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Abstract

This work intends to analyze the dynamics of the most aggressive form of brain tumor, glioblas-
tomas, by following a fractional calculus approach. In describing memory preserving models, the
non-local fractional derivatives not only deliver enhanced results but also acknowledge new av-
enues to be further explored. We suggest a mathematical model of fractional-order Burgess equa-
tion for new research perspectives of gliomas, which shall be interesting for biomedical and math-
ematical researchers. We replace the classical derivative with a non-integer derivative and attempt
to retrieve the classical solution as a particular case. The prime motive is to acquire both analyti-
cal and numerical solutions to the posed problem. At first, we employ the transform method, and
then the Adomian decomposition method to obtain the solutions that shall be useful to provide
information about the effect of medical care in the annihilation of gliomas. Finally, we discuss the
applicability of this model with numerical simulations and graphical representations.

Keywords: Fractional derivative; Modeling; Glioblastoma; Burgess equation; Laplace and
Fourier transform; Adomian decomposition method
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1. Introduction

Bio-mathematical modeling is an interdisciplinary research area that acknowledges modernistic
approaches to explain the behavioral dynamics of complex biological systems. It offers a broad
analytical and quantitative understanding to both biologists and mathematicians. One of the ex-
tensively analyzed problems in this direction is understanding the pattern of tumor growth models
described by integer-order differential equations. In the literature, some of the work in this direc-
tion include mathematical modeling of virtual and real brain tumors discussed by Swanson et al.
(2003), diffusive tumors by Cruywagen et al. (2003), a spherically symmetric tumor growth model
given by Ali et al. (2014), the response of cancer under immunological activity presented in Vladar
and Gonjalez (2004) and Ghanbari et al. (2020), symmetry methods for a mathematical model of
brain tumor by Moyo and Leach (2004), numerical analysis of reaction-diffusion epidemic model
given by Ahmed et al. (2020), etc.

Established with the idea of arbitrary order derivatives, the research area of fractional calculus ex-
plored the possibility to explain the bio-mathematical systems depending upon historical data. The
non-local property of fractional-order derivatives motivates researchers to analyze and enhance the
existing tumor growth models in the sense of fractional calculus. For the existing literature, pre-
liminaries and physical interpretations of fractional calculus, we advise the readers to the papers
by Kilbas et al. (2006), Podlubny (1999), and Samko et al. (1993). Many of the fascinating prob-
lems related to this area include fractional optimal control problems discussed by Singha (2020)
and Lotfi et al. (2011), a fuzzy Atangana-Baleanu fractional hybrid system given by Hasan et al.
(2021), fractional variational problems presented in Singha and Nahak (2019) and Pooseh et al.
(2013), fractional telegraph equation by Kumar (2014), numerical computations of coupled frac-
tional resonant Schrödinger equations by Al-Smadi et al. (2020), fractionally convex functions
introduced by Singha and Nahak (2020).

To construct a mathematical model of a biological system, fractional-order derivatives can be uti-
lized efficiently which investigates the memory-preserving data more accurately. A detailed study
of such models shall result in a better understanding of highly complex dynamics of tumor cells,
and deliver analytical as well as approximate solutions. In this direction of research, one may com-
prehend the fractional-order model of malaria discussed by Pinto and Machado (2013), dengue
fever given by Diethelm (2013), HIV model presented by Huo et al. (2015), the fractional epi-
demic model by Arqub and El-Ajou (2013), solving the population growth model by Hasan et al.
(2020) and Al-Khaled (2005), fractional-order multiple chaotic FitzHugh-Nagumo neurons model
by Momani et al. (2014), and evolution equation given by Doungmo et al. (2020), etc.

We investigate a mathematical model describing the growth of glioma cells at any time ‘t’, with
a fractional diffusion equation. The underlying motive is to explore the fractional-order Burgess
equation for analytical and numerical solutions. The introductory part deals with the existing results
and motivation for the proposed work. Section 2 details the formulation of the fractional-order
burgess equation, followed by an analytical solution scheme with the aid of transform technique,
and an approximate solution scheme with the Adomian decomposition method in Section 3. In
Section 4, numerical simulations are executed to interpret the efficiency of the proposed system.

