
Applications and Applied Mathematics: An International Applications and Applied Mathematics: An International 

Journal (AAM) Journal (AAM) 

Volume 17 Issue 2 Article 12 

12-2022 

(R1964) Solving Multi-Objective Linear Fractional Programming (R1964) Solving Multi-Objective Linear Fractional Programming 

Problems via Zero-Sum Game Problems via Zero-Sum Game 

Gizem Temelcan 
Beykoz University 

Inci Albayrak 
Yildiz Technical University 

Mustafa Sivri 
Yildiz Technical University 

Follow this and additional works at: https://digitalcommons.pvamu.edu/aam 

 Part of the Applied Mathematics Commons 

Recommended Citation Recommended Citation 
Temelcan, Gizem; Albayrak, Inci; and Sivri, Mustafa (2022). (R1964) Solving Multi-Objective Linear 
Fractional Programming Problems via Zero-Sum Game, Applications and Applied Mathematics: An 
International Journal (AAM), Vol. 17, Iss. 2, Article 12. 
Available at: https://digitalcommons.pvamu.edu/aam/vol17/iss2/12 

This Article is brought to you for free and open access by Digital Commons @PVAMU. It has been accepted for 
inclusion in Applications and Applied Mathematics: An International Journal (AAM) by an authorized editor of 
Digital Commons @PVAMU. For more information, please contact hvkoshy@pvamu.edu. 

https://digitalcommons.pvamu.edu/aam
https://digitalcommons.pvamu.edu/aam
https://digitalcommons.pvamu.edu/aam/vol17
https://digitalcommons.pvamu.edu/aam/vol17/iss2
https://digitalcommons.pvamu.edu/aam/vol17/iss2/12
https://digitalcommons.pvamu.edu/aam?utm_source=digitalcommons.pvamu.edu%2Faam%2Fvol17%2Fiss2%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/115?utm_source=digitalcommons.pvamu.edu%2Faam%2Fvol17%2Fiss2%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.pvamu.edu/aam/vol17/iss2/12?utm_source=digitalcommons.pvamu.edu%2Faam%2Fvol17%2Fiss2%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:hvkoshy@pvamu.edu


Available at
http://pvamu.edu/aam

Appl. Appl. Math.

ISSN: 1932-9466

Applications and Applied

Mathematics:

An International Journal

(AAM)

Vol. 17, Issue 2 (December 2022), pp. 508 – 522

Solving Multi-Objective Linear Fractional Programming Problems
via Zero-Sum Game

1 ∗Gizem Temelcan, 2Inci Albayrak, and 3Mustafa Sivri

1Department of Computer Engineering
Faculty of Engineering and Architecture

Beykoz University
34810 Beykoz

Istanbul, Turkey
1gizemtemelcan@beykoz.edu.tr

2, 3Department of Mathematical Engineering
Faculty of Chemical and Metallurgical

Engineering
Yildiz Technical University

34210 Esenler
Istanbul, Turkey

2ibayrak@yildiz.edu.tr; 3msivri@yildiz.edu.tr

∗Corresponding author

Received: February 8, 2022; Accepted: June 23, 2022

Abstract

This study presents a hybrid algorithm consisting of game theory and the first order Taylor series
approach to find compromise solutions to multi-objective linear fractional programming (MOLFP)
problems. The proposed algorithm consists of three phases including different techniques: in the
first phase, the optimal solution to each LFP problem is found using the simplex method; in the
second phase, a zero-sum game is solved to determine the weights of the objective functions via the
ratio matrix obtained from a payoff matrix; in the last phase, fractional objective functions of the
MOLFP problem are linearized using the 1st order Taylor series. A compromise solution is found
by solving the single-objective LP problem constructed in the third phase by using the weights.
This algorithm can provide compromise solutions to the problem by constructing different ratio
matrices in the second phase. The novelty of this study is that the decision-makers can choose the
most suitable solution for their strategy among the compromise solutions. Numerical examples are
provided to illustrate the efficiency of the algorithm.

Keywords: Linear fractional programming; Multi-objective problem; Game theory; Taylor se-
ries
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1. Introduction

Fractional programming is used for modeling real-life problems such as industrial planning, pro-
duction planning, financial and corporate planning, healthcare, and hospital planning.

