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Abstract 
 
A heated laminar jet of Pseudo-plastic fluid flowing vertically upwards from a long narrow slit 
into a region of the same fluid which is at a rest and at a uniform temperature is considered. The 
governing non-linear Partial differential equations (PDEs) for the defined flow problem are 
transformed into non-linear ordinary differential equations using the effective similarity technique-
one parameter deductive group theory method. The obtained non-linear coupled Ordinary 
differential equations are solved and the results are presented by graphs. The effect of the Prandtl 
number and Grashof number on the velocity and temperature of the jet flow is discussed. Also, a 
detailed discussion of some interesting applications of the vertical jet flow of pseudoplastic fluids 
in different fields of engineering and geophysics are provided. 
 
Keywords:  Laminar; Vertical jet; Prandtl number; Grashof number; Pseudo-plastic fluid; Non-

linear PDE; Lava; Bore holes 
 
MSC 2020 No.: 20D06, 76A05, 76D10, 76D25, 86A70 
 
Nomenclature 
 
u, v- Components of velocity in the x and y directions 
 ρ - Mass density 
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 θ  - Temperature 
Cp - Specific heat at a constant pressure 
 K - Thermal conductivity 
υ  - Kinematic viscosity 
 n - Flow behavior index 
 g - Gravitational acceleration 
β  - Coefficient of thermal/volume expansion 
Q - Heat flux across any cross section perpendicular to the jet axis 
 L- Fundamental length  

oT  - Temperature at the wall  

∞T  - Temperature of the medium at infinity 
Gr - Grashof number 
Pr - Prandtl number 
ψ  - Stream function          
G  -  Group  

1 2( ), ( )M a M a - Real constants  
a - Group parameter  
η  -  Similarity  variable  

21 , ff  - Similarity functions   

1 4 1 4,..., , ,...,α α β β - Real constants 

 
1. Introduction 
 
The theory of jet is an important and highly developed branch of hydromechanics. The first 
problem of jet for ideal fluid was solved by Helmholtz (1868). Kirchhoff (1869) substantially 
developed and generalized Helmholtz’s method. Potential flow under gravity with free surfaces 
has been somewhat neglected in classical hydromechanics. Advanced technology required more 
and more understanding of the problems of jet flows. There are numerous situations in 
aerodynamics, engineering processes, meteorology where jet flows occur in a natural way. 
  
Schlichting (1934, 1968) was the first to expand the boundary layer theory to the theory of jet 
flows. The numerical solution of the governing ordinary differential equation of the steady two-
dimensional free jet flow was determined by him. An analytic solution to this problem was 
discussed by Bickely (1937). Stehr et al. (2000) discussed the resulting effects because of the 
interaction of the induced flow and the jet. They have applied both numerical and analytical 
methods for the solution of the governing equations. The model and computation of an inviscid 
liquid jet emerging from a rotating drum were analysed by Decent et al. (2002). A slender liquid 
jet immersed in a liquid zone due to a circulating orifice was investigated by Wallwork et al. 
(2002). The author developed the model for the slender non-linear inviscid jet with the assumption 
of  the stationary centerline of the jet and in the presence of surface tension. Patel et al. (2014) 
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investigated the axisymmetrical and two-dimensional jet flow for an incompressible Pseudoplastic 
fluid. The jet flow of a laminar compressible electrically conducting fluid issuing from circular 
orifices in the presence of the radial magnetic field is analyzed by Patel et al. (2015).  
 
The laminar jet flow due to an Incompressible Newtonian fluid coming out from a circular hole or 
a narrow slit was investigated by Patel et.al. (2016). They have discussed both the cases, Free jet 
and dissipative jet. They considered the variable physical properties: thermal conductivity and 
viscosity vary with temperature. Magan et al. (2016) analyzed the free jet of power-law fluid for 
which the Reynold number is considered in terms of the viscosity of the power-law fluid. The free 
jet is modelled by making the boundary layer approximation perpendicular to the axis of 
symmetry. Danial (2017) developed the governing equations along with the boundary conditions 
for the flow of the nonlinear rotating slender jet.  
 
