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Abstract

This paper assesses the role of desert aerosols and vaccine on the transmission dynamics of Neis-
seria Meningitis serogroup A (NmA). It is biologically well-documented that the inhalation of
aerosol dust and its presence in the nasal cavity weakens the nasopharyngeal mucosa by damaging
the mucosal barrier and inhibiting the mucosal immune defenses of susceptible and vaccinated
individuals. We address the latter by proposing and analyzing a mathematical model for the dy-
namics of NmA that specifically accounts for the fast progression of susceptible and vaccinated
individuals to the invasive stage of the disease. We compute the basic reproduction number and
use it to investigate the existence and stability of equilibria. In this regard, we prove that the model
undergoes a backward bifurcation phenomenon. We highlight the detrimental impact of aerosol
dust by showing that its inhalation augments the reproduction number and enhances the endemic
level of NmA. We also highlight the favorable role of vaccine in eliminating the disease when it has
a high level of efficacy and is used to protect a large proportion of the population. The theoretical
results are supported and illustrated by numerical simulations.

Keywords: Meningitis A; Aerosols; Fast progression; Vaccination; Global stability; Equilib-
rium; Awareness; Bifurcation; Nonlinear systems; Control measure; Reproduction
number
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1. Introduction

Meningitis is an inflammation of the meninges caused by different agents, the most common of
which are bacterial or viral organisms. Meningococcal meningitis is a bacterial form of meningitis
caused by a commensal bacterium of the human nasopharynx called Neisseria meningitidis (Nm).
It is transmitted by nasopharyngeal secretions from healthy carriers to persons at risk (Tzeng et
al. (2000)). He is a major cause of morbidity and mortality worldwide, with meningococcus being
one of the infection agents (Teyssou and Muros-Le Rouzic (2007); WHO (2013); WHO (2010);
WHO (2010); WHO (2009)). Nowadays, 13 serogroups of meningococcus are known (A, B, C,
D, 29E, H, I, K, L, W, X, Y and Z), among which six (A, B, C, W, X and Y) are responsible for
cases of invasive meningococcal disease worldwide (Boisier et al. (2007); Broomeet et al. (1983);
Decosas and Koama (2002); Stephens et al. (2007)). Most cases are found in the battle zone
called “African meningitis belt” (i.e., region extended from Senegal to Ethiopia, approximately
populated by 250 million people) and in Asia, where epidemics are mainly caused by the Neis-
seria meningitis serogroup A (NmA) pathogen agent (Greenwood (1999); Lapeyssonnie (1963);
Leimkugel et al. (2009); Molesworth et al. (2002)). Serogroups B and C of Neisseria meningi-
tis (NmB and NmC) are the most common cause of meningococcal disease in Europe, Americas,
Australia and New Zealand. Most people recover from meningitis if the treatment is initiated very
early after the infection. However, permanent disabilities such as brain damage, hearing loss, and
learning disabilities can result from the infection.

According the World Health Organization (WHO), the “African meningitis belt” registered the
largest epidemic ever recorded in Africa in the year 1996 with more than 20,000 deaths and an
approximate annual incidence rate of 1000 per 100,000 individuals (WHO (2013); WHO (2010);
Trotter and Greenwood (2007)). Around 30 000 cases are still reported each year from that area.
It has been well documented that seasonality is a strong determinant of meningococcal menin-
gitis epidemics in the African belt, since during wet seasons, the endemic level of the incidence
is around 0-0.5 per 100,000 per week in most health districts and cases tend to occur more fre-
quently in winter and spring (Greenwood (1999); Mueller and Gessner (2010)). For instance, at
the beginning of the dry season, there is a gradual increase in the number of cases until the be-
ginning of the rains, when the incidence suddenly bounces back to its endemic level (Greenwood
(1999)). More importantly, the incidence during this period of hyper-endemicity is of the order of
10-100 times the endemic incidence (Mueller and Gessner (2010)). The main hypothesis is that the
particular weather conditions of the dry season in the African meningitis belt (very low relative hu-
midity and dry winds of Harmattan laden with desert dust) would have weaken the nasopharyngeal
mucosa of a colonized individual and increases its the risk of invasion by meningococci (Moore
(1992)). This particular relevant characteristic of the disease should be incorporated in the mathe-
matical modeling of the transmission dynamics of NmA if one wishes the resulted model to gain
some more realism and provide insights into the understanding of NmA dynamics. For more details
about the role of seasonality and its implications into the intra-seasonal variability of meningitis
infection, we refer the reader to the works (Agier et al. (2013); Martiny and Chiapello (2013);
Sultan et al. (2005)), where it is specifically shown that during dry season, the aerosol dust is the
main cause of invasive meningococcal meningitis epidemics.
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Due to the complex dynamics of NmA, the influence of seasonality through the presence of desert
aerosols (dust) on its evolution, should be addressed alongside with the consideration of factors
such as the population susceptibility to virulent serotypes and the spatial distribution of vegeta-
tion type (Alonso et al. (2006); Harrison et al. (2009); Teyssou and Muros-Le Rouzic (2007);
Wilder-Smith and Memish (2003)). In fact, infection by NmA involves a sequence of three phe-
nomena: (i) The carriage/portage phase, during which NmA normally colonize the upper respi-
ratory tract without causing invasive disease. Individuals at this stage are referred to as healthy
carriers or simply carriers; Under some favorable conditions, this process can occasionally lead to
the development of invasive disease (Agier et al. (2013); Sultan et al. (2005)). (ii) The bacteremia
phase, during which NmA manage to cross the blood-brain barriers and nasopharyngeal epithelium
to invade the meninges. (iii) The invasive/septicemic phase, during which NmA induce the inflam-
mation of meninges and eventually causes sepsis. Let us recall that sepsis is a serious condition
resulting from the presence of harmful microorganisms in the blood or other tissues and the body’s
response to their presence potentially leading to the malfunctioning of various organs, shock, and
death.

Early treatment with a range of antibiotics including penicillin, ampicillin and ceftriaxone is the
most important measure to save lives and reduce complications. Moreover, antibiotic chemo-
prophylaxis for close contacts, when given promptly, decreases the risk of transmission. Prevention
of bacterial meningitis can be achieved through vaccination and/or preventing contact with infec-
tious individuals. Besides, there are three serogroup specific vaccines that confer varying degrees
of duration of protection (Segal and Pollard (2004)).

Mathematical modeling and numerical simulations help to understand the dynamics of infectious
diseases (Thieme (2003); Anderson and May (1992); Capasso (1993); Hethcote (2000)). A good
understanding of the dynamics of NmA can result from the mathematical modeling which takes
into consideration all the above mentioned features of the disease. This will certainly lead to ex-
tremely complicated mathematical systems to analyze due to the inherent complexity of such a
generic consideration. So far, many researchers have modeled Neisseria meningitidis with ex-
cellent and promising ways of understanding the disease dynamic (Agusto and Leite (2019);
Bah et al. (2019); Bowong et al. (2016); Asamoah et al. (2018); Bani-Yaghoub (2012); Bingen
(2001); Bou Karam et al. (2009); Bornaa et al. (2015); Blyuss (2016); Djatcha Yaleu et al. (2017);
Martcheva and Crispino-O’Connell (2003); Irving et al. (2012); Coen et al. (2000); Tuckwel et
al. (2003); Stollenwerk and Jansen (2003); Trotter et al. (2005)). These mathematical models are
mostly in the form of ordinary differential equations, age-structured systems which explicitly in-
clude, vaccination, treatment, healthy carriers or optimal control theory.

In order to pave the way for developing new more realistic models, we are motivated by the works
in (Agier et al. (2013); Bah et al. (2019); Martiny and Chiapello (2013); Sultan et al. (2005);
Djatcha Yaleu et al. (2017); Agusto and Leite (2019)). We therefore clear the ground by building
on the most recent models by (Agusto and Leite (2019); Djatcha Yaleu et al. (2017)) by focus-
ing on the impacts of desert aerosols (dust) on the transmission dynamics of NmA. In fact, it is
well documented by many biological works that the inhalation of desert aerosols may enhance
meningococcal invasion by damaging the mucosal barrier directly (irritating the epithelial lining
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of the upper respiratory track) of susceptible individuals, allowing bacteria penetration, or by in-
hibiting mucosal immune defenses (Teyssou and Muros-Le Rouzic (2007); Alonso et al. (2006);
Harrison et al. (2009); Wilder-Smith and Memish (2003)). This biological fact cannot be neglected
in the mathematical modeling of the dynamical transmission of NmA within a human population
and is accounted for in this paper.

The aim of this work is to provide a detailed analysis of the role of desert aerosols and vaccina-
tion in the spreading and the severity of NmA within a human population. As mentioned earlier,
we first extend the models proposed in (Agusto and Leite (2019); Djatcha Yaleu et al. (2017)) by
taking into account the inhalation of fine desert aerosols in ambient environments by susceptible
and vaccinated individuals. We emphasize that the incorporation of desert aerosols in our model,
via the presence of irritating aerosol dust in the nasal cavity weakens the nasopharyngeal mucosa
of susceptible and vaccinated individuals. To the best of authors knowledge, the first (and proba-
bly the only) work which accounted for the role of desert aerosols on the dynamics of NmA is by
(Bah et al. (2019)). However, in their model formulation, the authors have neglected the inhala-
tion of desert aerosols by susceptible and vaccinated individuals which fasten their progression to
the invasive stage of the disease. Rather, they have assumed that aerosol dust is inhalated only by
asymptomatic carriers and promotes their progression to the invasive stage of NmA. The novelty of
our modeling setting is therefore the role aerosol dust plays as a catalyzer of infection by account-
ing for the fast progression from susceptible and vaccinated individuals to the invasive stage of
disease. We provide an in-depth theoretical study of the model in terms of the basic mathematical
properties, existence and stability (local and global) of equilibria, bifurcation analysis, using the
basic reproduction number as threshold or bifurcation parameter. In addition, we assess (analyti-
cally and numerically) the role of desert aerosols and vaccine on the transmission of NmA and find
that:
(i) the basic reproduction number in the presence of desert aerosols is great than the basic repro-
duction number in the absence of desert aerosols.
(ii) At the endemic level, the number of infected individuals obtained in the presence of desert
aerosols is larger than the corresponding number of infected individuals in the absence of desert
aerosols.
(iii) A large vaccination coverage, with a high level of efficacy and the avoidance of the inhalation
of desert aerosols can contribute to the reduction of NmA cases.

