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Abstract

The goal of this paper is to reveal numerically the generalized Henon-Heiles system, that is, in
the seventh-degree potential function where the smallest body mass varies. Utilizing the seventh
degree potential function, we determine the equations of motion for the variable mass generalized
Henon-Heiles system. Then we perform the graphical works such as locations of parking points,
allowed regions of motion, and attracting domain basins. Lastly, using the Meshcherskii space
transformations, we investigate stability states for these parking points.

Keywords: Henon-Heiles system; Variable mass; Seventh-degree; Stable; Unstable; Parking
points; Regions

MSC 2010 No.: 70F15, 70F07

1. Introduction

Celestial mechanics is the part of applied mathematics and theoretical physics where one can study
about the dynamical behavior of these celestial bodies. Either it is small or big as well as either
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440 S.K. Sahdev and A.A. Ansari

their shapes are point mass, spherical, oblate, triaxial, homogeneous, heterogeneous or with some
other perturbations. To study the dynamical properties of these bodies, we should consider these
bodies with a particular configuration. These configurations firstly started by Euler and then later
many other researchers have investigated these problems with many configurations as restricted
3, 4, 5 and N body problems. Out of these problems, the restricted 3-body problem is the com-
monly studied problem with many special types of configurations such as: Copenhagen problem,
Robes problem, Hills problem, Henon-Heiles problem, etc. One can see Bhatnagar et al. (1983),
SubbaRao and Sharma (1997), Nagler (2004), Ishwar and Sharma (2012), Ansari (2018), Ansari
(2020), Ansari (2021), Abouelmagd and Ansari (2021), Bouaziz and Ansari (2021), Sahdev and
Ansari (2021) for details.

The classical case of Henon-Heiles problem was initially studied by Henon and Heiles (1964).
This classical case problem contains the third-degree potential and from now onwards we will use
CHHP for this problem in the paper. Now the generalization of CHHP is known as Generalized
Henon-Heiles problem where it can have fifth or seventh-degree potential functions. This will be
abbreviated as GHHP. GHHP is studied by some scientist as Zotos et al. (2018), Dubeibe et al.
(2018), Dubeibe et al. (2020), and Llibre et al. (2021).

The losing or gaining of the mass of the celestial bodies are one of the attraction points for re-
searchers, especially astronomers. Researchers such as Singh and Ishwar (1985), Lukyanov (2009),
Zhang et al. (2012), Abouelmagd and Mostafa (2015), Ansari (2017), and Prasad and Ansari (2020)
have investigated these configurations with variable mass of the celestial bodies.

The organization of the paper is as follows. An overview of the literature is given in the intro-
duction section. The equations of motion and quasi-Jacobi integral are determined in Section 2.
The graphical works (parking points, allowed regions of motion and attracting domain basins) are
performed in Section 3 while the examination of stability of the parking points are presented in
Section 4. The conclusion of the paper is given in Section 5.

2. Equations of motion

After fixing the dimension and using the procedure given by Dubeibe et al. (2020) and Abouelmagd
and Ansari (2021), we can write the equations for the smallest body mass (m) motion when the
mass variation originates from a single point and have negligible momenta as:

ẍ+
ṁ

m
ẋ = − ∂V3

∂x
,

ÿ +
ṁ

m
ẏ = − ∂V3

∂y
,

(1)

where
∂V3

∂x
= V311 + αV312,

∂V3

∂y
= V321 + αV322,
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V3 = V1 + α{x6 y + x4 y3 + x2 y5 + x4 y + x2 y3 − y5

5
− y7

7
+

1

4
(x2 + y2)2 +

1

6
(x2 + y2)3},

V311 = x(1 + 2 y), V321 = x2 + y(1− y),

V312 = 2x y(2x2 + 3x4 + y2 + 2x2 y2 + y4) + x(x2 + y2)(1 + x2 + y2),

V322 = x2(1 + x2)(x2 + 3 y2) + y4(5x2 − 1− y2) + y(x2 + y2)(1 + x2 + y2).