An empirical functional relation known as Power-law is widely used to characterize fluids of this 
type. Other empirical relations which have been used to describe Pseudoplastic behaviour are 
Prandtl, Eyring, Powell-Eyring, Williamson, etc. (Wilkinson (1960)). The derivation of the 
governing equations of a Pseudoplastic fluid was first provided by Schowalter (1960). Acrivos et 
al. (1960) obtained the numerical analysis of the boundary layer equations of both Pseudoplastic 
fluids (Shear-thinning) and Dilatant fluids (shear-thickening). A brief instruction and classification 
on various fluid models of non-Newtonian fluid are given in detaile by Patel et al. (2010, 2013).  
 
The technique used in the present investigation is deductive group transformation, which leads to 
a similarity representation of the problem. In 1967 and 1968 Moran et al. (1967, 1968a, 1968b, 
1968c) presented a general systematic formalism for similarity analysis, where a given system of 
partial differential equations was reduced to a system of ordinary differential equations. Details of 
the theory are found in Moran’s above-mentioned papers. The two- parameter group-theoretic 
transformation method has been applied by Patil et al. (2012) and Darji et al. (2014). Recently, the 
deductive group of transformation has been successfully applied to various flow problems by many 
researchers (like Abd-el-Malek et al. (2002), Partemar et al.  (2011), Adnan et al. (2011), Darji et 
al. (2013), Jain et al. (2015) and  Patel et al. (2017)). 
 
Much less work has been carried out for the heated vertical jet of non-Newtonian fluid in the past. 
Probably Kalathia (1975) was the first to derive the governing equations for the heated vertical jet 
flow for power-law fluid. In the present work, we expanded the work of Kalathia (1975) by 
obtaining the similarity solutions and then numerical solutions along with the graphical 
presentation. 
 
Nowadays the Study of Pseudoplastic fluid (shear-thinning fluids) is essential due to the important 
applications of the fluids fall in this category. Drilling fluids, polymer solutions, Blood, catsup and 
nail polish are some of examples of Pseudoplastic behaviour. While drilling the boreholes into the 
surface of the earth or drilling the oil or natural gases, the purpose of a Drilling fluid (mud) is to 
clean the bottom of the hole, lubricate the bit maintain the walls of the hole and transport the 
cuttings to surface. This type of behaviour is characteristic of suspensions of asymmetric particles 
or solutions of a high polymer such as cellulose derivatives. For these types of fluids, the apparent 
viscosity continues to decrease with increasing rate of shear until no further alignment along the 
streamlines is possible and the flow curve becomes linear. 
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Much less work had been carried out in the literature for a vertical jet of Pseudoplastic fluids. In 
this paper we study a heated laminar jet of Pseudoplastic fluid flowing vertically upwards from a 
long narrow slit into a region of the same fluid which is at a rest and at a uniform temperature. The 
flow through the slit is produced by a constant pressure difference. It is assumed that the flow is 
steady, laminar (i.e., having a small Reynolds number) and incompressible. The existence of 
temperature difference between a jet and its surrounding will give rise to buoyant forces. As soon 
as the jet immerse it will be under the effect of these forces. In a steady-state, the free convection 
velocity, variation in density, etc., will depend on these buoyant forces. 
 
For simplicity, the constant properties are postulated except for a small change in density due to 
temperature differences. Such simplified treatments do not appear unreasonable as long as the 
temperature differences involved is not too large. The coupled equation of motion is solved within 
the limitations of the physical aspects of the problem. 
 
2. Basic Equations 
 
Consider a heated laminar jet of Pseudoplastic fluid flowing vertically upwards from a long narrow 
slit into a region of the same fluid which is at a rest and at a uniform temperature. The geometry 
of the flow is shown in Figure 1. Following Kalathia (1975), who had derived the governing 
equations for the heated vertical jet flow for power-law fluid, the governing equations for the 
heated vertical jet flow for Pseudoplastic fluid (after neglecting viscous dissipation) can be written 
as 
 

0,u v
x y
∂ ∂

+ =
∂ ∂

                                                                                                                          (1)                                                                                    

1

, 0 1,
n

u u u uu v g n
x y y y y

υ βθ
− ∂ ∂ ∂ ∂ ∂ + = + < <

 ∂ ∂ ∂ ∂ ∂ 
                                                              (2)    