In recent years, several solution techniques and methods are proposed for solving the MOLFP
problems in the literature. Chakraborty and Gupta (2002) explored a solution procedure for finding
an efficient solution to the MOLFP problems based on a fuzzy set theoric approach and reduced
the complexity of solving the considered problems. Costa (2005) developed an interactive method
for computing the preferred non-dominated solution in MOLFP problems using some branch and
bound techniques. The aim of the computation phase of the algorithm is to optimize one of the
fractional objective functions while constraining the others. Guzel and Sivri (2005) presented a
method via goal programming for finding an efficient solution to the MOLFP problems. Wu (2009)
focused on a solution procedure for implementing the weighted max-ordering approach to obtain
a weakly efficient solution to a MOLFP problem. The proposed approach needs a solution to a
min-max auxiliary problem and thus he used the Taylor series method to linearize the auxiliary
problem for computing efficiently.

Lotfi et al. (2010) proposed an LP approach to test the strongly and weakly efficient solutions
in the MOLFP problems by applying a simple geometrical interpretation. Dangwal et al. (2012)
used Taylor polynomial series approach to find a solution for the MOLFP problems via the vague
set. Dheyab (2012) proposed a complementary method where the LFP problem is transformed
into an LP problem by maximizing and minimizing the numerator and denominator, respectively,
of the fractional objective function being maximized. Stanojević and Stanojević (2013) presented
two procedures using the efficiency test introduced in the study of Lotfi et al. (2010) for generat-
ing strongly and weakly efficient solutions in MOLFP problems starting from any feasible solu-
tion. Sulaiman and Abdulrahim (2013) presented a number of transformation techniques from the
MOLFP problem to the single-objective LFP problem by using average mean and average median
values of objective functions to find the optimal solution and solved the problem by the modified
simplex method. Jain (2014) presented a method using the Gauss elimination technique to derive a
numerical solution of the MOLFP problem by extending his previous study proposed for finding a
solution to the MOLP problem. Porchelvi et al. (2014) presented an algorithm for solving MOLFP
problems for both crisp and fuzzy cases using the complementary method proposed in the study
of Dheyab (2012). In the algorithm, any objective function of the MOLP problem is optimized
subject to the original constraints and the additional constraints, which are the remaining objective
functions. Tantawy (2014) proposed a feasible direction method only applicable only for a special
class of MOLFP problems to find all efficient solutions.

De and Deb (2015) used the Taylor series approach to solve MOLFP problems in the fuzzy environ-
ment. Taylor series approach is used to transform the MOLFP problems into the MOLP problems
by introducing imprecise aspiration levels to each objective, and the additive weighted method is
used to find the solution. Hossein-Abadi and Payan (2016) proposed a linearization procedure to
present an interactive method for solving an MOLFPP which includes a simple calculation process.
The final solution is intended to meet the judgments of the decision-maker by interacting with one.
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Pramy and Islam (2017) proposed a method, modifying the studies of Dheyab (2012) and Porchelvi
et al. (2014), presenting multiple efficient solutions by solving the MOLFP problems. The method
provides the decision-makers flexibility to choose a better option among alternatives. Perić et al.
(2017) presented a solution method to the MOLFP problems via the goal programming method
by analyzing the applicability of linearization techniques, which are Taylor’s polynomial lineariza-
tion approximation, the method of variable change, and a modification of the method of variable
change. Nahar and Alim (2017) suggested a statistical average approach where a single-objective
function is developed from multi-objective functions to optimize the objective function, compared
the proposed technique with some other techniques, such as arithmetic averaging and geometric
averaging, and showed the effectiveness of the approach. Bhati et al. (2017) presented a review of
the MOFP problems excluding various technical parts of fractional programming. In the review, the
MOFP problems are classified into two classes: general MOFP problems and MOLFP problems.
Then, these classes were subclassified based on the basis of the proposed algorithm and optimality
criteria.

