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Abstract 
 
An invariant solution is derived using the Lie symmetry technique for steady laminar two-
dimensional and axisymmetric boundary layer jet flow of incompressible power-law fluids 
with appropriate boundary conditions. Using symmetry, the nonlinear partial differential 
equation of the jet flow problem is transformed into a nonlinear ordinary differential equation. 
The resultant nonlinear ordinary differential equation with boundary conditions is converted to 
an initial value problem using the Lie symmetry technique. A numerical solution for the 
resulting initial value problem is derived using Fehlberg’s fourth-fifth order Runge-Kutta 
method through Maple software. The graphical representation of the characteristics of the 
velocity field for different physical parameters is also discussed. 
 
Keywords:  Non-Newtonian fluid; Boundary layer; Two-dimensional jet; Axisymmetric 

jet; Symmetries; Invariant solution; Runge-Kutta method 
 
MSC 2020 No.: 76A05, 35B06, 65L06 
 
Nomenclature: 
 
  * *, , x y ,X Y  axis of Cartesian co-ordinates 

*u , *v  Dimensional fluid velocity along *x - and *y - axis, respectively 
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 ,U V  nondimensional fluid velocity along X − and Y − axis respectively 
n  Power-law index  

0U  characteristic velocity 
L  jet diameter 
ρ  Fluid density 
Re  Reynolds number 
ψ  stream function 
ξ  similarity independent variabl 
ν  kinematic viscosity 
, ,iξ η ζ  Infinitesimals 
r  Index  

 
1. Introduction 
 
A high-velocity stream of fluids that emanates under pressure from a small diameter opening 
or nozzle is defined as a jet. When the fluid is flowing in the absence of rigid boundaries is 
called free flow. This type of flow is important in many technical applications like fountains, 
fluid injection engines, aircraft propulsion, cooling systems, nasal spray device … . 
 
The study of fluid mechanics was normally confined to the Newtonian fluids alone, but with 
the increasing importance of non-Newtonian fluids in fluid mechanics and chemical 
engineering, in particular, it has become necessary to analyze non-Newtonian fluids as well. 
The flow characteristics of non-Newtonian fluids under various geometries and physical 
condition is well discussed by Wilkinson (1960), Lee and Ames (1966), Kapur et al. (1982), 
Timol and Kalthia (1986), Oleinik et al. (1999), Chhabra and Richardson (2008), Patel et al. 
(2010, 2015), Shukla et al. (2019). 
 
Many researchers have worked on laminar jet flow in the past. Laminar Newtonian jets have 
been studied extensively by Schlichting (1933). He was a pioneer in applying the boundary 
layer theory to such problems of the jet. He obtained similarity solutions of both axisymmetric 
and two-dimensional jets of Newtonian fluids separately and determined numerical solutions 
of the resulting ordinary differential equations. Later on, Bickley (1937) calculated analytical 
solutions to the differential equation.  
 
Gutfinger et al. (1964) produced both theoretical and experimental results of a two-dimensional 
jet of power-law fluid. Lemieux-Unny (1968), Atkinson (1972) obtained a closed-form 
solution as well as numerical solutions for the two-dimensional jet of an incompressible 
pseudoplastic fluid. Kapur (1962) derived a similarity solution for the two-dimensional laminar 
jet of pseudoplastic fluid. He determined an analytical solution in terms of incomplete beta-
gamma function. Rotem (1964) developed the similarity solution of the axisymmetrical laminar 
jet of a power-law fluid and explored the numerical results in detail. Pai-Hsieh (1972) 
investigated the general boundary layer equations for the two-dimensional, axisymmetric 
laminar jet of the incompressible Newtonian fluid. Kalthia (1974,1979) has discussed in detail 
the similarity analysis of different jets in his research outcome. 
 
Mason (2002), Ruscic and Mason (2004) have derived a group invariant solution of two-
dimensional as well as an axisymmetric laminar free jet of a Newtonian fluid through the Lie 
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symmetry method. Pakdemirli et al. (2008) have found symmetries of modified power-law 
fluids through the Lie group method. Naz (2011) has derived group invariant solutions of 
several jets with fluid velocity finite at the orifice via Lie symmetry. Patel and Timol (2016) 
have derived similarity solutions for various jet flows of non-Newtonian fluid by the one-
parameter group transformation technique of Morgan. Soid and Ishak (2017) have worked on 
boundary layer flows of a nanofluid using similarity transformation. Magan et al. (2016, 2017) 
have derived group invariant solution of free jet, liquid jet and solved the resultant equation 
analytically in parametric form. 
 