The remaining part of the paper is organized as follows. We build the mathematical model in
Section 2 and conduct its theoretical analysis in Section 3. In Section 4, we assess the impact
(favorable, detrimental) of desert aerosols and vaccine on the transmission dynamics of NmA. Some
numerical simulations are provided throughout the manuscript to illustrate most of the theoretical
results. Section 5 concludes the paper.

2. Model Formulation

Herein, we proceed with the construction of a mathematical model for the transmission dynamics
of NmA within a human population, where people’s nasal cavity and immune defenses are weak-
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ened by desert aerosols which can irritate their throats and facilitate the penetrate of the bacteria
NmA into the blood or brain streams.

2.1. Modeling context

Our baseline model follows (Agusto and Leite (2019); Djatcha Yaleu et al. (2017)). In order to
shorten the expositions, the interested reader is therefore referred to (Agusto and Leite (2019);
Djatcha Yaleu et al. (2017)) for more details on the model construction and assumptions of
the baseline model in the absence of desert aerosols. We have kept as much as possible the
same notations in (Agusto and Leite (2019); Djatcha Yaleu et al. (2017)) so that the reader
can easily see that our model extends the works presented in (Agusto and Leite (2019);
Djatcha Yaleu et al. (2017)) by accounting for the impact of aerosols dust. In fact, it is well known
that the inhalation of aerosol dust and its presence in the nasal cavity weakens the nasopharyngeal
mucosa of a colonized individual and triggers the four transmission events highlighted in the in-
troduction section (Cartwright (1995); De Longueville et al. (2014); Deghmane and Taha (2010);
Leimkugel et al. (2007)). Moreover, and contrary to (Bah et al. (2019)) our model accounts for fast
and slow progressions of susceptible, vaccinated unprotected to the invasive stage of NmA. For the
sake of simplicity, the extension is made possible by the introduction of a new class, say A, for the
concentration of aerosols in the environment from which the dust that irritates the nasal cavity of
persons at risk will be recruited. Note that A is actually not an epidemiological class, rather, it is
a reservoir of aerosol dust. Furthermore, the newly introduced parameters will be contextualized
and given, where necessary, with appropriate explanations.

2.2. Model parameters / variables and derivation of model equations

As mentioned earlier, we denote by A the concentration of desert aerosols into the troposphere at
time t and, by µa the elimination rate of desert aerosols in the atmosphere. Once released from
the earth surface, the aerosol particles rise into the troposphere (the lowest layer of the earth’s
atmosphere) under the action of turbulent mixing and upward convection currents. They are then
transported by the winds for a varying time according to their size and the atmospheric conditions.
We suppose that the desert aerosols are produced at rate Q per unit of time. Since wind erosion is
accelerated by drought and, precipitation halts the production of dust, we suppose that the emission
of desert aerosols is bounded. For convenience, we assume that the emission of aerosols into the
troposphere converges to Q∗ (i.e. lim

t−→+∞
Q(t) = Q∗). Thus, the evolution of the concentration of

desert aerosols into the troposphere is described by the following differential equation:

Ȧ = Q∗ − µaA. (1)

The total human population N(t) at time (t ≥ 0) is a sum of susceptible S(t), vaccinated V (t),
infectious I(t) and recovered R(t) individuals such that

N(t) = S(t) + V (t) + C(t) + I(t) +R(t). (2)
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Individuals are recruited into the population in the susceptible class at constant rate Λ. The pop-
ulation of vaccinated individuals is increased by the vaccination of susceptible individuals at a
constant rate θ. Since the vaccine does not confer full immunity to all vaccine recipients, vacci-
nated individuals lose their protection and return to the susceptible class S at constant rate ω. Most
of the theory about disease evolution is based on the assumption that the host population is homo-
geneous. Individual hosts, however, may differ and constitute very different habitats. In particular,
some habitats may provide more resources or are more vulnerable to bacteria exploitation (Gandon
et al. (2003)). The use of models with imperfect vaccines can better describe this type of human
heterogeneity. Another explanation for the use of imperfect vaccines is that, it takes some time for
individuals to acquire immunity after vaccination and in the meantime, a vaccinated individual can
catch the infection. The vaccination can reduce, but may not completely prevent from acquiring
to infection. Of course, an alternative approach to address the latter feature can the incorporation
of time delay in the model and end up with a system of delayed differential equations. To keep
a system of ordinary differential equations, we consider rather, a factor ν as the infection rate of
vaccinated individuals so that, when ν = 0, the vaccine is 100% effective, and when ν = 1, the
vaccine has no effect at all. The value 1−ν can be understood as the inefficiency rate of the vaccine.

The transmission of NmA occurs in four different ways: (i) after adequate contacts with susceptible
and infectious individuals, (ii) after adequate contacts with susceptible individuals and carriers, (iii)
after adequate contacts with vaccinated unprotected and infectious individuals, (iv) after adequate
contacts with vaccinated unprotected and carriers.

It is assumed that, in the presence of aerosols, compartments S and V encompass also individuals
who have inhaled aerosols and those who did not. We model the aerosol rate of irritation (of the
throat and nose cavity) by

λa =
βaA

A+H
, (3)

where, βa is the effective ingestion/inhalation rate of desert aerosols by susceptible and vaccinated
individuals. Overall, λa can be seen as a booster of the contact rate due to the presence of aerosol
dust.

Hence, on the one hand, susceptible and vaccinated unprotected individuals, who have not yet
inhaled aerosol dust become carriers at rates λh and (1− ν)λh, respectively, λh being the force of
infection in the absence of the influence of aerosols and is modeled by

λh =
βh(εC + I)

N
. (4)

In (4), βh is the effective contact rate for NmA transmission, and ε ≥ 1 is the modification parameter
accounting the fact that carriers (those in the C class) are more infectious than infectious (those in
the I class), because they are unidentified since they do not display any symptom.

On the other hand, susceptible and vaccinated unprotected individuals who have inhaled desert
aerosols become infectious at rates λaλh and (1 − ν)λaλh, respectively. In fact, it is reasonable
to postulate that healthy and vaccinated unprotected individuals who have already inhaled the
desert aerosol and come into contact with the infected/carriers rapidly progress to the invasive
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stage of NmA and their infection forces are boosted by the factor λa. A proportion p of susceptible
individuals who are newly infected is assumed to develop the symptoms of the infection, while
the complementary part (1− p) becomes carriers. Also, we suppose that a fraction q of vaccinated
unprotected individuals who are newly infected becomes infectious and the remainder (1−q) enters
the class of carriers. It is natural to assume that p ≥ q, because the vaccination reinforces/boosts
the immune system of vaccinated ones and therefore reduces their chances to progress rapidly to
the infectious (invasive) stage of the disease. Practically, the fast progression pathway of NmA
is described here by the direct flows from the susceptible (S) and vaccinated (V) classes, to the
invasive stage (I) class.

Following the same reasoning as above, the carrier population is increased by susceptible and vac-
cinated individuals who caught the infection at rates ((1− p)λa + 1)λh and ((1− q)λa + 1) (1−
ν)λh, respectively. Carriers are diminished by natural death at rate µ, progress to the infectious
stage of the infection (moving to the class I) at rate γ, and recover from the infection (moving to
the recovered class R) at rate α. The population of infectious is replenished following the infection
of susceptible and vaccinated individuals at rates pλaλh and q(1− ν)λaλh, respectively. It dimin-
ishes by recovery from the infection (moving to the recovered class R) at rate δ, reduces by natural
death and NmA induced death at constant rates µ and d, respectively. The population of recovered
individuals is increased by the recovery of carriers and infectious at rates α and δ, respectively. It
reduces due to natural mortality at rate µ.

We emphasize however that there are many possibilities to model the force of infection λh and the
dynamics of A. For simplicity, we have chosen the formulations in (3) and (4).

Figure 1. The schematic representation of the model (5). The dotted lines represent the dotted lines represent the in-
gestion of desert aerosols by susceptible and vaccinated individuals. The solid lines represent the transfers
between and out the different compartments

Using the flowchart in Figure 1, we obtain the following deterministic system of nonlinear ordinary
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differential equations:

Ṡ = Λ+ ωV − (µ+ θ + (1 + λa)λh)S + φR,

V̇ = θS − (ω + µ+ (1 + λa)(1− ν)λh)V,

Ċ = (((1− p)λa + 1)S + ((1− q)λa + 1) (1− ν)V )λh − (µ+ α + γ)C,

İ = (pS + q(1− ν)V )λaλh + γC − (µ+ d+ δ)I,

Ṙ = δI + αC − (φ+ µ)R,

Ȧ = Q∗ − µaA.

(5)

Table 1 and Table 2 summarize the model variables and parameters values used for numerical
simulations. For biological reasons, all the parameters are non-negative.

Table 1. Variables of system (5).

Symbol Description Unit Symbol Description Unit
S Susceptible individuals indiv. V Vaccinated individuals indiv.
C Carriers indiv. I Infectious indiv.
R Recovered individuals indiv. A Concentration of aerosols particle.m−3

Table 2. Parameters values used for numerical simulations of system (5).