2

Applications and Applied Mathematics: An International Journal (AAM), Vol. 17 [2022], Iss. 2, Art. 13

https://digitalcommons.pvamu.edu/aam/vol17/iss2/13



AAM: Intern. J., Vol. 17, Issue 2 (December 2022) 525

2. The Fractional-Order Burgess Equation: A Mathematical Model of
Brain Tumour Growth

In this section, we formulate a tumor growth model by introducing a fractional-order derivative
in the characterization of Burgess equation. The Burgess equation illustrates the growth of tumors
using the invasive diffusive properties of cancer cells discussed by Murray (2012), to be referred
as the classical Burgess equation. Here, the medium of expansion of tumor cells is assumed to be
isotropic and uniform, and these cells are supposed to possess spherical symmetry. Let N0 denote
the density of cancer cells at diagnostic time t0 and at location r0, that is, η(r0, t0) = N0. With the
initial condition η(r0, t0) = N0, the classical Burgess equation represents a mathematical model
for the growth of glioma cells.

The proliferation rate of tumor in the above mentioned problem has already been investigated by
Tracqui et al. (1995) to study the effects of Chemotherapy, and Murray (2012) has obtained its
solution in the absence of medical treatment. Using the solutions obtained, the authors have also
discussed the expected survival time of a patient and the growth of untreated glioma.

Fractional-Order Burgess Equation The main aim is to analyze the Burgess equation with the
assistance of Caputo non-integer order derivatives, denoted by c

0D
α
τ . By assuming τ = 2Dt,

U(r, τ) = rη(r, t), ω = (p(t)− k(t)) η(r, t), the classical Burgess equation can be rewritten as

∂U

∂τ
=

1

2

∂2U

∂r2
+ ω.

Thus, the fractional-order Burgess equation can be described as

(P∗) : c
0D

α
τ U(r, τ) =

1

2

∂2U(r, τ)

∂r2
+ ω(r, τ); α ∈ (0, 1),

U(r0, t0) = r0 η(r0, t0) = r0 ·N0.

Here,

• η(r, t) → denotes the tumour cell concentration at a location r and time t.
• D → is the diffusion coefficient.
• p → represents the reproduction rate of glioblastoma cells.
• k → is the killing rate of glioblastoma cells varying with time t.

Note that the above problem (P∗) includes a time-fractional diffusion equation. The integer-order
derivatives are local and thus don’t possess memory and hereditary properties. However, the be-
havior of most of the biological models exhibits memory effects. Thus, practicing the fractional-
order derivatives in place of ordinary derivatives is an effective way to incorporate memory ef-
fects in such models. Previously, significant consideration has already been given to the nu-
merical solutions of fractional diffusion equations in Murray (2012); Swanson et al. (2000);
Murray (2003). Next, we shall discuss the analytical and approximate solutions to the fractional-
order tumor growth model (P∗).
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3. Solutions to the Fractional-Order Burgess Equation

In this section, we focus on finding the analytic and numerical solutions to the posed problem of
cerebral tumor (glioblastoma) growth under medical care.

3.1. Closed form of the solution

Here, we apply the Laplace and Fourier transforms to obtain the solution to the problem (P∗). The
advantage of using transform technique is that the analytical solution can be retrieved that shall be
useful to explain any dynamical process. For various analytical and numerical solution techniques,
we refer the reader to the work presented in the papersAl-Smadi and Arqub (2019), Momani et al.
(2016), and Al-Smadi et al. (2016).

Let us consider the fractional-order Burgess equation

c
0D

α
τ U(r, τ) =

1

2

∂2U(r, τ)

∂r2
+ ω(r, τ), α ∈ (0, 1). (1)

After applying the Laplace transform with respect to the variable τ , we get

sα Ū(r, s)− sα−1U(r, 0) =
1

2

∂2

∂r2
Ū(r, s) + ω̄(r, s), (2)

where s is the Laplace transform parameter. Note that, Ū(r, s) and ω̄(r, s) denote the Laplace
transform (with respect to τ ) of U(r, τ) and ω(r, τ), respectively. By assuming U(r, 0) = ϕ(r),
which can be accessed from the initial condition in (P∗), we rewrite the above equation as

sα Ū(r, s)− sα−1ϕ(r) =
1

2

∂2

∂r2
Ū(r, s) + ω̄(r, s).