The Lie symmetry technique is developed by Sophus Lie in the late nineteenth century, to 
determine the symmetries for differential equations, which leave a given family of equations 
invariant. It provides a systematic tool to generate the invariant solutions of the system of 
nonlinear partial differential equations with admissible initial or boundary conditions. The 
fundamental concept of the Lie symmetry approach can be found in the literature of Sheshadri 
and Na (1985), Bluman and Kumei (1989), Dresner (1999), Hydon (2000), Bluman and Anco 
(2002), Ibragimov and Kovalev (2009), Arrigo (2015). The Lie symmetry technique has 
recently been focused on by several researchers, including Bilige and Han (2018), Zeidan and 
Bira (2019), Halder et al. (2020) and Paliathanasis (2021), to solve differential equations. At 
the present, the fusion of symmetries and other solution methods, such as the numerical 
method, approximation method and analytical method, to solve boundary value problem (BVP) 
for differential equations is a promising concept for further investigation. The application of 
the Lie symmetry technique includes such variant fields as differential geometry, invariant 
theory, solid or fluid mechanics and across all areas of science and technology.  
 
In the present paper, we have derived a general form of an invariant solution that applies to 
two-dimensional and axisymmetric jets of non-Newtonian power-law fluids using the Lie 
symmetry technique that was not investigated earlier. The invariant solution has been 
established by considering a linear combination of the point symmetries of the governing 
partial differential equation (PDE) in terms of stream function. This approach was used by 
Mason (2002) for the two-dimensional laminar jet of a Newtonian fluid. We have extended this 
approach to non-Newtonian power-law fluids. The fundamental boundary-layer equations for 
two-dimensional or axisymmetric laminar jet mixing for a Newtonian fluid were first presented 
by Pai and Hsieh (1972). We have extended those boundary layer equations for non-Newtonian 
power-law fluids in Section 2. Here, the Lie symmetry technique has been applied 
systematically without assuming a prior form for the stream function. 
 
The (group) invariant solution is in the most general form as it supersedes the earlier derived 
solutions of Mason (2002) and Ruscic and Mason (2004). The governing PDE is converted 
into an ordinary differential equation (ODE) with appropriate boundary conditions using 
symmetry. Using Lie symmetry, a one-parameter group is derived that transforms BVP into an 
initial value problem (IVP). The numerical solution of the resulting IVP is obtained by the 
Runge-Kutta fourth-fifth order technique using the ODE solver of Maple programming. The 
present results are compared with those of Mason (2002) and Atkinson for the two-dimensional 
jet case and with Ruscic and Mason (2004) and Rotem (1964) for the axisymmetric jet case.  
 
2. Mathematical formulation 
 
The fundamental boundary-layer equations for a two-dimensional or an axisymmetric laminar 
steady jet mixing of an incompressible non-Newtonian power-law fluid can be written as: 
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1* * * *
* * *

* * * * * *( ) ,
( )

n
r

r

u u u uu v y
x y y y y y

ν
− ∂ ∂ ∂ ∂ ∂ + =

 ∂ ∂ ∂ ∂ ∂ 

   

  

     

                                                                (1)                             

( ) ( )* * * *

* *

( ) ( )
0,

r ry u y v
x y

∂ ∂
+ =

∂ ∂

   

 

                                                                                          (2) 

                                           
with the boundary conditions 
 

�̇�𝑦∗ = 0:  �̇�𝑣∗ = 0, 𝜕𝜕�̇�𝑢∗

𝜕𝜕�̇�𝑦∗
= 0,                                                                                                        (3)  

�̇�𝑦∗ → ∞:  �̇�𝑢∗ = 0.                                                                                                                       (4) 
                                                                                                              

Since the pressure in the surrounding fluid is constant, the total momentum flux J  across any 
cross-section of the jet at any given value of *x remains constant. It is given by  
 

* * 2

0

2 ( ) ( ) ( )r rJ y u dyρ π
∞

= =∫   constant.                                                                                              (5) 

 
Here, 0r =  is for the two-dimensional jet case and 1r =  for the axisymmetric jet case. 
 
Now apply the transformations (Acrivos et al. (1965)) listed below to convert the governing 
equations (1)-(5) into the dimensionless form equations (6)-(10). 
 

( ) ( )
2* * * *1 1 01 1

0 0

, , , , .
n n

n n U Lx y u vX Y Re U V Re Re
L L U U ν

−
+ += = = = =

   

 

1
1 .

n
r

r

U U U UU V Y
X Y Y Y Y Y

− ∂ ∂ ∂ ∂ ∂
 + =
 ∂ ∂ ∂ ∂ ∂ 

                                                                                       (6) 

0.U V
X Y
∂ ∂

+ =
∂ ∂

                                                                                                                             (7) 

 
Boundary conditions become 
 

0 : 0, 0,UY V
Y

∂
= = =

∂
                                                                                                              (8)  

: 0,Y U→∞ =                                                                                                                          (9) 
  

and the momentum flux  
 

2 1
20

1
1 0

2 ( )

( )

r r
r

r
n

U LJ Y U dY
Re

ρ π ∞+

+
+

= =∫ constant.                                                                                             (10) 

 
Now, introduce ( , )X Yψ  as a stream function, is defined by 

1
rU

Y Y
ψ∂

=
∂

  and  1 .rV
Y X

ψ∂
= −

∂
                                                                                                       (11) 
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Then Equation (7) is identically satisfied by (11) and Equations (6) and (8) through (10) reduce 
to 
 