2

2 .pC u v K
x y y
θ θ θρ

 ∂ ∂ ∂
+ = ∂ ∂ ∂ 

                                                    (3) 

 
The necessary boundary conditions are 
 

0 0,uv at y
y y

θ∂ ∂
= = = =
∂ ∂

                                                                                               (4) 

0 .u at yθ= = →∞                                                                                                     (5) 
 
It may be noted that the usual condition of constancy of flux of momentum will not be satisfied in 
the case of buoyant jets. However, in accordance with the assumptions made, we shall have 
(whether the jet is buoyant or not)  
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1
0

CyduCQ p == ∫
∞

θρ = Constant.                                                                                       (6) 

 
Introducing the non-dimensional variable as follows: 
 

( )

1 1
2 21 1

0

, , , , .

n n
n nx y L Lu L v Lx y u v

L L T T
θθ

υ υ υ υ

− −
+ +

∞

   
= = = = =    −   

                            (7) 

                               
                                     Figure 1. Co-ordinate system for two-dimensional vertical jet 
 
The governing equations (1)-(6) in dimensionless form are given by Equations (8) through (13): 
 

0,u v
x y
∂ ∂

+ =
∂ ∂

                              (8)                      

11

,
nn

n
u u u uu v Gr
x y y y y

υ θ
α

−−  ∂ ∂ ∂ ∂ ∂ + = +
 ∂ ∂ ∂ ∂ ∂ 

                (9)                           

2

2
1 .
Pr

u v
x y y
θ θ θ∂ ∂ ∂
+ =

∂ ∂ ∂
                               (10) 

                    
The boundary conditions are  
 

0 0,uv at y
y y

θ∂ ∂
= = = =
∂ ∂

                                              (11) 

𝑢𝑢 = 𝜃𝜃 = 0               𝑎𝑎𝑎𝑎    𝑦𝑦 → ∞.                                                                 (12) 
 

The momentum flux will be 
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)( 0

1

0 ∞

∞

−
== ∫ TT

CdyuCQ p υ
θρ = Constant.                                            (13) 

Introduce the stream function  ψ  as usual and hence Equations (8) through (13) come to the form 
 

12 2 2 3

2 2 3 ,
n

n Gr
y x y x y y y
ψ ψ ψ ψ ψ ψ θ

−
 ∂ ∂ ∂ ∂ ∂ ∂

− = + ∂ ∂ ∂ ∂ ∂ ∂ ∂ 
                                                                  (14) 

2

2
1 .
Pry x x y y

ψ θ ψ θ θ∂ ∂ ∂ ∂ ∂
− =

∂ ∂ ∂ ∂ ∂
                                                                                                (15) 

 
The boundary conditions are  
 

2

2 0 0,at y
x y y
ψ ψ θ∂ ∂ ∂

= = = =
∂ ∂ ∂

                                                                                      (16) 

0 .at y
y
ψ θ∂

= = →∞
∂

                                                                                             (17)  

 
The momentum flux will be  
 

0

1.Q dy
y
ψ θ

∞ ∂
= =

∂∫                                                                                                            (18) 

 
Now, to reduce the above equations (14) through (18) with two independent variables in the 
equations with one independent variable, we apply the one-parameter deductive group theory 
technique (Moran (1967), (1968a), (1968b), (1968c)).  
 
Following Patel (2017), who had defined the group for the solution of boundary layer flow of 
Prandtl fluid past a flat surface, we defined the  below  group G  for our flow problem as 
 

( ) ( ),
( ) ( ),

:
( ) ( ),

( ) ( ).

x x

y y

x h a x k a
y h a y k a

G
h a k a

h a k a

ψ ψ

θ θ

ψ ψ

θ θ

 = +


= +


= +
 = +









                                                                                                (19) 

 
Equation (14) is said to be transformed invariantly for some function 1( )M a , whenever, 