Symbol Description Unit Estimate Reference

Q∗ Emission rate of desert aerosols particle.m−3.day−1 250 (Laurent et al. (2008))
Λ Human recruitment rate indiv. day−1 3253607 (Agusto and Leite (2019))
θ Vaccination coverage rate day−1 0.4868 (Agusto and Leite (2019))
µ Natural mortality rate day−1 1/56 Assumed
δ Recovery rate of infectious day−1 0.1128 (Agusto and Leite (2019))
d NmA induced mortality rate day−1 0.63178 (Trotter et al. (2005))
βh NmA effective transmission rate day−1 Variable Assumed
α Rate of moving from carriers to recover day−1 0.1118 (Agusto and Leite (2019))
γ Rate of moving from carriers to infected day−1 0.0438 (Agusto and Leite (2019))
µa Desert aerosols depletion rate particle.m−3 0.2 (Bou Karam et al. (2009))
p Fast progression proportion from S to I dimensionless 0.45 Assumed
q Fast progression proportion from V to I dimensionless 0.25 Assumed
βa Inhalation rate of desert aerosols dimensionless Variable Assumed
ν Vaccine efficacy dimensionless 0.85 (WHO (2009))
ε Infectivity modification parameter dimensionless 1.2 Assumed
H Half saturation concentration of aerosols, particle.m−3 103 (Bou Karam et al. (2009))
ω Waning rate of vaccine-induced immunity day−1 0.7/365 (CDC (2011); Hepkema et al. (2013))
φ Waning rate of recovery-induced immunity day−1 0.63178 (Djatcha Yaleu et al. (2017))

From the last equation of system (5), one has that

lim
t−→+∞

A(t) =
Q∗

µa

= A0.

Thus, denoting λ0
a = βaA

0/(A0 +H), the limiting system of (5) is given by

Ṡ = Λ+ ωV − (µ+ θ + (1 + λ0
a)λh)S + φR,

V̇ = θS − (ω + µ+ (1 + λ0
a)(1− ν)λh)V,

Ċ = (((1− p)λ0
a + 1)S + ((1− q)λ0

a + 1) (1− ν)V )λh − (µ+ α + γ)C,

İ = (pS + q(1− ν)V )λ0
aλh + γC − (µ+ d+ δ)I,

Ṙ = δI + αC − (φ+ µ)R.

(6)
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3. Analytical results

In this section, we proceed with the analytical results of system (6), by proving the global existence
of a unique solution, studying the existence and asymptotic stability of equilibria and conducting
a bifurcation analysis of the model.

3.1. Basic properties of the model

Herein, give the basic theoretical for results for system (6), which are essential for its well-
posedness and shall be useful in the investigation of its long run dynamics.

Theorem 3.1.

System (6) is a dynamical system on the biologically feasible compact domain:

Ω =

{
(S, V, I, C,R) ∈ R5

+, N(t) ≤ Λ

µ

}
. (7)

Proof:

The proof is provided in two steps.

Step 1: We show that the solution variables S(t), V (t), C(t), I(t) and R(t) of system (6) at time
t > 0, corresponding to non-negative initial conditions S(0) > 0, V (0) ≥ 0, C(0) ≥ 0, I(0) ≥ 0,
R(0) > 0 are non-negative. To prove that, we define the quantity:

T = sup
{
t > 0/∀z ∈ [0, t], S(z) > 0, V (z) ≥ 0, I(z) ≥ 0, R(z) ≥ 0

}
.

The existence of T follows by the continuity of the functions S, V , C, I , R, A and the standard
Cauchy-Lipschitz theorem for ordinary differential equations. We must show that T = +∞.

If T = +∞ then, we are done.

Suppose by contradiction that, T < +∞ (T finite). We are going to prove that S(T ) > 0, V (T ) >
0, C(T ) > 0, I(T ) > 0, and R(T ) > 0. Without loss of generality we only show that S(T ) > 0.
In fact, from the first equation of system (6) one has

Ṡ(t) + (µ+ θ + (1 + λa)λh(t))S(t)− Λ = ωV (t) + φR(t). (8)

By the definition of T above, we know that, for all t ∈ [0, T ], ωV (t) + φR(t) ≥ 0. Thus,

Ṡ(t) + (µ+ θ + (1 + λa)λh(t))S(t) ≥ Λ. (9)

Denote the integrating factor of the right hand side of Equation (9) by

Hh(t) = exp

(∫ t

0

(1 + λa)λh(s)ds+ (µ+ θ)t

)
> 0.

Then, from Equation (9), one has
d

dt
[S(t)Hh(t)) ≥ ΛHh(t). (10)
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Integrating Equation (10) from 0 to T gives∫ T

0

d

dt
[S(t)Hh(t)] dt = S(T )Hh(T )− S(0) ≥ Λ

∫ T

0

Hh(t)dt.

Hence,

S(T ) ≥
[
S(0) + Λ

∫ T

0

Hh(t)

)
exp

(
−
∫ T

0

λh(s)ds− (µ+ θ)T

)
> 0.

We have shown S(t) > 0 for all t ∈ [0, T ]. Using the fact that S(t) > 0 for all t ∈ [0, T ], similar
arguments can be used to prove that V (t), C(t), I(t) and R(t) are positive for all t ∈ [0, T ]. We
are going to prove that the later yields a contradiction. Consider the Cauchy problem of system (6)
with the initial condition S(T ) > 0, V (T ) > 0, C(T ) > 0, I(T ) > 0, R(T ) > 0. By classical the
existence theorem for ordinary differential equations, there exists a solution v defined on an interval
of the form [T, T + ϵ[, ϵ > 0. Therefore, the superposition of the latter and former solutions gives
a solution of (6) which is defined and non-negative in an interval of the form [T, T + ϵ′[, where
0 < ϵ′ < ϵ. This contradicts the fact that T is the supremum of the set

{
t > 0/∀z ∈ [0, t], S(z) ≥

0, V (z) ≥ 0, I(z) ≥ 0, R(z) ≥ 0
}

is greater than T . Hence T = +∞.

Step 2: The following boundedness property of N(t)

0 ≤ N(0) ≤ Λ

µ
=⇒ 0 ≤ N(t) ≤ Λ

µ
for all t ≥ 0,

follows by summing up the equations of system (6) and applying Gronwall’s inequality. Hence,
the positive invariance of Ω.

The existence of the non-negative solution for all non-negative time t in Step 1 and the positive
invariance of Ω in Step 2 achieve the proof of Theorem 3.1. ■

The results of Theorem 3.1 ensures that system (6) is mathematically and epidemiologically well-
posed, because every initial problem has a unique global solution and the state variables/population
sizes are positive and can not grow exponentially.

In order to simplify some mathematical expressions, we adopt the following notations: Σ = βh/N

and Σ0 = βh/N
0.

3.2. Global stability of the disease-free equilibrium

The disease-free equilibrium (DFE) for an epidemiological model is an equilibrium such that the
disease is absent in the population. The DFE of system (6) is E0 = (S0, V 0, C0, I0, R0) with
C0 = I0 = 0. It follows that R0 = 0 and (S0, V 0) is the solution of the following system:{

(µ+ θ)S0 − ωV 0 = Λ,
θS0 − (µ+ ω)V 0 = 0.

(11)
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Solving the above system of equations yields

S0 =
Λ(µ+ ω)

µ(ω + µ+ θ)
and V 0 =

Λθ

µ(ω + µ+ θ)
. (12)

Thus, the DFE of system (6) is

E0 =

(
Λ(µ+ ω)

µ(ω + µ+ θ)
,

Λθ

µ(ω + µ+ θ)
, 0, 0, 0

)
. (13)

In order to study the local stability of the DFE E0, we start by calculating the basic reproduction
number Rav

0 . The basic reproduction number Rav
0 is defined as the average number of secondary

infections produced by one NmA-infected individual introduced into a susceptible population in
the presence of desert aerosols.

For the calculation of Rav
0 , we apply the next generation method in (Diekmann et al. (1990);

Diekmann et al. (2010); Van den Driessche and Watmough (2002)). Uninfected classes are those
individuals who do not carry bacteria in their bodies (S, V ), while infected classes are those indi-
viduals who carry bacteria in their bodies (C, I,R). The corresponding vector for the new infec-
tions F , and the vector for the remaining transitions between compartments V for system (6) are
given respectively by

F =

 (((1− p)λ0
a + 1)S + ((1− q)λ0

a + 1) k7V )λh

(pS + qk7V )λ0
aλh

0

 and V =

 D1C
−γC +D2I

−δI − αC + (µ+ φ)R

 ,

where, λ0
a = βaA

0/(A0 +H) and k7 = 1− ν.

For the save of notation, we set once more:

D3 = ((1− p)λ0
a + 1)S0 + ((1− q)λ0

a + 1) (1− ν)V 0, N0 = S0 + V 0 = Λ/µ,
D1 = µ+ α + γ, D2 = µ+ d+ δ, D4 = (pS0 + q(1− ν)V 0)λ0

a.

The Jacobian matrices of F and V evaluated at the DFE E0 are, respectively,

DF(E0) =

(
F̃ 0
0 0

)
and DV(E0) =

(
Ṽ 0
V1 V2

)
,

where

F̃ =

(
εΣ0D3 Σ

0D3

εΣ0D4 Σ
0D4

)
and Ṽ =

(
D1 0
−γ D2

)
.

Direct, but simple calculations yield

Ṽ −1 =

 1

D1

0

γ

D1D2

1

D2

 and F̃ Ṽ −1 =


Σ0 (εD2 + γ)D3

D1D2

Σ0D3

D2

Σ0 (εD2 + γ)D4

D1D2

Σ0D4

D2

 .
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By the definition in (Van den Driessche and Watmough (2002)), FṼ −1 is the next generation
matrix. Observing that det

(
FṼ −1

)
= 0, we conclude that the basic reproduction number Rav

0 of
system (6), defined as the spectral radius of the next generation matrix is given by

Rav
0 =

Σ0 ((εD2 + γ)D3 +D1D4)

D1D2

. (14)

Now, we perform a sensitivity analysis to identify the most influential parameters on Rav
0 . The

variation of Rav
0 with respect a parameter ρ can be measured using the normalized sensitivity

index X
Rav

0
ρ , defined in (Bornaa et al. (2015); Kimaro et al. (2015)) by

XRav
0

ρ =
∂Rav

0

∂ρ
× ρ

Rav
0

. (15)

Since in this paper ρ and Rav
0 are all positive, it follows that if XRav

0
ρ > 0, then X

Rav
0

ρ is an increasing
function with respect to ρ, otherwise X

Rav
0

ρ is a decreasing function.