( )2
1 1 1

r rr Y X Y Y X Y Y YY

ψ ψ ψ ψ∂ ∂ ∂ ∂ ∂ ∂   −   ∂ ∂ ∂ ∂ ∂ ∂   
 

                                                      
1

1 1 1 ,
n

r
r r rY

Y Y Y Y Y Y Y Y
ψ ψ

− ∂ ∂ ∂ ∂ ∂    =     ∂ ∂ ∂ ∂ ∂     
             (12) 

 
1 10 : 0, 0,r rY

Y X Y Y Y
ψ ψ∂ ∂ ∂ = = = ∂ ∂ ∂ 

                                                                                               (13) 

1: 0.rY
Y Y

ψ∂
→∞ =

∂
                                                                                                                 (14) 

 
The equation of flux is transformed into 
 

22 1
0

1
1 0

2 ( ) 1 constant.
( )

r r

r r
n

U LJ dY
Y YRe

ρ π ψ∞+

+
+

∂ = = ∂ ∫                                                                        (15) 

 
3. Lie symmetry generators (Infinitesimal point symmetries) 
 
Equation (12) can be written as follows: 
 

( ), , , , , , , , , , , 0,X Y XX XY YY XXX XXY XYY YYYX Y ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ∆ =                                              (16) 
      

where a subscript represents partial derivatives and 
 

( )2
1 1 1

r rr Y X Y Y X Y Y YY

ψ ψ ψ ψ∂ ∂ ∂ ∂ ∂ ∂   ∆ = −   ∂ ∂ ∂ ∂ ∂ ∂   
                      

                                              
1

1 1 1 0.
n

r
r r rY

Y Y Y Y Y Y Y Y
ψ ψ

− ∂ ∂ ∂ ∂ ∂    − =    ∂ ∂ ∂ ∂ ∂     
               (17) 

 
The Lie symmetries generators 
 

 ( ) ( ) ( )1 2ˆ , , , , , , ,X X Y X Y X Y
X Y

ξ ψ ξ ψ η ψ
ψ

∂ ∂ ∂
= + +

∂ ∂ ∂
                                                 (18) 

         
are obtained by solving determining equations which will be generated by Lie’s invariance 
condition 
 

 ( ) ( )3
0

ˆ 0,X ∆=∆ =                                                                                                                 (19) 
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where 
 

(3)
1 2 11 12 22 111

ˆ ˆ
X Y XX XY YY XXX

X X ζ ζ ζ ζ ζ ζ
ψ ψ ψ ψ ψ ψ
∂ ∂ ∂ ∂ ∂ ∂

= + + + + + +
∂ ∂ ∂ ∂ ∂ ∂

 

                                                                         112 122 222 ,
XXY XYY YYY

ζ ζ ζ
ψ ψ ψ
∂ ∂ ∂

+ + +
∂ ∂ ∂

        (20) 

               
is the third extension of X̂  and 
 

 ( ) ( ) ,m
i i m iD Dζ η ψ ξ= −                                                                                                       (21)                  

 ( ) ( ) ,m
i j j i im jD Dζ ζ ψ ξ= −                                                                                                (22)                          

 ( ) ( ) ,m
i jk k i j i jm kD Dζ ζ ψ ξ= −                                                                                                        (23) 

 
with summation over repeated indices and total differential operators are 
 

1 ...,X X XX YX
X Y

D D
X

ψ ψ ψ
ψ ψ ψ

∂ ∂ ∂ ∂
= = + + + +

∂ ∂ ∂ ∂
                                             (24)       

2 ...Y Y XY YY
X Y

D D
Y

ψ ψ ψ
ψ ψ ψ

∂ ∂ ∂ ∂
= = + + + +

∂ ∂ ∂ ∂
 .                                                                (25) 

                 
Since ∆  depends on derivatives , , ,Y XY X YYψ ψ ψ ψ  and YYYψ , the coefficients 122 ,ζ 112ζ , 111ζ  and 

11ζ need not be computed. The coefficient 222ζ  depends on YYYψ  that is terminated from (19) 

using the PDE (16). Because 1 2,ξ ξ and η  do not depend on the derivative of ψ . Equation (19) 
is separated according to the derivative of ψ . Hence, the infinitesimal symmetry of partial 
differential equation (12) is spanned by the following four linearly independent symmetries: 
 

1 1 2 2 3 3 4 4
ˆ ˆ ˆ ˆ ˆ ,X C X C X C X C X= + + +                                                                                    (26) 

               
where 1C , 2C , 3C  and 4C  are arbitrary constants and 
 

( )
( )1 2 3 4

2 2 1ˆ ˆ ˆ ˆ, , , ;
2 2

r n n
X X X X Y X

X n X Y n
ψ

ψ ψ ψ
− + − ∂ ∂ ∂ ∂ ∂ ∂ = − = = + =

∂ − ∂ ∂ ∂ − ∂ ∂
        

                                                                                                                    0, 2,n n> ≠      (27) 
 

and 
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( )
( )

( )

1 2

3 4

ˆ ˆ, ,
2 2 1

; 2.
2ˆ ˆ,

2 2 1

YX X X
X Y Xr n n

n
n

X X
Yr n n

ψ
ψ ψ

∂ ∂ ∂ = + = ∂ ∂ ∂− + −    =−∂ ∂ ∂ = + = ∂ ∂ ∂− + −   

                                                (27a) 