By using Jeans law (m = m0 e
−t δ1) (Jeans (1928)) and Meshcherskii space transformations (x =

δ
−1/2
2 ξ, y = δ

−1/2
2 η) (Meshcherskii (1949)), where δ1 is a constant coefficient, δ2 =

m

m0

and m0 is

the initial mass, we can write the equations for the smallest variable mass body motion as:

ξ̈ = − ∂W

∂ξ
,

η̈ = − ∂W

∂η
,

(2)

where

W = W1 + αW2, (3)

W1 =

(
1

2
− δ21

8

)
(ξ2 + η2) + δ

−1/2
2

(
ξ2 η − η3

3

)
,

W2 = δ
−3/2
2

[
ξ4 + η + ξ2 η3 − η5

5
+ δ−1

2

(
ξ6 η + ξ4 η3 + ξ2 η5 − η7

7

)

+
δ
1/2
2

4
(ξ2 + η2)2 +

δ
−1/2
2

6
(ξ2 + η2)3

]
.

The quasi-Jacobi integral from Equation (2) can be performed as:

ξ̇2 + η̇2 = 2W1 + 2αW2 + E + 2

∫ t

t0

∂W1

∂ t
d t+ 2α

∫ t

t0

∂W2

∂ t
d t, (4)

where E is the integral constant for our model. If we put α = 0, then the equation for the quasi-
Jacobi integral will reduce to the Jacobi integral for the classical Henon-Heiles system.
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3. Graphical illustrations

The graphical works (parking points, allowed regions of motion, and attracting domain basins) are
done numerically for this new model.

3.1. Parking points

By solving

∂W

∂ξ
= 0 and

∂W

∂η
= 0,

numerically through the well-known software Mathematica, we get four parking points L1,2,3,4,
where L1 lies on the positive side of the η-axis, L2 lies at the origin, L3,4 lie in the third and
fourth quadrant respectively, both L3,4 are symmetrical to each other about the η-axis, and are
given in Figure (3). Figure 3(a) shows the constant mass case while Figures 3(b), 3(c), 3(d) show
the variable mass cases. In Figures 3(a), 3(b), and 3(c), the color points are showing the location
of parking points when the transition parameter α (= 0 (Black), 1 (Cyan), 5 (Blue) and 10 (Red))
varies. In these three cases, the locations of parking points L1,2 are unchanged while the locations
of parking points L3,4 are changing and moving towards the η-axis as the vlaue of the transition
parameter α, increases. In Figure 3(d), we fixed the value of transition parameter α = 4 and
increasing the value of the variation parameter δ2 (0.4 (Black), 0.8 (Cyan), 1 (Blue) and 1.4 (Red)),
we observed from that the location of parking point L2 is unchanged while the location of the
parking points L1,3,4 are moving away. In this way, these parameters have an excellent effect on
the locations of parking points.

3.2. Allowed regions of motion

The regions of motion are studied by evaluating the values of integral constant E corresponding to
each parking points L1,2,3,4 using the procedure given in Lukyanov (2009) and performed in Figure
2 as well as in Figure 3. Figure 2 shows the constant mass case while Figure 3 shows the variable
mass case. In these figures, the cyan-colored regions represent the forbidden regions while white-
colored regions represent the allowed regions for the motion. In part (a) of both figures, the parking
point L1 represents the smallest body that cannot move near the parking points L2,3,4 while it can
move near the parking point L1 which works as a gateway for the allowed regions. In part (b) of
both figures, the parking point L2 represents the smallest body that can move near all four parking
points L1,2,3,4. In part (c) of both the figures, the parking point L3,4 represents the smallest body
that cannot move near the parking point L2, while it can move near L1,3,4. Moreover, the parking
points L3,4 works as a gateway for the allowed regions. The only difference between Figures 2 and
3 is that the allowed regions are shrinking in the variable mass case than the other case.
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L1

L2

L3 L4

-2 -1 0 1 2

-2

-1

0

1

2

ξ

η

(a) δ1 = 0, δ2 = 1
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(c) δ1 = 0.2, δ2 = 1.4
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(b) δ1 = 0.2, δ2 = 0.8
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(d) δ1 = 0.2, δ2 = 0.4 (Black), 0.8 (Cyan), 1 (Blue), 1.4 (Red)

Figure 1. Locations of parking points at α = 0 (Black), 1 (Cyan), 5 (Blue), 10 (Red)