𝜕𝜕𝜓𝜓�
𝜕𝜕𝑦𝑦�

𝜕𝜕2𝜓𝜓�
𝜕𝜕𝑥𝑥�𝜕𝜕𝑦𝑦�

−
𝜕𝜕𝜓𝜓�
𝜕𝜕𝑥𝑥�

𝜕𝜕2𝜓𝜓�
𝜕𝜕𝑦𝑦�2

− 𝑛𝑛 �
𝜕𝜕2𝜓𝜓�
𝜕𝜕𝑦𝑦�2

�
𝑛𝑛−1 𝜕𝜕3𝜓𝜓�

𝜕𝜕𝑦𝑦�3
− 𝐺𝐺𝐺𝐺𝜃𝜃� 
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= 𝑀𝑀1(𝑎𝑎) �𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕2𝜕𝜕
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

− 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕2𝜕𝜕
𝜕𝜕𝜕𝜕2

− 𝑛𝑛 �𝜕𝜕
2𝜕𝜕
𝜕𝜕𝜕𝜕2

�
𝑛𝑛−1 𝜕𝜕3𝜕𝜕

𝜕𝜕𝜕𝜕3
− 𝐺𝐺𝐺𝐺𝜃𝜃�.               (20) 

 
Similarly we can say for the equation (15) to be absolutely invariant for some function 2 ( )M a , 
whenever, 
 

2 2

22 2
1 1( ) .
Pr Pr

M a
y x x y y y x x y y
ψ θ ψ θ θ ψ θ ψ θ θ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

− − = − − ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

  

 

    

                                   (21)  

 
Therefore, from the above two equations (20) and (21), the following relations (22) and (23) are 
obtained, respectively, 
 

12 2

12 2 2 3 ( ),
n

x y x y y y
h h h h h M a

h h h h h h

ψ ψ ψ ψ
θ

−
 

= = = = 
 

                                                                (22) 

22 ( ).x y y
h h h M a
h h h

ψ θ θ

= =                                                                            (23) 

 
Also, from the invariance of the auxiliary conditions,   
 

0.yk kθ= =                                                  (24) 
 

From the equations (22), (23) and (24), 
 

3 2, , , 0.x y y y yh h h h h h k kψ θ θ−= = = = =                                                    (25) 
 

Using (25) in (19), the group G is 
 

3

2

,
,

:
,

,

y x

y

y

y

x h x k
y h y

G
h k

h

ψψ ψ

θ θ−

 = +


=


= +
 =









                                    (26) 

 
4

1
( ) 0; , , , ,i i i i

i i

gS S x y
S

α β ψ θ
=

∂
+ = =

∂∑                                 (27) 

1 1 2 2 3 3 4 4( ) ( ) ( ) ( ) 0,g g g gx y
x y

α β α β α ψ β α θ β
ψ θ

∂ ∂ ∂ ∂
⇒ + + + + + + + =

∂ ∂ ∂ ∂
                               (28) 

 
Here,  
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& ; 1,2,3,4,
i iS S

i i
h k i
a a

α β∂ ∂
= = =

∂ ∂
                                                         (29) 

3
2

1 2 0

2

2

3 2 0

2
4 2 0

3 3 3 , ( ),

,

2 2 2 , ( ),

, ( ),

x y y y
y y

y

y y y
y y

y y y
y y

h h h hh h is identity at a
a a a a
h
a

h h h hh h is identity at a
a a a a
h h h hh h is identity at a
a a a a

ψ

θ

α α

α

α α

α α
−

−

∂ ∂ ∂ ∂
= = = = =
∂ ∂ ∂ ∂
∂

=
∂
∂ ∂ ∂ ∂

= = = = =
∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

= = = − = − = −
∂ ∂ ∂ ∂







                                     (30) 

1 2 3 4, 0, , 0.
x yk k k k

a a a a

ψ θ

β β β β∂ ∂ ∂ ∂
= = = = = =
∂ ∂ ∂ ∂

                      (31) 

 
Now, the characteristic equation from Equation (28) is: 
 

1 1 2 2 3 3 4 4

.
( ) ( ) ( ) ( )

dx dy d d
x y

ψ θ
α β α β α ψ β α θ β

= = =
+ + + +

                    (32) 

 
Solving the first two relations of Equation (32) for η , we have 
 

1
3

1 1( ) .y xη α β
−

= +                                 (33) 
 