Next, apply the Fourier transform with respect to the variable r, that is

sα ˜̄U(k, s)− sα−1ϕ̃(k) =
1

2
(−ik)2 ˜̄U(k, s) + ˜̄ω(k, s), (3)

where k is the Fourier transform parameter. Also, ˜̄U(k, s), ˜̄ω(k, s) and ϕ̃(k) denote the Fourier
transform (with respect to r) of Ū(r, s), ω̄(r, s) and ϕ(r), respectively. On simplifying the above
equation for ˜̄U(k, s), we arrive at

˜̄U(k, s) =
sα−1ϕ̃(k)

sα + 1
2
k2

+
˜̄ω(k, s)

sα + 1
2
k2

. (4)

After applying the inverse Fourier transform, we write

Ū(r, s) =
1

2π

∫ ∞

−∞

sα−1 ϕ̃(k)

sα + 1
2
k2

e−ikr dk +
1

2π

∫ ∞

−∞
˜̄ω(k, s) e−ikr dk. (5)

4
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On applying the inverse Laplace transform, we finally arrive at

U(r, τ) =
1

2π

∫ ∞

−∞
Eα,1

(
−1

2
k2τα

)
ϕ̃(k)e−ikrdk

+
1

2π

∫ ∞

−∞
e−ikrdk × 1

2π

∫ γ+i∞

γ−i∞

˜̄ω(k, s)

sα + 1
2
k2

esτ ds, (6)

where γ is a fixed real number. Finally, U(r, τ) in Equation (6) represents the required analytic
solution for the problem (P∗).

3.2. Approximate Solutions to the Fractional-Order Burgess Equation

A fractional-order mathematical model of tumor cells exhibits a highly complex solution, one may
look at Equation (6), which creates the necessity to obtain the approximate solutions. One may
note that the transform method gives the analytical solution to the posed problem. To acquire the
numerical solutions of (P∗) in series form, we implement the Adomian decomposition method
(ADM) introduced by Adomian (1990). ADM and its convergence have been previously discussed
by many researchers like Adomian and Sarafyan (1981) and Singha and Nahak (2016), to obtain
the numerical solutions of differential equations arising in various problems of science and engi-
neering.

We denote the operators L1 ≡ c
0D

α
τ , L2 ≡ ∂2

∂r2
, and N by the nonlinear part of U . Thus, the

fractional-order Burgess equation in the suggested problem (P∗) can be rewritten as

L1U(r, τ) =
1

2
L2U(r, τ) +N(U(r, τ)),

or, U(r, τ) = U(r, 0) +
1

2
L−1
1 L2U(r, τ) + L−1

1 N(U(r, τ)), (7)

where L−1
1 ≡ 0I

α
τ denotes the Riemann-Liouville fractional integration of order α.

By practicing the ADM, we write the series form of U(r, τ) as

U(r, τ) =
∞∑
n=0

Un(r, τ), (8)

and the nonlinear term is given by

NU(r, τ) =
∞∑
n=0

An(U0, U1, ..., Un), (9)

where {An}∞n=0 is the sequence of Adomian polynomials. For the insights of the ADM, we advise
the reader to the work presented by Adomian and Sarafyan (1981) and Adomian (1994). Using
Eqs. (8), (9) into the Equation (7), we get

∞∑
n=0

Un(r, τ) = U(r, 0) +
1

2
L−1
1 L2

∞∑
n=0

Un(r, τ) + L−1
1

∞∑
n=0

An(U0, U1, ..., Un),

where U(r, 0) can be obtained from the initial condition in problem (P∗).

5
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Thus, we arrive at the following recurrence relation

U0(r, τ) = U(r, 0), (10)

Un+1(r, τ) =
1

2
L−1
1 L2(Un) + L−1

1 An, n = 0, 1, 2, ... (11)

Now we can establish a series of approximate solutions of the fractional-order Burgess equation as

U(r, τ) ≈
k∑

n=0

Un(r, τ), where limk→∞

k∑
n=0

Un(r, τ) = U(r, τ).

The ADM provides the numerical solution, in the form of nth-order approximation by series, of
the problem with less computational work. To make the procedure evident, we shall now discuss
some examples in the next section.