3.3. Basins of attracting domain

Using the procedure given by Bouaziz and Ansari (2021), we have investigated the attractive dy-
namical properties, i.e., basins of attracting domain utilizing the Newton-Raphson method which
is fast and simple than the other methods. The basins of attracting domain will appear when one
of the initial points tends rapidly to one of the parking points, i.e., attracting points. We will use
color code to explain the various attracting domains. We have investigated the attracting domain in
constant mass case (Figures 4(a) and 4(b)) and variable mass case (Figures 4(c) and 4(d)) as well as
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(c) Corresponding to L3,4

Figure 2. Regions of motion with constant mass

shown the comparison between both cases. Figures 4(a) and 4(b) represent the CHHP and GHHP
with constant mass, respectively, while Figures 4(c) and 4(d) represent the CHHP and GHHP with
variable mass, respectively. In Figures 4(a) and 4(c), the attracting points L1, L2 and L3,4 corre-
spond to the red, cyan and light-yellow colored regions. These three colored regions extend to
infinity. In Figures 4(b) and 4(d), the attracting points L1, L2 and L3,4 correspond to the red, green
and dark yellow colored regions. These three colored regions also extend to infinity. The main
difference between these cases is that after introducing the variable mass in the model the regions
are shrinking.
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Figure 3. Regions of motion with variable mass
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(a) Corresponding to constant mass case at α = 0

(c) Corresponding to variable mass case at α = 0

(b) Corresponding to constant mass case at α = 4

(d) Corresponding to variable mass case at α = 4

Figure 4. Basins of attracting domain for various cases
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4. Instability

Following the methodology given by Abouelmagd and Ansari (2021) and using Meshcherskii
space time inverse transformation, we can present the characteristic equation for our new model as

λ4 +D3 λ
3 +D2 λ

2 +D1 λ+D0 = 0, (5)

D3 = −2 δ1,

D2 =
3

2
δ1 +W 0

ξ ξ +W 0
η η,

D1 = −1

2
δ31 − δ1(W

0
ξ ξ +W 0

η η),

D0 =
1

16
δ41 +

1

4
δ21(W

0
ξ ξ +W 0

η η) +W 0
ξ ξ W

0
η η − (W 0

ξ η)
2.

It is noticed that in the case of constant mass, the odd coefficients D3 and D1 will become zero and
then the characteristic equation (8) will change to the quadratic equation in λ2. The superscript 0
denotes the value of W at the corresponding parking point.

We solve the above characteristic equation (8) numerically corresponding to each parking points
for the various values of the parameters used and get at least one positive real root or positive real
part in all cases. Hence, all the parking points are unstable (see Table 1).

Table 1. Nature of Parking Points for Variable Mass Case at δ1 = 0.2, δ2 = 0.4 and α = 4.

Parking points Corresponding eigenroots Nature
(0.0000000000, 0.0000000000) 0.10000000005± 0.9949874371 i Unstable

0.10000000005± 0.9949874371 i

(0.0000000000, 0.6317507118) − 2.8894216612, 3.0894216612 Unstable
0.0999999999± 5.1855439555 i

(− 0.3296262907,− 0.2037449029) − 1.9376616369, 2.1376616369 Unstable
0.0999999999± 2.2267413368 i

(0.3296262907, − 0.2037449029) − 1.9376616369, 2.1376616369 Unstable
0.0999999999± 2.2267413368 i

5. Conclusion

The GHHP is investigated by using the seventh-degree potential function. Using Jeans law and
Meshcherskii space time transformation, we have determined the equations of motion and quasi-
Jacobi integral where both are clearly depends on the parameters used, that is, variation parameters
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as well as transition parameters. Afterwards, the graphical displays are constructed, such as loca-
tions of parking points, regions of possible motion and basins of attracting domain. Figures for
parking points presented the locations of four parking points where we observed that as the val-
ues of the transition parameter and variation parameter increase, the locations of parking points
are changing. Figures for the regions of motion illustrated the forbidden and allowed regions of
motion in constant mass case and variable mass case, respectively. We observed in the variable
mass case that the allowed regions are shrinking in respect to the other case. Figures for the basins
of attracting domain performed in the constant mass case and variable mass case. We observed
from here that the regions corresponding to the attracting points are extending to infinity. Also, in
the variable mass case, attracting domains are shrinking in respect to the other case. Finally, the
stability states of the parking points revealed that all the parking points are unstable. In this way,
the parameters used have great influence on the motion of the smallest body.
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