 
4. Invariant solution 
 
Now, ( , )X Yψ = Φ  is an invariant solution of PDE (12) provided 
  

( )( )ˆ , 0,X X Y ψψ =Φ−Φ =                                                   (28) 
                

which may be written as  
                                                                                                                               

( )

( ){ }
( ) ( )( )

1 2 3

3 1
4

2 2 1
, 0,

2

C X C C Y
X Y

r n n C C
C X Y

n ψ

ψ
ψ

ψ =Φ

∂ ∂ + + ∂ ∂
  − + − − ∂   + + −Φ = − ∂    

            (29) 

 
and therefore, in form of ( ),X YΦ , Equation (28) is satisfying the quasi-linear first-order PDE: 
 

( )
( ){ }

( )
3 1

1 2 3 4

2 2 1
.

2
r n n C C

C X C C Y C
X Y n

ψ  − + − −∂Φ ∂Φ   + + = + ∂ ∂ −  
                                 (30) 

                      
We will consider a solution for which 1 0C ≠  and 3 0C ≠ . The characteristic equations of (30) 
are 
 

( ){ }
( )

1 2 3 3 1
4

.
2 2 1

2

dX dY d
C X C C Y r n n C C

C
n

Φ
= =

+  − + − − Φ  +
−

                                                 (31) 

               
Take 3 1C =  in (31). Now Equation (31) gives two independent solutions, 
  

( )
( )

( )

4

1
1 2

1

2 21 1

1 1

2
2 2 1

, ,1 ( 2) 2 1
2

C n
r n n CY

r n n C
C CC C nX X
C C

α α

−
Φ +

− + − −
= =

− + − −
    −+ +   
   

                                               (32) 

                                                               
where 1α  and 2α  are constants. The general solution of (30) is 

7

Bhagat and Timol: Invariant Solution of Power-Law Fluids

Published by Digital Commons @PVAMU, 2022



AAM: Intern. J., Vol. 17, Issue 2 (December 2022) 393 

 
( )2 1 ,fα α=                                                                           (33) 

 
where f  is an arbitrary function. Thus, since ( , ),X Yψ = Φ  the invariant solution of (12) is  
 

( )
( ) ( ) ( )

( )

1

42 1

1 1

2 2 1
22 ,

2 2 1

r n n C
C nC C nX f

C r n n C
ψ ξ

− + − −
−  −= + −  − + − − 

                                  (34) 

 
where 
 

2 1

1

.1
Y

C CX
C

ξ =

 
+ 

 

                                                                                                            (35) 

 
Also, using Equations (27a), we obtain an invariant solution to Equation (12): 
 

( )2 1
4

1

1

;C CX f C
C

ψ ξ
 

= + − 
 

  
( )

[ ]
1

2 1

1

.
2

( 2) 2 1

Y
n C

C C r n nX
C

ξ =
− +

  − + −+ 
 

                                      (35a) 

                                           
Since the stream function is prescribed up to an arbitrary constant, we may choose 4 0C =
without any loss of generality. 
 
Now substituting (34) and (35) into (12), we obtain an ODE for ( ) :f ξ  
 

( ) ( )( ) ( )
( ) ( ) ( )2 11

1 1

2 2 111
2 2r

r n n Cn C f f f
C n C n

ξ ξ ξ
ξ

 − + − −+ − ′ ′′− − −
 

          
( )

( ) ( ) ( ) ( ) ( )1
1

1

2 2 1
.

2

n
r

r r

r n n C f fr d d df f
C n d d d

ξ ξ
ξ ξ ξ

ξ ξ ξ ξ ξ ξ

−

+
  ′ ′− + − −    ′ =      −       

  (36) 

 
Also, by substituting (35a) into (12), we get an ODE for ( ) :f ξ  
 

( ) ( )( ) ( ) ( ) ( ) ( )21

1 11

1 ( 1)1 1
2 2 1r

n C r rf f f f f
C CC r n n

ξ ξ ξ ξ ξ
ξ ξ

 + − + ′ ′′ ′− + 
− + −    

    

                                                                                  
( ) ( )1

.
n

r
r r

f fd d d
d d d

ξ ξ
ξ

ξ ξ ξ ξ ξ

− ′ ′   
=     

     
      (36a)  
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To derive 1C , consider the flux condition J , defined by (15) is independent of .X  Using (34) 
and (35) in (15) yields 
 

( )
( )

( )( )
1

1
2 1

20 2
1

1 1 0

2 3 2
22 ( ) 1

( )

r r

r r
n

r n n C
C nU L CJ X f d

CRe

ρ π ξ ξ
ξ

∞+

+
+

− + −
− 

′= + = 
 

∫ constant.                                    (37) 

   
Thus, the flux condition J is independent of X  provided 
 

( )
1

2 3
.

2
r n n

C
− +

=                                                                                                             (38) 

 
Now, using (35a) in (15) gives 
 

( )
1

2 3
.