In this paper, a hybrid algorithm is proposed to find compromise solutions to the MOLFP problems
by using the game theory and the 1st order Taylor series approach. The algorithm contains three
different techniques in the phases. In the first phase, the optimal solution to each LFP problem is
found by applying the simplex method. In the second phase, the weights of objective functions
are determined by solving a zero-sum game. In the last phase, linearized objective functions of
the MOLFP problem are determined by using the Taylor series, a single-objective LP problem
is constructed via the weights obtained, and a compromise solution is found by solving this LP
problem. The proposed algorithm provides compromise solutions by constructing different ratio
matrices in the second phase. As a result, the novelty of the study is that the decision-makers can
choose a better option among solutions according to their satisfaction level.

The rest of the paper is organized as follows. In Section 2, the proposed algorithm is given in steps,
and numerical examples are illustrated in Section 3. Finally, Section 4 presents the conclusion and
contribution of the paper.

2. Proposed algorithm

Consider A MOLFP problem introduced by Kornbluth and Steuer (1981):

Optimize (z1(x), ..., zk(x)) =
zkN(x)

zkD(x)
=

CkNx

CkDx
, (1a)

subject to

gi(x) ≤ bi, i = 1, ...,m, (1b)

where k = (1, 2, ..., l) is the number of objective functions; x = (x1, ..., xn) is a vector of decision
variables; gi(x) (i = 1, ...,m) are constraints; bi are right-hand side of the constraints. zkN(x) and
zkD(x) are nominators and denominators, respectively, of each fractional objective function (1a).
Also, CkN is a vector of costs in the nominator, and CkD is a vector of costs in the denominator of
the objective functions.
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In this section, the proposed algorithm is introduced in three phases.

First phase: This phase is itemized for solving the MOLFP problem (1). The following steps will
be iterated for each objective function. In other words, here the steps are presented for a single
objective function (k = 1) and will be carried out for each objective function.

Step 1: Rewrite the constraints (1b) in the standard form.
Step 2: Separate the objective function into two parts relative to the nature of the optimization:

– If z1(x) is maximized, then max z1N(x) and min z1D(x).
– If z1(x) is minimized, then min z1N(x) and max z1D(x).

Step 3: Construct the initial simplex table and start the iteration for t = 0.
Step 4: Determine reduced costs for the objective functions constructed in Step 2. Here, reduced

costs of zt1N and zt1D are presented as (c1Nj − z1Nj) and (c1Dj − z1Dj) (j = 1, ..., n), respectively.
Step 5 Find the original objective function value zt1 by substituting the basic variables into z1(x),

i.e.,

zt1 =
zt1N
zt1D

.

Step 6: Satisfy the following inequality:

zt1N + λ(c1Nj − z1Nj)

zt1D + λ(c1Dj − z1Dj)
≥ zt1, (2)

where the ratio on the left-hand side of (2) should be greater than or equal to the value of zt1 if the
considered LFP problem is maximized. If the LFP is a minimization problem, the ratio should be
less than or equal to the value of zt1.

Step 7: Rewrite the inequality (2) as

zt1D(c1Nj − z1Nj)− zt1N(c1Dj − z1Dj) {≥≤} 0. (3)

Then, find an entering variable via the simplex table satisfying the inequality (3).

– If there is no entering variable in the simplex table satisfying the inequality (3), STOP.
The solution last found is the optimal solution of the considered LFP problem: x1∗ =
(x1∗

1 , ...., x1∗
n ).

– Else, find a leaving variable applying the minimum ratio test, make row operations in the
simplex table for the next iteration (t = t+ 1), and go to Step 4.

At the end of the first phase, the individual optimal solution to each LFP problem is found.

Second phase: The following steps are itemized for finding the weight of each objective function
via a zero-sum game to convert the MOLFP problem into a single-objective LP problem.

Step 8: Take the individual optimal solution of each LFP problem and the closest feasible point to
each individual optimal solution obtained in order to increase the number of strategies.
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Step 9: Construct a payoff matrix as given in Table 1. Each optimal solution is substituted into
each objective function, respectively. Note that if the payoff matrix has at least one negative
entry, it must be converted to a positive matrix. This matrix is obtained by adding successive
integer of the absolute value of the smallest negative entry of the matrix.

Table 1. The payoff matrix

z1(x) ... zk(x)

x1∗ z1(x
1∗) · · · zk(x

1∗)

x2∗ z1(x
2∗) · · · zk(x

2∗)
...