4. Numerical Simulation

Example 4.1.

Let us consider the fractional-order differential equation

c
0D

α
τ U(r, τ) =

1

2

∂2U

∂r2
+ ω(r, τ), α ∈ (0, 1), (12)

with U(r, 0) = ln(r + 2), (13)

where the nonlinear source is given by N(U) ≡ ω(r, τ) = e−U + 1
2
e−2U . We may note that, for

α = 1, the above problem (12)-(13) reduces to a classical model of gliomas under some medical
treatment discussed by González-Gaxiola and Bernal-Jaquez (2017).

By implementing the approximation scheme (10)-(11) explained in the last section, we write

U0(r, τ) = U(r, 0), (14)

Un+1(r, τ) =
1

2
L−1
1 L2(Un) + L−1

1 An, n = 0, 1, 2, ... (15)

where L−1
1 ≡ 0I

α
τ and L2 ≡ ∂2

∂r2
. Clearly,

U0 = ln(r + 2), (16)

A0 = N(U0) = e−U0 +
1

2
e−2U , (17)

We first compute

U1 =
1

2
L−1
1 L2(U0) + L−1

1 A0

=
1

2
0I

α
τ

∂2

∂r2
(U0) + 0I

α
τ A0

=
1

(r + 2)

τα

Γ(α + 1)
. (18)

6
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We first find the value of Adomian polynomial A1(U0, U1) as

A1(U0, U1) = −U1 e
−U0 − U1 e

−2U0

= −
(

1

(r + 2)2
+

1

(r + 2)3

)
τα

Γ(α + 1)
, (19)

and thus the value of U2 is then given by

U2 =
1

2
L−1
1 L2(U1) + L−1

1 A1

=
1

2
0I

α
τ

∂2

∂r2
(U1) + 0I

α
τ A1

= − 1

(r + 2)2
τ 2α

Γ(2α + 1)
. (20)

Similarly, we obtain the values of A2 and U3 as

A2(U0, U1, U2) =
U2
1

2

(
e−U0 + 2e−2U0

)
+ U2

(
−e−U0 − e−2U0

)
=

(
1

(r + 2)3
+

2

(r + 2)4

)
τ 2α

2(Γ(α + 1))2

+

(
1

(r + 2)3
+

1

(r + 2)4

)
τ 2α

Γ(2α + 1)
, (21)

and

U3 =
1

2
L−1
1 L2(U2) + L−1

1 A2

=
1

2
0I

α
τ

∂2

∂r2
(U2) + 0I

α
τ A2

=

[
1

(r + 2)3
+

Γ(2α + 1)

2(Γ(α + 1))2(r + 2)3

+
Γ(2α + 1)

(Γ(α + 1))2(r + 2)4
− 2

(r + 2)4

]
τ 3α

Γ(3α + 1)
. (22)

Lastly, the third order approximation of U is given by

U(r, τ) ≈
3∑

n=0

Un(r, τ)

= U0(r, τ) + U1(r, τ) + U2(r, τ) + U3(r, τ)

= ln(r + 2) +
1

(r + 2)

τα

Γ(α + 1)
− 1

(r + 2)2
τ 2α

Γ(2α + 1)

+

[
1

(r + 2)3
+

Γ(2α + 1)

2(Γ(α + 1))2(r + 2)3

+
Γ(2α + 1)

(Γ(α + 1))2(r + 2)4
− 2

(r + 2)4

]
τ 3α

Γ(3α + 1)
. (23)

In order to reduce complexities and to make the present mechanism clear, we have obtained the
third-order approximation to the solutions of the present problem (12)-(13). One may also use any
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mathematical software to deduce higher-order approximations. At this point, we would also like to
mention that

U1

∣∣
α=1

=
τ

(r + 2)
, U2

∣∣
α=1

= − τ 2

2(r + 2)2
,

U3

∣∣
α=1

=
τ 3

3(r + 2)3
, U4

∣∣
α=1

= − τ 4

4(r + 2)4
, ...

and Un

∣∣
α=1

= (−1)n+1 τn

n(r + 2)n
.