1
r n n

C
r
− +

=
+

                                                                                                           (38a) 

 
Hence, the flux condition reduces to 
 

( )( )
2 1

20
1

1 0

2 ( ) 1

( )

r r

r r
n

U LJ f d
Re

ρ π ξ ξ
ξ

∞+

+
+

′= =∫ constant.                                                                    (39)  

                        
Then, using results (38) and (38a) in the differential equations (36) and (36a), respectively, can 
be written as follows: 
 

( ) ( )( ) ( ) ( ) ( ) ( )21 1.
2 3 r

r rf f f f f
r n n

ξ ξ ξ ξ ξ
ξ ξ

 + ′ ′′ ′− − + − +  
 

                                                                              ( ) ( )
1

.
n

r
r r

f fd d d
d d d

ξ ξ
ξ

ξ ξ ξ ξ ξ

− ′ ′    =    
     

             (40)   

                                                                                                        
Also, the boundary conditions (13) and (14) become 
 

( ) ( ) ( )0 : 0, 0.r r

f fdf
d

ξ ξ
ξ ξ

ξ ξ ξ
′ 

′= − = = 
 

                                                                  (41)                     

( ): 0.r

f ξ
ξ

ξ
′

→∞ =                                                                                                          (42) 

 
5. Two-dimensional jet flow 
 
For 0r =  and 0, 1n n> ≠ , the equation (40) with boundary conditions (41) and (42) will 
reduce into the non-Newtonian two-dimensional incompressible jet flow of power-law fluids. 
For 0r =  and 1n = , the equation (40) with boundary conditions (41) and (42) will reduce into 
Newtonian two-dimensional incompressible jet flow. For such flows, the boundary layer 
equations can be written as follows: 
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( ) ( )1 ;
3

nd df f f
n d dξ ξ

′ ′′= − 0, 0,n ξ> ≥                                                                         (43a) 

( ) ( )1 ;
3

nd df f f
n d dξ ξ

′ ′′− = 0 1 2, 0, 0n ξ ξ< < ≥ ≤  and 1 2, 0.n ξ≥ ≤                   (43b) 

 
The boundary conditions are 
 

( ) ( ) ( )0 0, 0 0, 0.f f f′′ ′= = ∞ =                                                                                       (44) 
                    

The flux condition (39) is transformed to 
 

( )( )
2

20
1

1 0

2

( ) n

U LJ f d
Re

ρ ξ ξ
∞

+
′= =∫ constant,                                                                            (45) 

 

where 2
3

22
3

n

Y

CX
n

ξ =
 +  

(Gutfinger and Shinnar (1964)). 

 
Thus, Equation (43) is nonlinear BVP with boundary conditions (44). 

 
6.  Transformation of boundary value problem to initial value problem 
 
The resultant BVP has been solved numerically by the Runge-Kutta fourth-fifth order method. 
Therefore, we have derived a one-parameter group transformation that transforms BVP into 
IVP. This extended method was introduced by Na (1979). But a parameter cannot be 
determined if the boundary condition is homogenous at the second point of infinity. To 
overcome this limitation, we will transform the homogeneous BVP (43a)-(44) into a non-
homogenous BVP first. The procedure is as follows: 
 
If we have a Lie symmetry generator, we can obtain one-parameter group transformations using 
Lie equations (Ibragimov (2009)). The Lie symmetry generators of Equations (43a) and (43b) 
are 
 

1 2
2 1, ;0 2, 2,

2
nX X f n n

n f
ξ

ξ ξ
∂ ∂ − ∂

= = + < < >
∂ ∂ − ∂

                                                              (46) 

1 2
2, ; 2.

2 1
nX X f n
n f

ξ
ξ ξ
∂ − ∂ ∂

= = + =
∂ − ∂ ∂

                                                                     (46a) 

 
From 2X , we get a group transformation 
 

* eβξ ξ=  and ( )2 1 2* ;0 2, 2,n nf e f n nβ− −= < < >                                                                        (47) 
* ( 2/2 1)n ne fβξ − −=  and * ; 2,f e f nβ= =                                                                                                (47a) 
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where “ β ” is the parameter of group transformation. 
 
Under the transformation (47), Equations (43a) and (43b) become invariant. Using this 
transformation, Equations (43a) and (43b) become 
 

( ) ( )* * * *
* *

1 ; 0, 0,
3

nd df f f n
n d d

ξ
ξ ξ

′ ′′= − > ≥                                                                      (48a)        

( ) ( )* * * * * *
* *

1 ;0 1 2, 0, 0 and 1 2, 0,
3

nd df f f n n
n d d

ξ ξ ξ
ξ ξ

′ ′′− = < < ≥ ≤ ≥ ≤           (48b) 

 
and boundary conditions at zero are transformed to 
 

* * *0 : 0, 0.f fξ ′′= = =                                                                                                   (49) 
          
Boundary condition (44) shows that ( )f ξ′  starts from the definite value at 0ξ =  and decreases 
to zero as .ξ →∞  Therefore,  
 

( )
0

f dξ ξ
∞

′ =∫ constant.                                                                                                      (50) 

                                                                          
Under the transformation (47), it will be  
 

( ) ( ) ( )* *2 1 2 0n ne f fβ− − −  ∞ − =  constant. 
 