... . . . ...
xk∗ z1(x

k∗) · · · zk(x
k∗)

Step 10: Form all possible row ratios among all rows of the payoff matrix. The ratio matrix is
given in Table 2.

Table 2. The ratio payoff matrix

z1(x) ... zk(x)

R(x1∗/x2∗) z
1/2
1 · · · z

1/2
k

R(x1∗/x3∗) z
1/3
1 · · · z

1/3
k

...
... . . . ...

R(x1∗/xk∗) z
1/k
1 · · · z

1/k
k

Here, the size of the ratio matrix is determined by (2k − 1) rows and k columns.

Step 11: Solve k player zero-sum game having (2k−1) strategies and find the weights wk for each
objective function. Here, the objective functions represent the players, and the ratios represent the
strategies.

Third phase: In the last phase, each objective function of the MOLFP problem (1) will be lin-
earized using the Taylor series. Then, each linearized objective function will be multiplied with the
corresponding weight to obtain a single-objective LP problem.

Step 12: Expand each objective function zk(x) to the Taylor series at its own optimal solution xk∗

as follows:

zkL(x) = zk(x
k∗) +

n∑
j=1

δzk(x)

δxj

(xj − xk∗
j ), (4)

where the subscript L denotes the linearization of the zk(x).

Step 13: Multiply each linearized objective function with the corresponding weight to determine
a single-objective LP problem satisfying the original constraints. That is,

Optimize z(x) = w1z1L(x) + ...+ wkzkL(x) (5a)
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subject to

gj(x) ≤ bj, j = 1, ...,m. (5b)

Step 14: Find the optimal solution of (5), correspondingly of (1), and STOP.

It is important to note that it is possible to have more than one ratio matrix by different permutations
from rows of the ratio matrix. Therefore, a compromise solution set can be generated to present to
the decision-maker.

3. Numerical examples

Example 3.1.

Consider the MOLFP problem:

Max z1 =
−3x1 + 2x2

x1 + x2 + 3
, (6a)

Max z2 =
7x1 + x2

5x1 + 2x2 + 1
, (6b)

subject to

x1 − x2 ≥ 1, (6c)

2x1 + 3x2 ≤ 15, (6d)

x1 ≥ 3. (6e)

First phase:

Step 1: The constraints are rewritten in the standard form as follows:

x1 − x2 − x3 + x6 = 1, (7a)

2x1 + 3x2 + x4 = 15, (7b)

x1 − x5 + x7 = 3. (7c)

Step 2: Since two of the constraints have "≥", the first objective function will be rewritten as

Max z1N = −3x1 + 2x2 −M(x6 + x7), (8a)

Min z1D = x1 + x2 +M(x6 + x7), (8b)

where the indices N and D refer to nominator and denominator, respectively, of the objective
function. The optimal solution of the constructed LFP problem having z1 is found by applying the
following iterations.
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Table 3. Initial simplex table for the LFP problem having z1

Max z1N -3 2 0 0 0 -M -M
Min z1D 1 2 0 0 0 M M

C1N C1D xB x1 x2 x3 x4 x5 x6 x7 b

-M M x6 1 -1 -1 0 0 1 0 1
0 0 x4 2 3 0 1 0 0 0 15

-M M x7 1 0 0 0 -1 0 1 3
c1Nj − z1Nj 2M-3 M+2 -M 0 -M 0 0
d1Dj − z1Dj 1-2M 2+M M 0 M 0 0

Step 3: The initial simplex table is constructed as given in Table 3.

Steps 4-7: It is seen from Table 3 that the reduced costs of z1N(x) and z1D(x) are determined in
the last two rows, respectively. The objective function value z01 is found as 0 by considering the
right-hand side values in Table 3. Since the constructed LFP problem having z1 is maximized,

z01N + λ(c1Nj − z1Nj)

z01D + λ(c1Dj − z1Dj)
≥ 0 (9)

is considered, and the following inequality is formed:

(c1Nj − z1Nj) ≥ 0. (10)

The entering variable is determined from Table 3 such as to satisfy (10). It is seen that x1 is
the entering variable which satisfies the inequality (10). x6 is specified as the leaving variable by
applying the minimum ratio test.