Using (15), the sensitivity indices of Rav
0 are displayed in Table 3.

Table 3. Sensitivity indices for Rav
0 when βh = 0.3345 and βa = 0.573.

Symbol Sensitivity index Symbol Sensitivity index
Λ 0 θ −0.2214521010
φ 0 µ +0.0906158663
βh 1 α −0.4594162384
δ −0.0155094364 d −0.0868665933
γ −0.3218591468 βa +0.1946620003
µa −0.0865164445 ω +0.0144876492
p −0.0258843830 q −0.0358195465
ν −4.0899103920 ε +0.8938570195
Q∗ +0.0865164446 H −0.0865164446

The relevance of the basic reproduction number Rav
0 relies on the following result.

Proposition 3.1.

The DFE point E0 of system (6) is locally asymptotically stable in Ω if Rav
0 < 1 and unstable if

Rav
0 > 1.
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Proof:

The Jacobian matrix of system (6) evaluated at E0 reads as

J
(
E0

)
=


−(µ+ θ) ω −εΣ0 (1 + λ0

a)S
0 −Σ0 (1 + λ0

a)S
0 φ

θ −(µ+ ω) −εk7 (1 + λ0
a) Σ

0V 0 −k7 (1 + λ0
a) Σ

0V 0 0

0 0 εΣ0D3 −D1 Σ0D3 0

0 0 εΣ0D4 + γ Σ0D4 −D2 0

0 0 α δ −(µ+ φ)

 . (16)

The characteristic polynomial of J (E0) is

P (X) = − (X + µ+ φ)
(
X2 + (2µ+ ω + θ)X + µ (µ+ ω + θ)

) (
X2 + TX +W

)
,

where

T = (D1 +D2) (1−Rav
0 ) +

Σ0D3 (εD2 + γ)

D1

+
Σ0 (γD3 +D4D1)

D2

, W = D2D1 (1−Rav
0 ) .

(17)
Classically, the local stability of E0 depends on the signs of T and W . Thus, if Rav

0 < 1, then
T,W > 0 and all the eigenvalues of J (E0) have negative real parts. Consequently, E0 is locally
asymptotically stable. If Rav

0 > 1, then W < 0 and there exists one positive eigenvalue of J (E0),
implying that E0 is unstable. This completes the proof. ■

For a better control of the disease, the global asymptotic stability (GAS) of the DFE E0 is needed.
Actually, enlarging the basin of attraction of E0 to be the entire Ω is, for the model under consider-
ation, a more challenging task and may require some additional thresholds besides Rav

0 as shown
in the following result.

Theorem 3.2.

Set F1 = ((1− p)λ0
a + 1) + ((1− q)λ0

a + 1) (1− ν) and F2 = (p+ q(1− ν))λ0
a. Define

ξ1 =
D3 (εD2 + γ) +D1D4

N0 (F1 (εD2 + γ) +D1F2)
.

Then the DFE E0 of system (6) is GAS if Rav
0 ≤ ξ1 < 1.

Proof:

We apply the method in Kamgang and Sallet (2008). In this regard, we write the system (6) in the
following form: {

ẋ1 = A1(x)(x1 − x0) + A12(x)x2,

ẋ2 = A2(x)x2,
(18)

where, x = (x1, x2)
T , x1 = (S, V,R)T represents the uninfected classes (the susceptible, vac-

cinated and recovered individuals), x2 = (C, I)T designates the infected classes (asymptomatic
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carriers and infectious individuals), x0 = (S0, V 0, R0)T ,

A1(x) =

−(θ + µ) ω φ

θ −(ω + µ) 0
0 0 −(φ+ µ)

 , A12(x) =

 −Σ(1 + λ0
a)εS −Σ(1 + λ0

a)S
−Σk7(1 + λ0

a)εV −Σk7(1 + λ0
a)V

α δ

 ,

and

A2(x) =

(
Σε (k5λ

0
a + 1)S + (k4λ

0
a + 1) k7V −D1 Σ (k5λ

0
a + 1)S + (k4λ

0
a + 1) k7V

Σε (pS + qk7V )λ0
a + γ Σ (pS + qk7V )λ0

a −D2

)
,

with k4 = 1− q and k5 = 1− p.

According to Kamgang and Sallet (2008), the DFE E0 is globally asymptotically stable whenever
the following five conditions are met:
H1: The system (18) is defined on a positively invariant and dissipative subset Ω of R3+2

+ .

H2: The equilibrium point x0) for the sub-system
dx1

dt
= A1(x1, 0)(x1 − x0), is globally asymp-

totically stable in the canonical projection of Ω in R3
+.

H3: A2(x) is a Metzler (A Metzler matrix is a matrix with off-diagonal entries nonnegative (Smith
and Waltman (1995))) and irreducible matrix for any given x ∈ Ω.
H4: There exists an upper-bound matrix A2 for the set Γ = {A2(x), x ∈ Ω}, with the property
that either A2 ̸∈ Γ or if A2 ∈ Γ (i.e., A2 = max

Ω
Γ), then for any x ∈ Ω such that A2 = A2(x),

x ∈ Rn1

+ × {0} (i.e., the points where the maximum is realized are contained in the disease-free
sub-manifold).
H5: α(A2) ≤ 0 , where α(A2) denotes the largest real part of the eigenvalues of A2.

We implement Theorem 4.3 in Kamgang and Sallet (2008) by showing that the requirements H1

to H5 are satisfied under the assumptions of Theorem 3.2.

The hypothesis H1 follows readily from Theorem 3.1.

As for the hypothesis H2, we rewrite the sub-system ẋ1 = A1(x1, 0)(x1 − x0) as follows.
Ṡ = Λ+ ωV − (θ + µ)S + φR,

V̇ = θS − (ω + µ)V,

Ṙ = −(φ+ µ)R.

(19)

The hypothesis H2 requires that the sub-system defined on Ω
⋂
R3

+ be globally asymptotically
stable in x0.

The system (19) can take the following compact form:

Ẋ(t) = BX(t) +B1, (20)

where X = (S, V,R),

B =

−(θ + µ) ω φ
θ − (ω + µ) 0
0 0 −(φ+ µ)

 and B1 =

Λ
0
0

 .
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The three eigenvalues −µ,−(µ+φ),−(µ+θ+ω) of B are negative. Therefore, B is diagonalizable
and there exists an invertible matrix P and a diagonal matrix D (whose diagonal entries are the
eigenvalues of B) such that D = P−1BP . Moreover, it is easy to prove that X∗ = −B−1B1 =
(S0, V 0, R0)T is the unique constant solution of Equation (20), and that classically, its general
solution is given by

X(t) = X∗ + PeDtP−1Y, (21)

where, Y is a constant vector in R3 (depending on P and the initial conditions).

Since lim
t−→+∞

eDt = 0, we have lim
t−→+∞

X(t) = X∗ = (S0, V 0, R0)T . Thus, system (19) converges

globally to x0 = (S0, V 0, R0)T and hypothesis H2 is satisfied.

Observing that the two off-diagonal entries the matrix A2(x) are positive, irrespective of the values
of its remaining entries, the associated directed graph of A2(x) is strongly connected. Thus, using
Theorem 1.17 in Varga (1962), we conclude that A2(x) is an irreducible Metzler matrix. Hence,
hypothesis H3 is satisfied.

Now, we check the hypothesis H4 by giving an upper bound of A2(x). First, note that for all t ≥ 0,
S/N ≤ 1 and V/N ≤ 1, so that an upper bound for x ∈ Ω is

A2 =

(
εΣ0N0F1 −D1 Σ0N0F1

εΣ0N0F2 + γ Σ0N0F2 −D2

)
,

where F1 = ((1− p)λ0
a + 1] + [(1− q)λ0

a + 1](1− ν)) and F2 = [p+ q(1− ν))λ0
a.

Note that A2 in not an element of Γ, so that hypothesis H4 is satisfied.

Hypothesis H5 requires that α(A2) ≤ 0 ( A2 should be a stable Metzler matrix ). Note that A2 is
stable if and only if its determinant det(A2) ≥ 0 and its trace tr(A2) ≤ 0. Thus, one has

−Σ0N0 (F1 (εD2 + γ) +D1F2) +D1D2 ≥ 0 and Σ0N0 (εF1 + F2)− (D1 +D2) ≤ 0.

Thus, A2 is stable if and only if

N0 (F1 (εD2 + γ) +D1F2)

D3 (εD2 + γ) +D1D4

Rav
0 ≤ 1 and

N0 (εF1 + F2)D1D2(
D1 +D2

)
(D3 (εD2 + γ) +D1D4)

Rav
0 ≤ 1. (22)

We point out that the conditions in Equation (22) are equivalent to

Rav
0 ≤ ξ1 and Rav

0 ≤ ξ2, (23)

where

ξ1 =
D3 (εD2 + γ) +D1D4

N0 (F1 (εD2 + γ) +D1F2)
and ξ2 =

(
D1 +D2

)
(D3 (εD2 + γ) +D1D4)

N0 (εF1 + F2)D1D2

.
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A simple calculation gives

ξ1 − ξ2 =
(D3 (εD2 + γ) +D1D4)

N0

{
1

(F1 (εD2 + γ) +D1F2)
− D1 +D2

(εF1 + F2)D1D2

}
= −

{
D1 (F1γ +D1F2) +D2F1 (εD2 + γ)

}
N0 (F1 (εD2 + γ) +D1F2) (εF1 + F2)D1D2

.

Since ξ1 − ξ2 < 0, then min {ξ1, ξ2} = ξ1. Thus A2 is a stable if

ξ1 = min {ξ1, ξ2} < 1. (24)

Finally, since all the hypotheses H1−H5 are satisfied, the application of Theorem 4.3 in Kamgang
and Sallet (2008) implies that the DFE E0 of system (6) is GAS in Ω if Rav

0 ≤ ξ1 < 1. This
concludes the proof. ■

Figure 2 presents the phase portrait of system (6) when βh = 0.103345 and βa = 0.11573 (so that
ξ1 = 0.1733875444 and R0 = 0.1284420311 < ξ1 < 1). It illustrates the global asymptotic stabil-
ity of the DFE E0. This means that meningitis disappears within the host population regardless of
the initial condition of the system and the infection is controllable.
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Figure 2. Global asymptotic stability of the DFE when R0 ≤ ξ1 < 1. Here, βh = 0.103345 and βa = 0.11573 (so
that ξ1 = 0.1733875444 and R0 = 0.1284420311 < ξ1 < 1). All other parameter values are as in Table 2.

