-930

[12] Trahan JL, Vaidyanathan R. Relative
scalability of the reconfigurable multiple
bus machine. In: Proc. Workshop
Reconfigurable Arch. And Algs.
Honolulu, HI: IEEE; 1996

[13] Sidhu R, Wadhwa S, Mei A,
Prasanna VK. A self-reconfigurable gate
array architecture. In: Field-
Programmable Logic and Applications:
The Roadmap to Reconfigurable
Computing. Berlin, Heidelberg:
Springer; 2000. pp. 106-120

[14]Hatem ME-B, Vaidyanathan R,
Trahan JL, Rai S. On the communication
capability of the self-reconfigurable gate
array architecture. IPDPS. 2002:500:
0152b. IEEE

[15]Hatem ME-B, Vaidyanathan R,
Trahan JL, Rai S. On designing
implementable algorithms for the linear
reconfigurable mesh. PDPTA. 2003:
241-246

19

Field Programmable Reconfigurable Mesh (FPRM)
DOI: http://dx.doi.org/10.5772/intechopen.107425

[16] Ben-Asher Y, Stein E,
Tartakovsky V. Fpga realization of the
reconfigurable mesh counting algorithm.
Journal of Circuits, Systems and
Computers. 2021;30(9):2150157

[17]Giefers H, Platzner M. Armlang: A
language and compiler for
programming reconfigurable mesh
many-cores. In: Parallel & Distributed
Processing, 2009. IPDPS 2009. IEEE
International Symposium. Rome, Italy:
IEEE; 2009. pp. 1-8

[18] Ben-Asher Y, Stein E,
Vaidyanathan R. Combining boolean
gates and branching programs in one
model can lead to faster circuits. In:
Parallel and Distributed Processing
Symposium Workshops (IPDPSW),
2017 IEEE International. Orlando, FL:
IEEE; 2017. pp. 184-191

[19]Giefers H, Platzner M. An Fpga-
Based Reconfigurable Mesh Many-Core.
IEEE Transactions on Computers. 2013;
63(12):2919-2932

[20]Hauck S, Fry TW, Hosler MM,
Kao JP. The chimaera reconfigurable
functional unit. IEEE Transactions on
Very Large Scale Integration (VLSI)
Systems. 2004;12(2):206-217

[21] Xilinx. Logicore Ip Xps Hwicap.
Report DS586. San Jose, CA: Xilinx; 2010

[22] Intel Corporation. Intel® Quartus®
Prime Pro Edition User Guide: Partial
Reconfiguration. San Jose, CA: Intel; 2022

[23] Babu P, Parthasarathy E.
Reconfigurable fpga architectures: A
survey and applications. Journal of The
Institution of Engineers (India): Series B.
2021;102(1):143-156

[24]Khan MA, Miyamoto N, Pantonial R,
Kotani K, Sugawa S, Ohmi T. Improving
multi-context execution speed on

drfpgas. In: Solid-State Circuits
Conference, 2006. ASSCC 2006. IEEE
Asian. San Francisco, CA: IEEE; 2006.
pp. 275-278

[25] Cong J, Xiao B. A novel fpga
architecture with memristor-based
reconfiguration. In: Nanoscale
Architectures (NANOARCH), 2011
IEEE/ACM International Symposium.
San Diego, CA: IEEE; 2011. pp. 1-8

[26] Cong J, Xiao B. Fpga-rpi: A novel
fpga architecture with rram-based
programmable interconnects. IEEE
Trans. VLSI Syst. 2014;22(4):864-877

[27] Lin T-J, Zhang W, Jha NK. A fine-
grain dynamically reconfigurable
architecture aimed at reducing the fpga-
asic gaps. IEEE Transactions on Very
Large Scale Integration (VLSI) Systems.
2014;22(12):2607-2620

[28] Ben-Asher Y, Stein E. Adaptive
booth algorithm for three-integers
multiplication for reconfigurable mesh.
Journal of Interconnection Networks.
2016;16(1):1-25

[29] Rudell R, Sangiovanni-Vincentelli A.
Espresso-mv: Algorithms for multiple-
valued logic minimization. Proc. IEEE
Custom Integrated Circuits Conf. 1985:
230-234

[30] Xilinx. The Programmable Logic
Data Book. 2000. Available from: http://
www.xilinx.com/index.shtml.

20

Field-Programmable Gate Arrays