First iteration:

Steps 4-7: The iterated simplex table is constructed as given in Table 4.

Table 4. First iterated simplex table for the LFP problem having z1

Max z1N -3 2 0 0 0 -M -M
Min z1D 1 2 0 0 0 M M

C1N C1D xB x1 x2 x3 x4 x5 x6 x7 b

-3 1 x1 1 -1 -1 0 0 1 0 1
0 0 x4 0 5 2 1 0 -2 0 13

-M M x7 0 1 1 0 -1 -1 1 2
c1Nj − z1Nj 0 M-1 M-3 0 -M 3-2M 0
d1Dj − z1Dj 0 3-M 1-M 0 M 2M-1 0

It is seen that the reduced costs for each objective function, i.e., z1N(x) and z1D(x), are determined
from the last two rows, respectively. Also, by considering the right-hand side values, the objective
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function value z11 is found as −0.75. Therefore,

z11N + λ(c1Nj − z1Nj)

z11D + λ(c1Dj − z1Dj)
≥ −0.75, (11)

is written, and the following inequality is obtained as

4(c1Nj − z1Nj) + 3(c1Dj − z1Dj) ≥ 0. (12)

To determine the entering variable, the last two rows of Table 4 are used such that to satisfy (12).
Thus, x2 and x7 are determined the entering and leaving variables, respectively.

Second iteration:

Steps 4-7: The simplex table is revised as in Table 5.

Table 5. Second iterated simplex table for the LFP problem having z1

Max z1N -3 2 0 0 0
Min z1D 1 2 0 0 0

c1N c1D xB x1 x2 x3 x4 x5 b

-3 1 x1 1 0 0 0 -1 3
0 0 x4 0 0 -3 1 5 3
2 2 x2 0 1 1 0 -1 2
c1Nj − z1Nj 0 0 -2 0 -1
d1Dj − z1Dj 0 0 -2 0 3

The objective function value z21 is found as −0.625; thus

8(c1Nj − z1Nj) + 5(c1Dj − z1Dj) ≥ 0, (13)

can be determined. By considering (13), the entering and leaving variables are determined as x5

and x4, respectively.

Third iteration: Third iterated simplex table for the LFP problem having z1 is given in Table 6.

Table 6. Third iterated simplex table for the LFP problem having z1.

Max z1N -3 2 0 0 0
Min z1D 1 2 0 0 0

c1N c1D xB x1 x2 x3 x4 x5 b

-3 1 x1 1 0 −3/5 1/5 0 18/5

0 0 x5 0 0 −3/5 1/5 1 3/5

2 2 x2 0 1 2/5 1/5 0 13/5

c1Nj − z1Nj 0 0 −13/5 1/5 0
d1Dj − z1Dj 0 0 −1/5 −3/5 0
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Steps 4-7: z1N(x) and z1D(x) are determined, and after finding the objective function value z31 as
−0.609,

23(c1Nj − z1Nj) + 14(c1Dj − z1Dj) ≥ 0, (14)

is obtained in similar way.

Since there is no entering variable, the algorithm is over at the end of third iteration. The optimal
solution of the LFP problem having z1 is found as x = (18/5, 13/5), and the optimal value is
z∗ = −14/23.

The same steps in the first phase are iterated for the LFP problem having z2. At the end of the
fourth iteration, the optimal solution for the LFP problem having z2 is (15/2, 0), and the optimal
value is 105/77.

Second phase:

Steps 8-9: The payoff matrix is constructed. Here, the MOLFP problem (6) has two players and
two strategies. To increase the number of strategies, the point obtained before the individual opti-
mal solution of each single-objective LFP problem will be taken. Thus, there are four strategies as
(3, 2), (18/5, 13/5), (15/2, 0), and (3, 0). These points are substituted into each objective function,
and the payoff matrix is constructed as presented in Table 7.

Table 7. The payoff matrix

z1 z2
(3, 2) -0.625 1.15

(18/5, 13/5) -0.608 1.148
(15/2, 0) -2.14 1.329
(3, 0) -1.5 -1.312

Since the payoff matrix has negative entries, the value 3.14 is added to all entries to make all of
them positive, and Table 8 is obtained.