If we identify, constant = ( )2 1 2n ne β− − − , we get 
 

( )* 1.f ∞ =                                                                                                                         (51) 
               

Thus, the boundary condition at the second point transforms into a non-homogeneous form and 
the flux condition transforms into 
 

 ( ) ( )
2 2

* *0
1

1 0

3 22

( ) n

n nU LJ e f d
Re

βρ ξ
∞

+

− − ′= =∫ constant.                                                                     (52) 

           
We now convert the BVP (48) with boundary conditions (49) and (51) into IVP using the group 
transformation 
 

*eβξ ξ=  and  ( )2 1 2 *n nf e fβ− −= .                                                                                      (53) 
         

Under the transformation (53), Equations (48a), (48b) become 
 

( ) ( )1 ; 0, 0,
3

nd df f f n
n d d

ξ
ξ ξ

′ ′′= − > ≥                                                                            (54a)          

( ) ( )1 ;0 1 2, 0, 0
3

nd df f f n
n d d

ξ ξ
ξ ξ

′ ′′− = < < ≥ ≤ and 1 2, 0,n ξ≥ ≤                         (54b) 
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and boundary conditions in (49) become 
  

( ) ( )0 0, 0 0.f f ′′= =                                                                                                        (55) 
 
Now, set the missing initial condition is equal to the parameter of transformation,  
 

( )* 0 .f β′ =  
 
Under the transformation (53), 
 

( ) ( )1 2 0 ,n ne fβ β− + − ′ =                                                                                                         (56) 
        

which is independent of β  if ( )1 2n ne β β− + − =  and that implies 
 

( ) 2 1 .n ne β β − +− =                                                                                                                    (57) 
 
Hence, ( )0 1.f ′ =                                                                                                                       (58) 
             
To determine “ β ”, from (51) and (53), we get 
 

( ) ( )2 1 2 1n ne fβ− − − ∞ = ,  
 

that implies 
   

( )

1 2 1
1 .

n n

f
β

+ −
 

=  ∞ 
                                                                                                            (59) 

        
Thus, we have the following initial value problem 
 

( ) ( )1 ;
3

n
f f f

n
′ ′′= −  0, 0,n ξ> ≥                                                                                    (60a)    

( ) ( )1 ;
3

n
f f f

n
′ ′′− = 0 1 2, 0, 0n ξ ξ< < ≥ ≤ and 1 2, 0,n ξ≥ ≤                                            (60b)  

         
subject to initial conditions 
 

( ) ( )0 0, 0 1.f f ′= =                                                                                                      (61)  
           
The flux condition transforms into 
 

( )
2 2

0
1

1 0

2

( ) n

U LJ f d
Re

ρ ξ
∞

+

′= =∫ constant.                                                                                  (62) 
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Similarly, we do proceed to calculate the 2n =  case by using the group transformation (47a). 
If we put 1n = in (60a) or (60b), we get  
 

1 0,
3

f f f′′ ′+ =                                                                                                                (63) 

                
with initial conditions 
 

( ) ( )0 0, 0 1.f f ′= =                                                                                                             (64) 
                   
Equation (63) is a standard second-order similarity equation for a free Laminar two-
dimensional jet derived by Mason (2002). The exact solution of (63) is 
 

 ( ) tanh ,
6

Af A ξξ
 

=  
 

                                                                                                         (65)  

      
where A  is integrating constant. Using flux condition J, we calculate an integrating constant 
𝐴𝐴, by substituting (65) into (62): 
 

1
31 2

2
0

9 ( ) .
2
J ReA

U Lρ
 

=  
 

                                                                                                              (66) 

 
The results (65) and (66) are similar to those derived by Mason (2002). 

 
7. Axisymmetric jet flow 
 
For 1r =  and 0,n > the equation (40) with boundary conditions (41) and (42) will reduce into 
the axisymmetric incompressible jet flow of power-law fluids. For such flows, the reduced 
boundary layer equations of (40) will be formed as: 
 

11 ;
2 1

n
nd f f d f f

n d d
ξ

ξ ξ ξ ξ
−

 ′ ′    ′′± = −    −      
0.ξ >                                                           (67a) 

             
Here, applies positive sign for 1/ 2n >  and negative sign for 0 < 𝑛𝑛 < 1/2, 
 

11 ;
2 1

n
nd f f d ff

n d d
ξ

ξ ξ ξ ξ
−

 ′ ′    ′′= −    −      
  0.ξ ≤                                                           (67b) 

                    
Here, applies the negative sign for 1/ 2n >  and positive sign for 0 1/ 2.n< <   
       
The boundary conditions: 
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(0) 0, (0) 0, (0) 0, lim 0.ff f f
ξ ξ→∞

′
′′ ′= ≠ = =                                                                              (68) 

                              
The flux condition (39) is transformed to 
 

( )
2 2

20
2

1 0

2 1 constant,
( ) n

U LJ f d
Re

ρπ ξ
ξ

∞

+
′= =∫                                                                             (69)  

                   

where 1
2 1

2

2 1
n

Y

CX
n

ξ
−

=
 + − 

; 1
2

n ≠  (Rotem (1964)).                                                                    (70) 

                         
Thus, Equation (67) is a nonlinear boundary value problem with homogeneous boundary 
conditions (68). Now, we transform homogenous boundary conditions (68) into non-
homogenous conditions. 
 