The result in Theorem 3.2 shows the (global) stability for the DFE only when Rav
0 ≤ ξ1 < 1.

The existence of the additional threshold parameter ξ1 for the global stability of DFE suggests the
possibility that system (6) might exhibits a backward bifurcation. We shall address theoretically
and numerically this phenomenon shortly.
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3.3. Existence and stability of endemic equilibria

Herein, we investigate the existence and stability of endemic equilibrium points of system (6). An
endemic equilibrium point of system (6), E∗∗ = (S∗∗, V ∗∗, C∗∗, I∗∗, R∗∗) is obtained by solving
for positive solutions the following system:

Λ + ωV ∗∗ − (θ + µ+ (1 + λ0
a)λ

∗∗
h )S∗∗ + φR∗∗ = 0,

θS∗∗ − (ω + µ+ (1− ν)(1 + λ0
a)λ

∗∗
h )V ∗∗ = 0,

(((1− p)λ0
a + 1)S∗∗ + ((1− q)λ0

a + 1) (1− ν)V ∗∗)λ∗∗
h − (µ+ α + γ)C∗∗ = 0,

(pS∗∗ + q(1− ν)V ∗∗)λ0
aλ

∗∗
h + γC∗∗ − (µ+ d+ δ)I∗∗ = 0,

δI∗∗ + αC∗∗ − (φ+ µ)R∗∗ = 0,

(25)

where

λ∗∗
h =

(βhI
∗∗ + εβhC

∗∗)

N∗∗ ,

is the force of infection evaluated at the endemic equilibrium point.

Straightforward but tedious computations give S∗∗, V ∗∗, C∗∗, I∗∗ and R∗∗ in terms of λ∗∗
h as fol-

lows:

C∗∗ =
e13 (λ

∗∗
h )2 + e14λ

∗∗
h

e10 (λ∗∗
h )2 + e11λ∗∗

h + e12
, I∗∗ =

e15 (λ
∗∗
h )2 + e16λ

∗∗
h

e10 (λ∗∗
h )2 + e11λ∗∗

h + e12
, R∗∗ =

δI∗∗ + αC∗∗

µ+ φ
,

S∗∗ =
(µ+ ω + (1 + λ0

a)(1− ν)λ∗∗
h ) (Λ(µ+ φ) + φ (δI∗∗ + αC∗∗))

(µ+ φ) {(µ+ (1 + λ0
a)λ

∗∗
h ) (µ+ ω + (1 + λ0

a)k7λ
∗∗
h ) + θ [µ+ (1 + λ0

a)k7λ
∗∗
h )} ,

V ∗∗ =
θ (Λ(µ+ φ) + φ (δI∗∗ + αC∗∗))

(µ+ φ) {(µ+ (1 + λ0
a)λ

∗∗
h ) (µ+ ω + (1 + λ0

a)k7λ
∗∗
h ) + θ [µ+ (1 + λ0

a)k7λ
∗∗
h )} ,

(26)
where

e10 = k7
(
1 + λ0

a

) {
µ3 + ( γ + α + d+ δ + φ)µ2 + [(d+ φ+ δ) γ + α d+ α δ + dφ+ δ φ]µ

+ γdφ+ λ0
a

[
µ3 + pαφ d+ γdφ+ [(d+ φ+ δ) γ + α d+ α δ + dφ+ pαφ+ k5δ φ]µ

+( γ + α + d+ δ + φ)µ2
]}

,

e11 = µ4 + ( γ + ω + d+ δ + φ+ α)µ3 +
[
(d+ ω + φ+ δ) γ + ω δ + δ φ+ ω α+ dφ+ ω φ

+ω d+ α d+ α δ
]
µ2 + [(ω δ + ω d+ ω φ+ dφ) γ + ω dφ+ ω δ φ+ ω α d+ ω α δ]µ

+ω γdφ+
{
µ4 + ( γ + ω + d+ δ + φ+ α)µ3 +

[
(d+ ω + φ+ δ) γ + pαφ+ k5δ φ

+ω φ+ α d+ ω δ + ω d+ ω α+ dφ+ α δ
]
µ2 +

[
(ω δ + ω d+ ω φ+ dφ) γ + ω α d

+pαφ d + k5δ φω + pω αφ+ ω α δ + ω dφ
]
µ+ ω γdφ+ pω αφd

}
λ0
a +

{
µ4 + ( γ + α

+δ + φ+ d+ θ)µ3 +
[
(φ+ d+ θ + δ) γ + α d+ dφ+ θ δ + θ d+ θ φ+ αφ+ α δ

+θ α+ δ φ
]
µ2 +

[
θ dφ+ α δ φ+ α dφ+ θ α d+ θ δ φ+ θ α δ + (dφ+ θ φ+ θ d+ δ φ

+θ δ)γ
]
µ+ θ γdφ +

[
µ4 + θ γdφ+ θ qαφ d+ ( γ + α + δ + φ+ d+ θ)µ3 +

[
(φ+ d

+θ + δ)γ + α d+ dφ+ θ δ + θ d+ θ φ+ αφ+ α δ + θ α+ δ φ
]
µ2 +

(
(dφ+ θ φ+ θ d

+δ φ+ θ δ)γ + θ qαφ+ α δ φ+ α dφ+ θ dφ+ θ δ φ(1− q) + θ α d+ θ α δ
)
µ
]
λ0
a

}
k7,
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e12 = µ (µ+ φ)(µ+ ω + θ)D1D2,

e13 = ΛD2(µ+ φ)(1 + λ0
a)
(
(1− p)λ0

a + 1
)
(1− ν),

e14 = Λ(µ+ φ)D2

{
θ
(
(1− q)λ0

a + 1
)
(1− ν) +

(
(1− p)λ0

a + 1
)
(µ+ ω)

}
,

e15 = Λ(µ+ φ)(1− ν)(1 + λ0
a)
{(

(1− p)λ0
a + 1

)
γ + p λ0

a D1

}
,

e16 = Λ(µ+ φ)
{
γ
{ (

(1− p)λ0
a + 1

)
(µ+ ω) + θ

(
(1− q)λ0

a + 1
)
(1− ν)

}
+(p(µ+ ω) + q(1− ν) θ) λ0

aD1

}
.

Note that at the endemic equilibrium state E∗∗, one has

N∗∗ =
Σ0N0 (I∗∗ + εC∗∗)

λ∗∗
h

=
Λ

µ
− dI∗∗

µ
. (27)

Equation (27) reduces to(
µΣ0N0 + dλ∗∗

h

)
I∗∗ + µεΣ0N0C∗∗ − Λλ∗∗

h = 0. (28)

Now, after replacing in (28) I∗∗ and C∗∗ by their expressions given in Equation (26), one obtains
the quadratic equation

e19 (λ
∗∗
h )2 + e20λ

∗∗
h + e21 = 0, (29)

where
e19 = µΛ (1− ν) (1 + λ0

a)
{[

(δ + φ+ γ + d(1− p) + α)µ+ pαφ+ α δ + (1− p) (α d
+dφ+ δ φ) + µ2 + γ (φ+ δ)

]
λ0
a + µ2 + (d+ δ + φ+ α + γ)µ+ γ (φ+ δ)

+dφ+ α d+ α δ + δ φ
}
,

e20 = −µΣ0N0e15 − de16 − µεΣ0N0e13 + Λe11,
e21 = Λµ(µ+ φ)D1D2(µ+ ω + θ) (1−Rav

0 ) .
(30)

The number of possible real solutions of Equation (29) is determined by the sign of the coefficients
e19, e20 and e21. Thus, define g(λ∗∗

h ) = e19 (λ
∗∗
h )2 + e20λ

∗∗
h + e21 and use Descartes’ Rule of Signs

to decide on the number of positive roots of g. That result is given in Table 4.

Table 4. The number of possible positive roots for Equation (28).

Rav
0 Sign of Sign of Sign of Number of Number of possible

e19 e20 e21 sign changes endemic equilibria
Rav

0 > 1 + - - 1 1
+ + -

Rav
0 < 1 + - + 2 0 or 2

+ + + 0 0

The following result summarizes the existence of endemic equilibrium points of system (6).

Theorem 3.3.

The following statements hold:

(1) System (6) does not have an endemic equilibrium in either of the following three cases:
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(i) Rav
0 = 1 and e20 > 0.

(ii) Rav
0 < 1, e220 − 4e19e21 > 0 and e20 > 0.

(iii) Rav
0 < 1 and e220 − 4e19e21 < 0.

(2) The meningitis model (6) has a unique endemic equilibrium in either of the following three
cases:

(i) Rav
0 > 1, and Equation (26) has the unique solution:

λ∗∗
h =

−e20 +
√

(e20)2 − 4e21e19
2e19

. (31)

(ii) Rav
0 < 1, e220 − 4e19e21 = 0 and e20 < 0, and the corresponding unique solution of

Equation (26) is λ∗∗
h0

=
−e20
2e1i

.

(iii) Rav
0 = 1 and e20 < 0, Equation (26) has the unique solution given by λ∗∗

h3
=

−e20
e19

.

(3) System (6) has two endemic equilibria given by (26) if Rav
0 < 1, e220−4e19e21 > 0 and e20 < 0.

The corresponding forces of infection which are two solutions of Equation (26) read:

λ∗∗
h1

=
−e20 +

√
(e20)2 − 4e21e19
2e19

and λ∗∗
h2

=
−e20 −

√
(e20)2 − 4e21e19
2e19

.