Solving the first and third relations of Equation (32) for )(1 ηf , we have 
 

2
33

1 1 1
1

( ) ( ) .
2

x f βψ α β η
α

= + −                         (34) 

 
Solving the first and last relations of Equation (32) for )(2 ηf , we have 
 

1
3

1 1 2( ) ( ).x fθ α β η
−

= +                        (35) 
 

Using the equations (33), (34) and (35) and its derivatives in Equations (14) through (18), the 
below similarity equations (36) through (40) are obtained: 
 

1 22 3 2
1 1 1 1

1 1 1 22 3 2
2 1( ) ( ) 0,
3 3

n
d f d f d f dfn f Gr f
d d d d

α η α η
η η η η

−
   

+ − + =   
  

                       (36) 
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2
2 1 2

1 2 1 12
1 1 2( ) ( ) 0,
Pr 3 3

d f df dff f
d d d

α η α η
η η η

+ + =                               (37) 

2
1 2

1 2( ) 0, 0, 0 0,d f dff at
d d

η η
η η

= = = =                                            (38) 

1
20, ( ) 0 .df f at

d
η η

η
= = →∞                                                             (39) 

1
2

0

( ) 1.dfQ f d
d

η η
η

∞

= =∫                                                                                                                  (40) 

 
3. Results and Discussions 
 
The obtained similarity equations with auxiliary conditions (Equations (36) through (40)) are 
solved using the bvp4c- MATLAB ODE solver. The variation in velocity and temperature are 
presented graphically. The analysis of the effect of the buoyant force and the gravitational forces 
for the temperature difference and velocity variation is very important for this type of problem. 
Figure 2, Figure 3 and Figure 4 present the graphs for the velocity profile for variation in the values 
of Prandtl number (Pr), Grashof number (Gr) and fluid index (n < 1), respectively. The velocity 
of jet flow remains constant for some interval of eta and then decreases rapidly with the increase 
in Prandtl number as shown by the graph in Figure 2. In the other words, fluid is more viscous 
with a high Prandtl number, so velocity remains constant for a small interval and then decreases 
speedily. Gr and n are fixed for this case. For the graph in Figure 3, Pr and n are fixed,  the velocity 
decreased more quickly with the increase in Gr.  Particularly, the gravitational force effect is 
clearly shown in Figure 3, because at a high value of Gr, the fluid velocity is constant for a very 
small interval then it decreased quickly. Figure 4 represents the velocity decreased rapidly when 
the value of n decreased.  
 
The variation in the temperature profile is shown in figures 5 and 6. Figure 5 represents the 
temperature profile for different values of  Grashof number Gr.  The wall temperature increase 
when the value of  Gr or any buoyant-related parameter increase. Because of this, the fluid particle 
bonding becomes weak and the internal friction decrease. And therefore the gravity effects become 
stronger. From Figure 5, the temperature increased rapidly with increases in the value of Gr, 
reaches its peak value and then decrease briskly. Similarly, the temperature increased quickly to 
its peak and then decreased uniformly with the increase in the value of Pr, which is given in Figure 
6. 
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4. Graphical Presentation 
 

    
      Figure 2. Velocity Profile for different values of Pr         Figure 3. Velocity profile for different values of Gr           
      

 

                                           

 
Figure 4. Velocity profile for different values of n for Pr=50 and Gr=10 
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 Figure 5. Temperature Profile for different values of Gr      Figure 6. Temperature profile for different values of Pr 

 
5. Conclusion 
 
The changes in velocity and temperature profiles are slower for the present jet compared with the 
Newtonian fluid jet. This is quite consistent with the nature of Psudoplasctic fluids. It is observed 
that when fluid crosses the slit (i.e., at orifice), there is a sudden decrease in cross sectional area, 
and consequently there is a considerable increase in velocity. The problem discussed in the present 
paper is probably applicable to drilling boreholes, natural gas or oil into the surface of the soil 
using drilling fluids. Also, it may be applicable to the problems related to the volcanic eruption. In 
a Hawaiian eruption, lava (magma) is immersed from a vent as a fire fountain or lava jet (a huge 
natural vertical jet of non-Newtonian fluid). This is also an example of the vertical jet of 
Pseudoplastic fluid. 
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