Finally, for α = 1, the nth-order approximation of U can also be deduced as

U(r, τ)
∣∣
α=1

≈
∞∑
n=0

Un(r, τ)
∣∣
α=1

=
∞∑
n=0

(−1)n+1 τn

n(r + 2)n

= ln(r + τ + 2), (24)

which meets the exact solution to the classical Burgess equation given by González-Gaxiola and
Bernal-Jaquez (2017). We have also provided the 3D graphical representations to the profile of the
concentration of glioblastoma cells in Figures 1-4, for various values of α ∈ (0, 1).

Figure 1. U |α=0.1, (r, τ) ∈ (0, 1]× (0, 1] Figure 2. U |α=0.5, (r, τ) ∈ (0, 1]× (0, 1]

Figure 3. U |α=0.9, (r, τ) ∈ (0, 1]× (0, 1] Figure 4. U |α=1, (r, τ) ∈ (0, 1]× (0, 1]
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Example 4.2.

For α ∈ (0, 1), let us consider the αth-order model for the growth of glioblastoma cells described
as

c
0D

α
τ U(r, τ) =

1

2

∂2U

∂r2
+

1

2
U(r, τ), (25)

with U(r, 0) = er. (26)

Equation (26) yields the initial profile of tumor growth as a priori assumption u(r, 0) = er. That
is, at the time of diagnosis, the glioma cells are expanding exponentially. We shall now extract the
solution to the problem (25)-(26) by the approximation scheme (10)-(11), and in similar steps, as
explained in the previous example. Here, N(U) = 1

2
U and A0 = N(U0) =

er

2
.

We first compute

U1 =
1

2
L−1
1 L2(U0) + L−1

1 A0

=
1

2
0I

α
τ

∂2

∂r2
(er) + 0I

α
τ

er

2

= er
τα

Γ(α + 1)
. (27)

Again, A1 = N ′(U0)U1 =
er τα

2Γ(α+1)
and

U2 =
1

2
L−1
1 L2(U1) + L−1

1 A1

=
1

2
0I

α
τ

∂2

∂r2

[
er

τα

Γ(α + 1)

]
+ 0I

α
τ

[
er τα

2 Γ(α + 1)

]
= er

τ 2α

Γ(2α + 1)
. (28)

Also, A2 =
er τ2α

2Γ(2α+1)
and

U3 =
1

2
L−1
1 L2(U2) + L−1

1 A2

=
1

2
0I

α
τ

∂2

∂r2

[
er

τ 2α

Γ(2α + 1)

]
+ 0I

α
τ

[
er τ 2α

2Γ(2α + 1)

]
= er

τ 3α

Γ(3α + 1)
. (29)

Repeating the same process, we arrive at

Un(r, τ) = er
τnα

Γ(nα + 1)
.

9
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At last, the nth-order approximation of U(r, τ) is given by

U(r, τ) ≈
∞∑
n=0

Un(r, τ)

=
∞∑
n=0

er
τnα

Γ(nα + 1)

= er Eα(t
α). (30)

The solution U(r, τ) to the problem (25)-(26) delivers the density of cancer cells at every point
(r, τ). For α = 1, U(r, τ) = er+t represents the solution of the corresponding classical model of
tumor growth. In the Figures 5-8, we have provided the 3D plot of U(r, τ) for distinct values of α
that signifies the exponential growth of tumor cells.

Figure 5. U |α=0.1 = er E0.1(t
0.1) Figure 6. U |α=0.5 = er E0.5(t

0.5)

Figure 7. U |α=0.9 = er E0.9(t
0.9) Figure 8. U(r, τ)|α=1 = er+t

5. Conclusions

We have discussed a fractional-order model of Burgess equation outlining the growth of brain tu-
mor, glioblastoma, with a non-linear source depicting the effect of medical treatment. The obtained
results present the consequence of using fractional derivatives on the amount of growth of glioma
cells. In addition, we have deduced the analytic and approximation scheme to find the numerical
solutions of the suggested model. Firstly, the closed-form of the solution has been obtained by
employing Laplace and Fourier Transforms. Next, the numerical technique is executed in an orga-
nized manner to explain the concentration of glioma cells and visualizes the growth of tumor cells
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with the assistance of 3D plots. The suggested model could also be used for comparing the growth
in tumor cell radius with the effect of medical treatment (chemotherapy or radiotherapy), that is a
prospective research work of the author.
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