The combination of Theorem 3.2 and Theorem 3.3 indicates the possibility of forward and
backward bifurcation phenomena (Dushoff et al. (1998); Carr (1981); Brauer (2004); Garba et
al. (2008); Sharomi et al. (2007); Xu (2013); Xu and Liao (2014); Xu and Li (2015)). This
is the phenomenon where the disease-free equilibrium co-exist with a stable endemic equi-
librium when the associated reproduction number Rav

0 is less than one. The local asymptotic
stability of the unique endemic equilibrium E∗∗ = (S∗∗, V ∗∗, C∗∗, I∗∗, R∗∗) when Rav

0 > 1,
the existence of a forward bifurcation around E∗∗ at Rav

0 = 1, as well as the existence
of backward bifurcation at Rav

0 = 1 suggested by Theorem 3.2 and Theorem 3.3 are con-
firmed by Theorem 3.4 below. Its proof which uses the Center Manifold Theory (Carr (1981);
Castillo-Chavez and Song (2004)) is provided in Appendix A and is numerically illustrated in Fig-
ure 3.

Theorem 3.4.

Let A be the quantity given by Equation (45) in Appendix A. If A > 0, then system (6) undergoes
a backward bifurcation at Rav

0 = 1. If A < 0, then system (6) exhibits a forward bifurcation at
Rav

0 = 1. Moreover, the unique endemic equilibrium point E∗∗ is LAS whenever Rav
0 > 1, but

close to 1.

The results of Theorem 3.4 are similar to those in Agusto and Leite (2019), Djatcha Yaleu et al.
(2017), and Bah et al. (2019). In such a scenario, the classical requirement of the basic reproduction
number being less than the unity is only a necessary, but not a sufficient condition for the disease
elimination.
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Figure 3. Bifurcation diagrams for system (6). (a) βa = 0.573 and θ = 0.4868 (so that A = 0.000040162132 u25v3 >
0) and (b) βa = 0.573 and θ = 0.04868 (so that A = −0.000047658774 u25v3 < 0). EEP denotes the
endemic equilibrium point. All other parameter values are as in Table 2.

Figure 4 plots the phase portrait of system (6) when βh = 0.83345 and βa = 0.573 (so that
R0 = 1.226360785 > 1). It illustrates the fact that the trajectories of system (6) converge to the
endemic equilibrium point E∗. This means that NmA persists within the community and the disease
is uncontrollable.
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Figure 4. Asymptotic (global) stability of the unique EE when R0 > 1. Here, βh = 0.83345 and βa = 0.573 (so that
R0 = 1.226360785 > 1). All other parameter values are as in Table 2.
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4. Impact of desert aerosols and vaccine on the time evolution of NmA

In this section, we investigate the role of desert aerosols and vaccine on the dynamical transmission
of NmA. To allow an easy assessment, we start by studying the corresponding sub-model without
desert aerosols. Obviously, in the absence of desert aerosols, (βa = 0), our initial model (5) reduces
to the following sub-model,

Ṡ = Λ+ ωV − (θ + µ+ λh)S + φR,

V̇ = θS − (ω + µ+ (1− ν)λh)V,

Ċ = (S + (1− ν)V )λh − (µ+ α + γ)C,

İ = γC − (µ+ d+ δ)I,

Ṙ = δI + αC − (φ+ µ)R.

(32)

This aerosol-free model is exactly the same as the one in Agusto and Leite (2019), which in turn is
a simplification of the model in Djatcha Yaleu et al. (2017) if newborns are not vaccinated against
NmA at birth. The interested readers are referred to the latter two works for their in-depth analysis.
The system (6) and system (32) have the same DFE and the basic reproduction number R(a,f)

0 of
(32) is obtained by letting βa = 0 in the expression of Rav

0 given by (14). That is:

R(a,f)
0 =

Σ0 (S0 + (1− ν)V 0) (εD2 + γ)

D1D2

. (33)

Although the full model (6) with aerosol and the aerosol-free sub-model (32) have similar theoret-
ical results as far as the bifurcation analysis is concerned. Below, the influence of desert aerosol is
assessed in terms of its impact on the disease outbreak and and level of endemicity.

4.1. Detrimental impact of desert aerosols on NmA

We start the assessment of the role of desert aerosol on the transmission of NmA by comparing the
basic reproduction numbers of the models in the presence of desert aerosols and its aerosol-free
sub-model. Practically, the basic reproduction for an epidemic such asNmA measures its ability to
invade the human population. In order to achieve our goal, we compute the ratio:

R(a,f)
0

Rav
0

=
(S0 + (1− ν)V 0) (εD2 + γ)

D3 (εD2 + γ) +D1D4

.

Since D3 = ((1− p)λ0
a + 1)S0 + ((1− q)λ0

a + 1) (1 − ν)V 0, one has (S0 + (1− ν)V 0) < D3,
and consequently (S0 + (1− ν)V 0) (εD2 + γ) < D3 (εD2 + γ), leading to

R(a,f)
0 < Rav

0 . (34)

The relation (34) suggests that the inhalation of aerosols dust is detrimental to the transmission of
NmA by increasing its ability to break and invade the population. Moreover, neglecting the effects
of desert aerosols might lead to an underestimate of the basic reproduction number and potentially
distort the efforts undertaken to eliminate NmA.
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Figure 5 plots the basic reproduction numbers R(a,f)
0 and Rav

0 as a function of βh for two different
and fixed values of βa. It shows that R(a,f)

0 and Rav
0 are increasing functions of βh. In fact, their

analytically expressions show that they are increasing linear functions of βh.
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Figure 5. Comparison between Rav
0 and R(a,f)

0 for fixed values of βa. They are plotted as the function of βh: (a)
βa = 0.3 and (b) βa = 0.983. All other parameter values are as in Table 2.
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Figure 6. Comparison between Rav
0 and R(a,f)

0 for fixed values of βh. They are plotted against βa and Q∗. (a) βh =
0.43. (b) βh = 0.43 and βa = 0.53. All other parameter values are as in Table 2.

Now, we investigate the dependence of the reproduction number Rav
0 with respect to βa in the one

hand, and to Q∗ in the other hand. The partial derivatives of Rav
0 with respect to βa and Q∗ are

respectively,

∂Rav
0

∂βa

=
Σ0A0 {(εD2 + γ) ((1− p)S0 + (1− q)k7V

0) +D1 (pS
0 + qk7V

0)}
(A0 +H)D1D2

, (35)

and
∂Rav

0

∂Q∗
=

Σ0βaµaH {(εD2 + γ) ((1− p)S0 + (1− q)k7V
0) +D1 (pS

0 + qk7V
0)}

(Q∗ + µaH)2D1D2

. (36)
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Thus, Rav
0 is an increasing function of βa and Q∗, respectively.

Relations (35) and (36) show that a high contact rate with desert aerosol or a large value of aerosol
production might lead to a very large value of the basic reproduction number consequently have a
considerable detrimental impact on the spreading of NmA. This is illustrated in Figure 6. Looking
at Rav

0 as a function of the two variables βh and βa (ie. Rav
0 = Rav

0 (βh, βa)) and using parameter
values in Table 2, we illustrate numerically in Figure 7 that an increase in both the inhalation rate
of desert aerosols βa and the NmA transmission rate βh results to an increase in Rav

0 .

Figure 7. Level curves of the reproduction number Rav
0 showing the simultaneous effects of βh and βa. All other

parameter values are as in Table 2.

We close up this investigation by evaluating the effects of desert aerosol on the level of the en-
demicity of NmA. The simpler way of doing this is to study the behavior of the unique endemic
equilibrium (Rav

0 > 1) as a function of the irritation rate βa. Precisely, we study the behavior of
the infected component I∗∗ (βa) as a function of βa. Remember that

I∗∗ = I∗∗ (βa) =
e15 (βa) (λ

∗∗
h (βa))

2 + e16 (βa, )λ
∗∗
h (βa)

e10 (βa) (λ∗∗
h (βa))

2 + e11 (βa)λ∗∗
h (βa) + e12 (βa)

,

with

λ∗∗
h (βa) =

−e20 (βa) +
√
(e20 (βa))2 − 4e21 (βa) e19 (βa)

2e19 (βa)
.

Now, from Equation (26), the partial derivative of I∗∗ with respect to βa satisfies

∂I∗∗

∂βa

=
K0 +K1 (λ

∗∗
h )4 +K2 (λ

∗∗
h )3 +K3 (λ

∗∗
h )2(

e10 (λ∗∗
h )2 + e11λ∗∗

h + e12
)2 , (37)
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where

K0 =

(
(λ∗∗

h )2
∂e15
∂βa

+ 2e15λ
∗∗
h

∂λ∗∗
h

∂βa

+ λ∗∗
h

∂e16
∂βa

+ e16
∂λ∗∗

h

∂βa

)
e12,

K1 = A0k7
2pµΛ

(
1 + βaA

0
)2

(µ+ φ) (µ+ φ+ α) (µ+ α + γ) (µ+ d+ δ)
/
(A0 +H),

K2 = A0k7µΛ (µ+ φ) (µ+ α + γ) (µ+ d+ δ)
(
1 + βaA

0
) [

k7
(
γµ+ pαφ+ θ pα

+θ pφ+ θ qα+ θ qφ+ γφ+ µ pφ+ µ θ q + µ pα+ µ θ p+ A0µβapφ+ A0pβaαφ

+(p− q)βaA
0θ (µ+ α + φ) + A0 γβaµ+ A0 γφβa + A0pβaµ

2 + A0µβapα + µ2p
)

+2µ pω + 2µα p+ 2 pω α+ 2 pω φ+ 2µφ p+ 2µ2p
]/
(A0 +H),

K3 = A0µ (µ+ φ) Λ
(
µ2 + µα+ k7(µ

2 + µφ+ µ θ + µα+ θ φ+ θ α+ φα) + µφ+ µω

+ ω α+ ω φ
)
(k7θ q + µ p+ pω)D1D2

/
(A0 +H) + µΛ (1− ν)2

[ (
1 + λ0

a

)
(µ+ φ) γ

+ (µ2 + µα + µφ+ αφ)λ0
ap+ (p− q)λ0

aθ(µ+ α + φ)
] (

1 + λ0
a

)2
(µ+ φ)D1D2(∂λ

∗∗
h /∂βa).