The Lie symmetry generator of Equation (67) is 
 

1
2

3 3
nX f
n f

ξ
ξ

− ∂ ∂
= +

− ∂ ∂
; 0 1, 1.n n< < >                                                                                        (71) 

1
3 3

2
nX f

n f
ξ

ξ
∂ − ∂

= +
∂ − ∂

; 1.n =                                                                                                    (71a) 

 
From 1X in (71), we get a group transformation 
 

* ( 2/3 3)n ne βξ ξ− −=  and * ; 0 1, 1,f e f n nβ= < < >                                                                                   (72) 
          
and from (71a): 
  

* eβξ ξ=  and * (3 3/ 2) ; 1,n nf e f nβ− −= =                                                                             (72a) 
 
where “ β ” is the parameter of group transformation. Using the same procedure as discussed 
in the two-dimensional jet case, we get the following BVP with non-homogeneous boundary 
conditions at a second point:  
       

* * *
*(1 ) * *

* * * *

1 ; 0,
2 1

n

nd f f d f f
n d d

ξ ξ
ξ ξ ξ ξ

−
    ′ ′ ′′± = − >       −      

                                            (73a)                      

* * *
*(1 ) *

* * * *

1 ;
2 1

n

nd f f d ff
n d d

ξ
ξ ξ ξ ξ

−
    ′ ′ ′′= −       −      



* 0.ξ ≤                                                    (73b) 

* * * *0 : 0, 0, 1,f f fξ ′′′= = = =                                                                                    (74)        
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* *: ( ) 1,fξ →∞ ∞ =                                                                                                         (75) 
 
and the flux condition becomes 
 

( ) ( )
2 2 2

2 2 1 3 3 * *0
2 *

1 0

2 1

( )
n n

n

U LJ e f d
Re

βρπ ξ
ξ

∞
− − −

+

′= =∫ constant.                                                            (76) 

              
We now reduce the BVP (73)-(75) into IVP using the group transformation 
 

( 2/3 3) *n ne βξ ξ− −=  and *f e fβ= .                                                                                        (77) 
              
Under the transformation (77), Equations (73) through (75) become 
             

(1 )1 ; 0.
2 1

n

nd f f d f f
n d d

ξ ξ
ξ ξ ξξ

−
    ′ ′ ′′± = − >       −      

                                                    (78a) 

 
Here, we apply positive sign for 1/ 2n >  and negative sign for 0 < 𝑛𝑛 < 1/2, 
 

(1 )1 ; 0,
2 1

n

nd f f d ff
n d d

ξ ξ
ξ ξ ξξ

−
    ′ ′ ′′= − ≤       −      

                                                       (78b) 

 
Apply negative sign for 1/ 2n >  and positive sign for 0 1/ 2.n< <  
 
The initial conditions: 
 

(0) 0, (0) 0, (0) 1.f f f′ ′′= = =                                                                                      (79) 
         
From the boundary condition at infinity, we have calculated the following parameter of the 
transformation 
 

( )

1/3 3
1 .

n n

f
β

+ −
 

=  ∞ 
                                                                                                         (80) 

                         
The flux condition is 
 

( )
2 2 2

0
2

1 0

2 1

( ) n

U LJ f d
Re

ρπ ξ
ξ

∞

+

′= =∫ constant.                                                                            (81) 

 
Similarly, we proceed for using transformations (72a) for the 1n =  case. If we put 1n =  in 
equation (78a) or (78b) and integrate it three times using (79), we get the exact solution (Ruscic 

and Mason (2004)) 
2

2

4( ) ,
1

kf
k
ξξ
ξ

=
+

where k  is a constant. 
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8.  Result and discussion 
 
8.1 Two-dimensional Jet 
 
The numerical solution of the IVP (60) with (61) is calculated by applying Fehlberg’s fourth-
fifth order Runge-Kutta method presented in Table 1. It shows that f  tends to infinity, velocity 

0f ′ =  as ξ  tends to infinity for 0 1/ 2n< ≤  and ξ  tends to infinity as f  approaches some 

approximate value and 0f ′ =  for 1/ 2 1n< ≤ , agreed with Atkinson (1972). For 1n > , ξ  

does not tend to infinity, it replaced by ,nξ ξ= f  approaches some approximate value and 

0.f ′ =  From Table 1, we observed that ξ  tends to infinity f  approaches the approximate 
value of 2.4495 for the power index 1n = . Then, the parameter of transformation β  is obtained 
from (59) for 1n = , that is 
 

0.16667.β =   
 
Therefore, (57) yields 2.4495.e β− =  
 
The solution to Equation (48) for 1n =  can be obtained by the transformation (53) as 
 

* 2.4495ξ ξ= ,  * 0.4082 .f f=  
 
By substituting the value of ( )f ∞  in the above relation, we obtain *( ) 1f ∞ =   (Atkinson 
(1972)) that satisfies the boundary condition (51). Inspired by the research work of Atkinson 
(1972), we have obtained the following close-form solution of Equation (60a) with the 
condition (61): 
 

1 1 1 / 1(2 1) (3 ) ( 1) ; 1/ 2,n n n n nf n n n n− + + += − + >  and  

( )3exp 4 27 ;0 1/ 2,f f n′ = − < ≤  therefore, f = ∞ . 