Table 8. The positive payoff matrix

z1 z2
(3, 2) 2.515 4.29

(18/5, 13/5) 2.532 4.288
(15/2, 0) 1 4.469
(3, 0) 1.64 1.828

Steps 10-11: The first ratio matrix can be obtained as in Table 9.

The weights are found as 0.59 and 0.41 for the objective functions z1 and z2, respectively, by
solving the zero-sum game given in Table 9. These weights will be used in the third phase.
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Table 9. The ratio payoff matrix

z1 z2
R(x1∗/x2∗) 0.99 1.0
R(x1∗/x3∗) 2.515 0.96
R(x1∗/x4∗) 1.53 2.35

Third phase:

Step 12: Each fractional objective function is expanded to the Taylor series to linearize. Therefore,
the first and second objective functions are presented as follows:

z1L(x) =
−14

23
+

∂z1
∂x1

|(2.6,3.6)(x1 − 3.6) +
∂z1
∂x2

|(2.6,3.6)(x2 − 2.6)

= −0.259x1 + 0.283x2,

(15)

z2L(x) =
15

11
+

∂z2
∂x1

(x1 − 7.5) +
∂z2
∂x2

(x2 − 0)

= 0.005x1 − 0.045x2.

(16)

Steps 13-14: The linearized objective functions are multiplied with the corresponding weights,
and a single-objective LP problem is obtained satisfying the original constraints of (6). Thus, the
following LP problem is solved:

Max z = 0.59(−0.259x1 + 0.283x2) + 0.41(0.005x1 − 0.045x2), (17a)

subject to

x1 − x2 ≥ 1, (17b)

2x1 + 3x2 ≤ 15, (17c)

x1 ≥ 3. (17d)

The optimal solution is found as (3, 2), and the optimal value is 0.155. This example was solved in
the study of Guzel and Sivri (2005), and the point (3, 2) was also found as a compromise solution
of the problem.

The optimal solutions and objective function values can be found from different ratio matrices
depending on the order of the rows to present the decision-maker. Therefore, the weights and a set
of compromise solutions are presented in Table 10.

10
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Table 10. Different optimal values related to different ratios

Weights Optimal Solution Objective Function Value
z1 z2 x1 x2 z

0.44 0.56 3 2 0.1356
0.08 0.92 3 0 0.48
0.58 0.42 3 2 0.1536

1 0 3.6 2.6 0.1966

Example 3.2.

Consider the following MOLFP problem:

Max z1 =
3x1 + x2 − 1

2x1 − x2 + 1
, (18a)

Min z2 =
2x1 + 5x2 + 3

x1 − 2x2 + 2
, (18b)

subject to

5x1 + 3x2 ≤ 60, (18c)

x1 ≤ 5. (18d)

First phase:

Steps 1-2: The constraints are rewritten in the standard form, and then the objective functions z1
and z2 are separated as follows:

Max z1N = 3x1 + x2 − 1, (19a)

Min z1D = 2x1 − x2 + 1, (19b)

Min z2N = 2x1 + 5x2 + 3, (19c)

Max z2D = x1 − 2x2 + 2, (19d)

where the indices N and D refer to nominators and denominators of the objective functions.

Step 3: The initial simplex table for the constructed LP problem having z1 is constructed in Ta-
ble 11.
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Table 11. Initial simplex table for the LFP problem having z1

Max z1N 3 1 0 0
Min z1D 2 -1 0 0

C1N C1D xB x1 x2 x3 x4 b
0 0 x3 5 3 1 0 60
0 0 x4 1 0 0 1 5
c1Nj − z1Nj 3 1 0 0
d1Dj − z1Dj 2 -1 0 0

Steps 4-7: Considering the right-hand side values in Table 11, the objective function value z01 is
found as −1. Since the constructed LFP problem having z1 is maximized,

z01N + λ(c1Nj − z1Nj)

z01D + λ(c1Dj − z1Dj)
≥ −1, (20)

is considered, and

(c1Nj − z1Nj) + (c1Dj − z1Dj) ≥ 0, (21)

is formed. It is seen that x1 is the entering variable which satisfies the inequality (21), and x4 is the
leaving variable.