Analytically, it is very difficult to prove that ∂I∗∗/∂βa > 0. Alternatively, we illustrate it numer-
ically in Figure 8 which shows that I∗∗ and C∗∗ are increasing functions of βa. Thus, we have
established the following result.

Theorem 4.1.

The infected components I∗∗ = I∗∗ (βa) and C∗∗ = I∗∗ (βa) of the endemic equilibrium point are
strictly monotonic increasing functions on the interval 0 ≤ βa < +∞.

The relevance of Theorem 4.1 is that it suggests a clear answer to the research question which has
motivated this work, by highlighting the detrimental effect of the desert aerosols in the transmission
of meningococcal meningitis. To add more evidence, Figure 8 presents the time series of infected
individuals for three different values of βa when βh is fixed to βh = 0.983345 (so that R(a,f)

0 > 1).
From this figure, it clearly appears that as βa increases, the number of carriers and infectious
individuals increases. This shows the detrimental impact of aerosols at every time step of the
evolution of NmA.

4.2. Favorable impact of vaccine

Now, we assess the effect of vaccination on system (6). To do this, we consider a control strategy
consisting in vaccinating the susceptible individuals. Suppose that initially (i.e., at t = 0), a propor-
tion θ of susceptible individuals is vaccinated with an imperfect vaccine. The basic reproduction
number of corresponding sub-model of system (6) in the absence of vaccination is obtained when
θ = 0 and reads as

R0 =
Σ0N0 {((1− p)λ0

a + 1) (εD2 + γ) + pλ0
aD1}

D1D2

. (38)
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Figure 8. Time series of infected individuals for three different values of βa when βh = 0.983345 (so that R(a,f)
0 > 1):

(a) carriers C and (b) infectious I . All other parameter values are as in Table 2.

The basic reproduction Rav
0 of the full system (6) and its vaccination-free sub-model counterpart

R0 are linked by the following relation:

Rav
0 =

D3 (εD2 + γ) +D1D4

N0 {((1− p)λ0
a + 1) (εD2 + γ) + pλ0

aD1}
R0. (39)

From (39), one clearly sees that Rav
0 < R0, which shows that vaccination reduces the basic repro-

duction number, and potentially impedes the NmA to break out in a severe manner. The constraint
Rav

0 < 1 is necessary (but not always sufficient) for the elimination of NmA, and defines implicitly
the critical vaccination threshold rate θc given by:

θc =
{((1− p)λ0

a + 1) (εD2 + γ) + pλ0
aD1} (µ+ ω) (R0 − 1)

{((1− p)λ0
a + 1) (εD2 + γ) + pλ0

aD1} −R0k7 {((1− q)λ0
a + 1) (εD2 + γ) + qλ0

aD1}
.

(40)
If there were no backward bifurcation phenomenon, the vaccination rate satisfying θ > θc will have
been necessary and sufficient to ensure the elimination of NmA. One should notice that even in this
case, the vaccination at the critical rate θc which guaranties the so called herd immunity (Scherer
and McLean (2002); Farrington (2003)), will not instantly lead to the disease elimination, because
the human immunity requires time to build up (McLeod Griffiss (1995)). Unfortunately, for the
current work, the phenomenon of backward bifurcation is present and complicates the control of
the disease by requiring more implementable efforts to bring Rav

0 below the threshold value ξ1. This
additional constraint, coupled to Rav

0 < 1 is (thanks to Theorem 3.2) necessary and sufficient to
eliminate NmA. Note that the constraint Rav

0 ≤ ξ1 will be easily achieved if by chance the threshold
value ξ1 is as large as possible, and close to 1 from the left. The latter constraint (imposed by the
existence of backward bifurcation phenomenon) enforces a second vaccination threshold rate θec
that must be reached for NmA elimination. The explicit value of θec seems impossible to be derived
due to the fact that vaccination is not 100% efficient. Alternatively, it is rather possible to compute
the threshold effectiveness rate of vaccination νc so that ν ≥ νc is equivalent to Rav

0 ≤ ξ1. The
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said threshold reads:

νc = 1− {((1− p)λ0
a + 1) (εD2 + γ) + pλ0

aD1}
(
1−R0

)
{((1− q)λ0

a + 1) (εD2 + γ) + qλ0
aD1}R0

. (41)

Finally, NmA can be eliminated in the population when people are vaccinated at the rate θ above
θc, using a vaccine whose efficiency rate ν exceeds νc.

The above theoretical investigations are now numerically ascertained. In this regard, we assume
that a vaccine with 80.5% (ν = 0.805) efficacy is used, and choose βh = 0.4334 and βa = 0.673.
Taking the remaining parameters values as in Table 2, the threshold efficacy rate necessary for the
elimination of NmA is θc = 0.2697. In order to illustrate that the constraint θ > θc is not sufficient
to eliminate NmA, we choose values of θ around θc in the following three scenarios:
(i) θ = 0.2667 (so that Rav

0 = 1.0022 and θ < θc),
(ii) θ = 0.2697 (so that Rav

0 = 1.0000 and θ = θc ),
(iii) θ = 0.2717 (so that Rav

0 = 0.9986 and θ > θc).

Since in either case, Rav
0 ≥ 1, NmA cannot be eliminated. This is reinforced by Figure 9, which

shows that all infected individuals remain positive for all time.
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Figure 9. Infected individuals for three different values of proportion of susceptible population vaccinated when βh =
0.4334 and βa = 0.673 (so that θc = 0.2697 ): (a) carriers C and (b) infectious I . All other parameter values
are as in Table 2.

We have just shown that vaccination alone in not sufficient to eliminate NmA in the population.
Nevertheless, vaccination with efficacy above the control threshold νc is enough. Therefore, we
assume that 0.85% (θ = 0.0085) of susceptible individuals are vaccinated against NmA and we
take βh = 0.1028 and βa = 0.6930. Using the parameter values in Table 2, we obtain νc = 0.9177.
Thus, to illustrate that the constraint ν > νc is sufficient to eliminate NmA, we choose three values
of ν close to νc. The following three cases are considered:
(a) ν = 0.1801 < νc (so that Rav

0 = 0.8822) and ξ1 = 0.5147),
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(b) ν = 0.1897 < νc (so that Rav
0 = 0.8794 and ξ1 = 0.5159),

(c) ν = 0.9877 > νc (so that Rav
0 = 0.6472 and ξ1 = 0.6943).

These three cases are illustrated in Figure 10, where it is clear that NmA will be eliminated only
when ν > νc. Theoretically, the elimination scenario in (c) corresponds to the situation where
Rav

0 < ξ1 < 1 (because Rav
0 = 0.6472 < ξ1 = 0.6943) as demonstrated earlier in Theorem 3.2.

0 50 100 150 200 250 300 350 400
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Time(Days)

C
a
rr
ie
rs

in
d
iv
id
u
a
ls

 

 

ν = 0.1801 < νc

ν = 0.1897 < νc

ν = 0.9877 > νc

0 50 100 150 200 250 300 350 400
0

50

100

150

200

250

300

350

400

450

500

Time(Days)
In

fe
ct
io
u
s
in
d
iv
id
u
a
ls

 

 

ν = 0.1801 < νc

ν = 0.1897 < νc

ν = 0.9877 > νc

(a) (b)

Figure 10. Infected individuals for three different values of proportion of susceptible population vaccinated when βh =
0.1028 and βa = 0.6930 (so that νc = 0.9177): (a) carriers C and (b) infectious I . All other parameter
values are as in Table 2.

5. Discussion and Conclusion

5.1. Discussion

The model was built in such a way that its basic reproduction number is greater than its counterpart
in the absence of aerosols. This finding suggests that, ignoring the influence of aerosol dust may
under-estimate the ability of NmA to break out and invade the population and possibly distort the
NmA control strategies. The detrimental impact of desert aerosols on the long run dynamics of
NmA was shown by proving that at the endemic level of NmA, the number of infected individuals
increases when the aerosol dust inhalation rate increases. More importantly, our model suggests
that the successful elimination of NmA can be achieved by vaccinating, with a vaccine that assumes
a sufficiently high efficacy. This was shown by exhibiting a threshold value for vaccine efficacy,
above which the vaccine efficacy should lie in order to eliminate NmA.

5.2. Conclusion

In this paper, we have assessed the influences of desert aerosols on the dynamical transmission of
NmA in a human population where an imperfect vaccine is used to prevent the disease propagation.

27

Signing et al.: Transmission Dynamics of Neisseria Meningitidis Serogroup A

Published by Digital Commons @PVAMU, 2022



AAM: Intern. J., Vol. 17, Issue 2 (December 2022) 499

The assessment was done through the formulation of a mathematical model which accounted for
the fast and slow progressions of NmA due to the inhalation of aerosol dust that weakens the
nasopharyngeal mucosa of afflicted individuals. Our theoretical and numerical findings and other
contributions can be summarized as follows: (a) We have proved the existence, boundedness and
positivity of a unique global solution of any initial problem of the model. (b) We have computed
the basic reproduction number and used to study the existence and types of equilibria and their
stability properties. (c) We have exhibited an additional threshold such that: (i) the disease-free
equilibrium is globally asymptotically stable whenever that additional threshold is between the
basic reproduction number and 1, (ii) the model undergoes the backward and forward bifurcations.
(d) We have shown that there exists a unique locally asymptotically stable endemic equilibrium
whenever the basic reproduction number is greater than one, but close to 1. (e) We have plotted the
graphs and diagrams to illustrate backward and forward bifurcations exhibited by our model and
the asymptotic (global) of equilibria, as well as the detrimental impact of aerosol dust due to its
the inhalation.