 
These results for different values of n  are well agreed with the numerical results presented in 
Table 1. The plot of f ′  verses ξ  for different values of n  is shown in Figure 1. 
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Table 1. Numerical Solution of Equations (60a) - (61)  

n  ξ  f  f ′  n  ξ  f  f ′  
2 0 0 1 4/5 0 0 1 
 2 1.4789 0.4134  10 2.6130 0.010 
 4 1.8156 0.0118  30 2.6485 0.0002 
 4.3 1.8171 0.0029  89 2.6502 0 
 4.3944841 1.8171 0  →∞  2.6502 0 

1.5 0 0 1 1/2 0 0 1 
 2 1.5652 0.4846  10 2.7706 0.0428 
 4 2.0497 0.0707  30 3.1529 0.0096 
 6 2.0866 0  10000 4.2302 0 
 6.0751819 2.0866 0  20000000 5.0611 0 
1 0 0 1 1/5 0 0 1 
 10 2.3682 0.0652  10 2.7706 0.0428 
 15 2.4495 0.00001  30 3.6201 0.0410 
 20 2.4495 0  100 5.4330 0.0182 
 →∞   2.4495 0  1000 11.7261 0.0039 

 

 
Figure 1. Velocity profile for Two-dimensional jet flow for different values of n  
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8.2 For Axisymmetric Jet 
 
Numerical solution of the initial value problem (78) with (79) is calculated by applying 
Fehlberg’s fourth-fifth Runge-Kutta Method using Maple software. It shows that ξ  tends to 

infinity, f  approaches the approximate value 4.0000 and velocity 0f ξ′ =  for power index 

1n =  (agreed with Rotem (1964)) and f  tends to infinity as ξ tends to infinity for 0 1n< < . 

For 1,n > ξ  does not tend to infinity, it is replaced by ,nξ ξ=  f  approaches some 

approximate value. Also, the velocity profile f ξ′ is shown in Figure 2 satisfies the boundary 

condition (68) at .ξ →∞  The plot of f ξ′  verses ξ  for different values of n is shown in 
Figure 2. 

 
Figure 2. Velocity profile for Axisymmetric jet flow for different values of n 

 
If we choose a similarity variable  
 

11
2 13( 1) 2

,

(2 1)
2 1

nn

Y

Cn X
n

ξ
−−

=
 − + − 

                                                                                     (82) 

  
to remove singularity from the equations (67a) and (67b) for 1/ 2n =  case, then under this 
transformation equations (77a) and (77b) reduce to the following equations: 
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(1 ) ; 0
n

nd f f d f f
d d

ξ ξ
ξ ξ ξξ

−
    ′ ′ ′′= − >            

, 0,n >                                                            (83a)                        

(1 ) ; 0
n

nd f f d ff
d d

ξ ξ
ξ ξ ξξ

−
    ′ ′ ′′− = − ≤            

, 0,n >                                                      (83b)              

with initial conditions (0) 0, (0) 0, (0) 1.f f f′ ′′= = =                                                         (84) 
 
The equation (83a) with condition (84) is analogous to equations derived by Rotem (1964). 
Then, the plot of f ξ′  verses ξ  for different values of n corresponding Equations (83a)-(84) 
is shown in Figure 3.  
 

 
Figure 3. Velocity profile for Axisymmetric jet flow of equations (83a)-(84) 

 
In the axisymmetric jet problem, the ODE system is singular at 0ξ = . Therefore, if initial 

conditions are started from 0.00001ξ = , the numerical results of the ODE system are executed 
for 0.n >  
 
9. Conclusion 
 
Lie symmetric technique is applied to derive the most general form of an invariant solution that 
is exercisable to nonlinear PDEs governing the two-dimensional laminar jet as well as the 
axisymmetrical laminar jet of non-Newtonian power-law fluids. Using the symmetries, the 
non-linear PDE is transformed into a non-linear ODE with boundary conditions.  
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Here, the Lie symmetry generator is advantageously used to convert the entire homogeneous 
BVP into a non-homogeneous IVP. The converted IVP is solved numerically by the fourth-
fifth order Runge-Kutta method. The velocity of two-dimensional and axisymmetric laminar, 
steady free jets increases as the power-law index decreases. The graphical representations are 
here demonstrating the importance of symmetries in applications. It is believed that the work 
contained in this research paper will be useful to other researchers working in technical 
applications like fluid injection engines, fluid flow in fountains and different types of jet flows. 
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