First iteration:

Steps 4-7: The first iterated simplex table is constructed such that the basis vectors are x3 and x1,
and then the objective function value z11 is found as 14/11. Therefore,

z11N + λ(c1Nj − z1Nj)

z11D + λ(c1Dj − z1Dj)
≥ 14

11
, (22)

is written, and

11(c1Nj − z1Nj)− 14(c1Dj − z1Dj) ≥ 0, (23)

is obtained. Thus, x2 and x3 are determined as the entering and leaving variables, respectively.

Second iteration:

Steps 4-7: In the second iterated simplex table, the basis vectors are x2 and x1. The objective
function value is found as z21 = −77/2. Therefore,

2(c1Nj − z1Nj)− 77(c1Dj − z1Dj) ≥ 0, (24)

is determined. By considering (24), the entering and leaving variables are found as x4 and x1,
respectively.

Third iteration:
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Steps 4-7: x2 and x4 are the basis vectors in the third iterated simplex table, and the objective
function value z31 is found as −1. Thus,

(c1Nj − z1Nj) + (c1Dj − z1Dj) ≥ 0, (25)

is obtained. It is seen that x1 is the entering variable which satisfies the inequality (25), and x4 is
the leaving variable.

After the third iteration, since the previous vectors started to be obtained continually, the operations
are finalized. When the objective function values obtained via these basis vectors are compared, it
is seen that x2 and x4 make the objective function greater. Thus, the basis vectors remain as x2 and
x4. Therefore, the optimal solution is (0, 20), and the optimal value is z∗1 = −1.

The same steps in the first phase are iterated for the LFP problem having z2. At the initial iteration,
the optimal solution is found as (0, 0), and the optimal value is z∗2 = 1.5.

Second phase:

Steps 8-9: By using the corner point (5, 35/3) and the optimal points (0, 20) and (0, 0), the payoff
matrix is constructed and presented in Table 12.

Table 12. The payoff matrix

z1 z2
(0, 20) -1 -2.71
(5, 35/3) -38.5 -4.37
(0, 0) -1 1.5

Since the payoff matrix has negative entries, the value 39.5 is added to all entries to make them
positive, and Table 13 is obtained.

Table 13. The positive payoff matrix

z1 z2
(0, 20) 38.5 36.79
(5, 35/3) 1 35.13
(0, 0) 38.5 41

Step 10: A ratio matrix can be obtained in Table 14.

Table 14. The ratio payoff matrix

z1 z2
R(x1∗/x2∗) 38.5 1.05
R(x1∗/x3∗) 1 0.897

By solving the zero-sum game given in Table 14, the weights are found to be 0 and 1 for the
objective functions z1 and z2, respectively. These weights will be used in the third phase.
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Third phase:

Step 12: Since the full weight is assigned to the objective function z2, the fractional objective
function z2 is expanded to the Taylor series to linearize at the point (0, 0):

z2L(x) =
3

2
+

∂z2
∂x1

|(0,0)(x1 − 0) +
∂z2
∂x2

|(0,0)(x2 − 0)

= 0.25x1 + 4x2 + 1.5.

(26)

Steps 13-14: The following LP problem is constructed and solved:

Min z = 0.25x1 + 4x2 + 1.5, (27a)

subject to

5x1 + 3x2 ≤ 60, (27b)

x1 ≤ 5. (27c)

The optimal solution is found as (0, 0), and the optimal value is −1. Thus, one of the compromise
solutions for the MOLFP problem is (0, 0).

By constructing all other possible ratio matrices, the weights for the objective functions z1 and z2
are determined to be 1 and 0, respectively. Accordingly, the full weight is assigned to z1; thus the
fractional objective function is expanded to the Taylor series at the point (0, 20). Finally, another
compromise solution for the MOLFP problem is found as (5, 0).

4. Conclusion

In this paper, a hybrid algorithm including three phases, which are the simplex method, game
theory, and the Taylor series approach, is presented to find compromise solutions to a MOLFP
problem. Compromise solutions are found considering weights determined via the zero-sum game.
These solutions provide various options to decision-makers considering different degrees of im-
portance of the objectives. As a result, decision-makers can choose the most suitable one among
solutions according to the satisfaction levels, i.e., weights, determined for the objectives which is
the novelty of the study.
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