Our findings have informed the possible extensions of the current work on which we are already
working. They include: (1) The explicit incorporation of seasonality by considering time-periodic
parameters for the equation for aerosols. (2) Introducing the diffusion and transport of aerosol dust
by wind by considering a reaction-diffusion-convection model. (3) Incorporating some control
strategies such as watering the routes and educating people to avoid huge gatherings.
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Appendix A: Proof of Theorem 3.4

We prove this theorem using a result by Castillo-Chavez and Song in Castillo-Chavez and Song
(2004). To that end, we do the following change of variables: x1 = S, x2 = V , x3 = C, x4 = I
and x5 = R so that N = x1 + x2 + x3 + x4 + x5. Moreover, we adopt the following notations:

x = (x1, x2, x3, x4, x5); h = (h1, h2, h3, h4, h5) and λh =
βh(εx3 + x4)

N
.

Then, system (6) takes the form:

ẋ = h(x), (42)

with, 

h1 = Λ+ ωx2 − (µ+ θ + (1 + λ0
a)λh)x1 + φx5,

h2 = θx1 − (ω + µ+ (1 + λ0
a)k7λh)x2,

h3 = (((1− p)λ0
a + 1)x1 + ((1− q)λ0

a + 1) k7x2)λh − (µ+ α + γ)x3,

h4 = (px1 + qk7x2)λ
0
aλh + γx3 − (µ+ d+ δ)x4,

h5 = δx4 + αx3 − (φ+ µ)x5.

The system (42) has a DFE given by E0 = (x0
1, x

0
2, 0, 0, 0), where

x0
1 =

Λ(µ+ ω)

µ(µ+ ω + θ)
and x0

2 =
Λθ

µ(µ+ ω + θ)
.

Next, we consider the case where Rav
0 = 1 and set, βh = β∗∗

h as the chosen bifurcation parameter.
Solving Rav

0 = 1 gives

βh = β∗∗
h =

N0D1D2

(εD2 + γ)D3 +D1D4

.

The Jacobian matrix of system (42) at the DFE E0 denoted by Jβ∗∗
h

is given by Equation (16) in
which βh is replaced by β∗∗

h . Its characteristic polynomial takes the form:

Q(X) = −X (X + µ+ φ) (X + Φ)
(
X2 + (2µ+ ω + θ)X + µ (µ+ ω + θ)

)
,

where,

Φ =
D1 (γD3 +D1D4) +D2D3 (εD2 + γ)

(εD2 + γ)D3 +D1D4

.

It follows that Jβ∗∗
h

has a simple zero eigenvalue, while the remaining eigenvalues have negative
real parts. Hence, the Center Manifold theory (Carr (1981)) can be used to analyze the dynamics
of system (42). In particular, a result in Castillo-Chavez and Song (2004), reproduced below for
convenience, is used to prove that, when the requirements in Theorem 3.4 are met, there exists a
unique endemic equilibrium of system (42) (as shown in Lemma 3.3), which is locally asymptoti-
cally stable for Rav

0 greater than 1 but close to 1.

Theorem 5.1. (Castillo-Chavez and Song (2004))

Consider the following general system of ordinary differential equations with a parameter ϕ:

dz

dt
= g(z, ϕ), g : Rn × R −→ R and g ∈ C2(Rn,R), (43)
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where 0 is an equilibrium point of the system (that is, g(0, ϕ) ≡ 0 for all ϕ) and assume

(1) M = Dzg(0, 0) =

(
∂gi
zj

(0, 0)

)
is the linearized matrix of system (42) around the equilibrium

0 with ϕ evaluated at 0. Zero is a simple eigenvalue of M and other eigenvalues of M have
negative real parts;

(2) Matrix M has a right eigenvector u and a left eigenvector v (each corresponding to the zero
eigenvalue).

Let gk be the kth component of g and

A =
n∑

k,i,j=1

vkuiuj
∂2gk
∂zi∂zj

(0, 0),

B =
n∑

k,i=1

vkui
∂2gk
∂zi∂ϕ

(0, 0).

Then, the local dynamics of the system around the equilibrium point 0 is totally determined by the
signs of A and B as follows:

(i) A > 0, B > 0. When ϕ < 0 with | ϕ | ≪ 1, 0 is locally asymptotically stable and there exists
a positive unstable equilibrium; when 0 < ϕ ≪ 1, 0 is unstable and there exists a negative,
locally asymptotically stable equilibrium;

(ii) A < 0, B < 0. When ϕ < 0 with | ϕ | ≪ 1, 0 is unstable; when 0 < ϕ ≪ 1, 0 is locally
asymptotically stable equilibrium, and there exists a positive unstable equilibrium;

(iii) A > 0, B < 0. When ϕ < 0 with | ϕ | ≪ 1, 0 is unstable, and there exists a locally
asymptotically stable negative equilibrium; when 0 < ϕ ≪ 1, 0 is stable, and a positive
unstable equilibrium appears;

(iv) A < 0, B > 0. When ϕ changes from negative to positive, 0 changes its stability from stable
to unstable. Correspondingly a negative unstable equilibrium becomes positive and locally
asymptotically stable.

Particularly, if A > 0 and B > 0, then a backward bifurcation occurs at ϕ = 0.

In order to apply the above theorem, the following computations are necessary. We recall that β∗∗
h

is the bifurcation parameter, in place of ϕ in Theorem (Castillo-Chavez and Song (2004)).

Eigenvectors of Jβ∗∗
h

: For the case when Rav
0 = 1, it can be shown that the Jacobian matrix Jβ∗∗

h

of model system (42) at βh = β∗∗
h has a right eigenvector (corresponding to the zero eigenvalues),
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given by u = (u1, u2, u3, u4, u5). Denote by Σ0
∗∗ = β∗∗

h /N0, we have:

u1 =
{
(µ+ ω)φu5 − Σ0

∗∗
(
1 + λ0

a

)
(εu3 + u4)

(
(µ+ ω)S0 + ωk7V

0
)}

(µ(µ+ ω + θ)) ,

u2 =
{
θφu5 − Σ0

∗∗
(
1 + λ0

a

)
(εu3 + u4)

(
θS0 + (µ+ θ)k7V

0
)}

(µ(µ+ ω + θ)) ,

u3 =
(µ+ φ)D2D3

D3 (δγ + αD2) + δD1D4

u5, u4 =
(µ+ φ) (γD3 +D1D4)

D3 (δγ + αD2) + δD1D4

u5, u5 > 0.

Similarly, the components of the left eigenvectors of Jβ∗∗
h

(corresponding to the zero eigenvalue),
denoted by v = (v1, v2, v3, v4, v5), are given by,

v1 = 0, v2 = 0, v3 > 0, v4 =
D1

εD2 + γ
v3 and v5 = 0.

Computation of B: For the sign of B, it can be shown that the associated non-vanishing partial
derivatives of h are

∂2h3

∂x3∂β∗∗
h

=
D3

N0
,

∂2h3

∂x4∂β∗∗
h

=
D3

N0
and

∂2h4

∂x3∂β∗∗
h

=
εD4

N0
,

∂2h4

∂x4∂β∗∗
h

=
D4

N0
.

Then, one has that

B = v3

4∑
i=3

ui
∂2h3

∂xi∂β∗∗
h

+ v4

4∑
i=3

ui
∂2h4

∂xi∂β∗∗
h

=
(εu3 + u4) (D3v3 +D4v4)

N0
> 0. (44)

Computation of A: For system (42), the associated nonzero partial derivatives of h (at the DFE
E0) are given by

∂2h3

∂x1∂x3

=
((1− p)λ0

a + 1) εβ∗∗
h

N0
− β∗∗

h εD3

(N0)2
,

∂2h3

∂x1∂x4

=
((1− p)λ0

a + 1) β∗∗
h

N0
− β∗∗

h D3

(N0)2
,

∂2h3

∂x2∂x3

=
k7 ((1− q)λ0

a + 1) εβ∗∗
h

N0
− β∗∗

h εD3

(N0)2
,

∂2h3

∂x2∂x4

=
k7 ((1− q)λ0

a + 1) β∗∗
h

N0
− β∗∗

h D3

(N0)2
,

∂2h3

∂x2
3

= −2β∗∗
h εD3

(N0)2
,

∂2h3

∂x3∂x4

= −β∗∗
h (1 + ε)D3

(N0)2
,

∂2h3

∂x3∂x5

= −β∗∗
h εD3

(N0)2
,

∂2h3

∂x2
4

= −2β∗∗
h D3

(N0)2
,

∂2h3

∂x4∂x5

= −β∗∗
h D3

(N0)2
,

∂2h4

∂x1∂x3

=
pλ0

aεβ
∗∗
h

N0
− β∗∗

h εD4

(N0)2
,

∂2h4

∂x1∂x4

=
Pλ0

aβ
∗∗
h

N0
− β∗∗

h D4

(N0)2
,

∂2h4

∂x2∂x3

=
qλ0

ak7εβ
∗∗
h

N0
− β∗∗

h εD4

(N0)2
,

∂2h4

∂x4∂x5

= −β∗∗
h D4

(N0)2
,

∂2h4

∂x2∂x4

=
qλ0

ak7β
∗∗
h

N0
− β∗∗

h D4

(N0)2
,

∂2h4

∂x2
3

= −2β∗∗
h εD4

(N0)2
,

∂2h4

∂x3∂x4

= −β∗∗
h (1 + ε)D4

(N0)2
,

∂2h4

∂x2
4

= −2β∗∗
h D4

(N0)2
,

∂2h4

∂x3∂x5

= −β∗∗
h εD4

(N0)2
.
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Then, setting D5 = u1 + u2 + u3 + u4 + u5, it follows that

A = v3

6∑
i,j=1

uiuj
∂2h3

∂xi∂xj

+ v4

6∑
i,j=1

uiuj
∂2h4

∂xi∂xj

,

=
2β∗

h (u3ε+ u4)

N0

{
v3 {u1 ((1− p)λ0

a + 1) + u2k7 ((1− q)λ0
a + 1)}+ v4λ

0
a [u1p+ u2qk7]

}
−2β∗

h (u3ε+ u4) (v3D3 + v4D4)D5

(N0)2
.

(45)
Thus, depending on the values of the parameters of system (6), the value of A can be positive or
negative. So, since B > 0, the conclusion follows from Theorem 5.1 items (i) and (iv).
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