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Abstract

In this study, we are interested in using the local linear technique to estimate the conditional hazard
function for functional dependent data where the scalar response is conditioned by a functional
random variable. The asymptotic normality of this constructed estimator is demonstrated under
some extreme conditions. Our estimator’s performance is demonstrated through simulations.
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tion; Local linear estimation; Mixing data
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1. Introduction

With the emergence of advanced measurement devices, the examination of functional data has
recently become commonplace. Ferraty and Vieu (2006), Ramsay and Silverman (2002) and others
provide an overview of the current state of nonparametric functional data.
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Ferraty and Vieu’s monograph (2006) highlights many of their contributions to non-parametric
estimation with functional data, including the consistency of conditional density, conditional dis-
tribution and regression estimates among other aspects in the independent identically distributed
(i.i.d.) case as well as under dependence conditions (strong mixing). Different strategies are ap-
plied to various examples of functional data samples, and almost complete rates of convergence
are produced. Masry (2005) proved the asymptotic normality of the functional non-parametric
regression estimate considering strong mixing dependence conditions for the sample data. For au-
tomatic smoothing parameter selection in the regression setting, we cite the work of Rachdi and
Vieu (2007).

The nonparametric estimation of a hazard function has been considered by many authors. Watson
and Leadbetter (1964) showed the asymptotic normality of the hazard rate function with depen-
dence conditions. The uniform convergence properties and asymptotic normality of an estimate of
the maximum of the hazard function in a context of strong mixing was established by Quintela-del-
Rio (2006). Then, two years later, the same author showed that the kernel estimator of the hazard
function is strongly consistent and asymptotically normally distributed.

In the case of finite-dimensional data, local linear estimation technique has several advantages over
the kernel method such as bias reduction and adaptation of effects. The first results on this model in
FDA setup were established by Baillo and Grané (2009) and Berlinet et al. (2011). These authors
considered the local linear estimation of the regression operator when the regressor takes values
in a Hilbert space. Barrientos-Marin et al. (2010) and El Methni and Rachdi (2011) proposed the
almost complete convergence with rates, of the proposed estimator. Very recently, Demongot et al.
(2014) applied this method for the conditional cumulative distribution function and Messaci et al.
(2015) for the conditional quantile.

In this article, we employed the asymptotic normality of local linear estimator of the functional
hazard function for functional dependent data. Recall that Zhou and Lin (2016) established the
asymptotic normality of linear locally modelled regression for functional data. Bouanani et al.
(2018) demonstrated the asymptotic normality of the linear estimators of several statistical parame-
ters, such as the conditional cumulative distribution, conditional density derivatives and conditional
mode.

This paper is organized as follows. The model and the functional local linear estimator of the
conditional hazard function are introduced in Section 2. Notations and hypotheses in Section 3. In
Section 4, we treated the asymptotic normality of the estimator for dependent functional data and
used our findings to build the confidence interval. The asymptotic of the estimate is demonstrated
in Section 5 through a simulation. Finally, in the appendix, we show the proofs of our results.

2. Model and Estimator

Let (Xi, Yi){i∈N} be a valued measurable strictly stationary process, whereXi takes values in semi-
metric space F with a semi-metric d and Yi is a real valued.
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We denote by h(y|x) the conditional hazard function of Y given X = x, which is defined from the
conditional density function f(y|x) and the survival function S(x, y) = 1− F (y|x) as follows,

h(y|x) = f(y|x)
S(x, y)

=
f(y|x)

1− F (y|x)
, ∀y ∈ R,

and the conditional probability distribution function noted F (y|x) is absolutely continuous with
respect to the Lebesgue measure on R, defined by

F (y|x) = P(Y ≤ y | X = x), ∀y ∈ R.

The local linear estimator of the conditional hazard function h(y|x) is given by

ĥ(y|x) = f̂(y|x)
1− F̂ (y|x)

, ∀y ∈ R.

The estimate of F (y|x) (see Demongot et al. (2014)) is estimated by â where the couple (â, b̂) is
obtained by the optimization rule:

min
(a,b)∈R2

n∑
i=1

(
H(h−1

H (Yi − y))− a− bβ(Xi, x)
)2
K(h−1

K δ(Xi, x)).

Formally, (â, b̂) is a solution of the system

(tQβKQβ)

(
a
b

)
− (tQβKH) = 0,

which allows to (
â

b̂

)
= (tQβKQβ)

−1(tQβKH),

where tQβ =

(
1 · · · 1

β(X1, x) · · · β(Xn, x)

)
, K = diag(K(h−1

K δ(X1, x)), . . . , K(h−1
K δ(Xn, x))) and

tH = (H(h−1
H (Y1 − y)), . . . , H(h−1

H (Yn − y))).

Clearly, after direct computations, we get

F̂ (y|x) =

n∑
j=1

ΓjK(h−1
K δ(Xj, x))H(hH

−1(y − Yj))

n∑
j=1

ΓjK(h−1
K δ(Xj, x))

. (1)

Here, Γj = K−1(h−1
K δ(Xj, x))

(∑n
i=1Wij(x)

)
with

Wij(x) = β(Xi, x)
(
β(Xi, x)− β(Xj, x)

)
K(h−1

K δ(Xi, x))K(h−1
K δ(Xj, x)),

and H is a distribution function, K is a kernel (hK , hH are a sequences of positive real numbers),
the bi-functional β(., .) and δ(., .) are defined from F × F into R, where, |δ(x, z)| = d(x, z) and
for all x ∈ F , β(x, x) = 0.
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Since the density function is defined in terms of derivative of the distribution function, we obtain
from (1) the derivative with respect to y,

f̂(y|x) =

n∑
j=1

ΓjK(h−1
K δ(Xj, x))H

′(hH
−1(y − Yj))

n∑
j=1

hHΓjK(h−1
K δ(Xj, x))

,

with H ′ is the derivative of H .

3. Hypotheses

In the rest of this paper, we use C1, C2, C to denote strictly positive generic constants, Nx denote
a fixed neighborhood of x (x is a fixed point in F), Ny denoted by the neighborhood of y and we
will use the notation ϕ(r1, r2) = P(r2 < δ(X, x) < r1) of the small ball probability function.

We introduce the following assumptions to establish our results.

(H1) For any hK > 0,

ϕ(hK) = ϕ(−hK , hK) > 0,

and for µ ≥ 2, C1n
1−µ ≤ ϕ(hK) ≤ C2n

(1−µ)−1

.
(H2) (a) sup

i̸=j
P ((Xi, Xj) ∈ B(x, hK)×B(x, hK)) ≤ C(ϕ(hK)

2) = Φ(hK).

(b) The α-mixing sequence (Xi, Yi)(i∈N) satisfies
∞∑
i=1

is(α(i))1/p <∞ for p > 0, s > (1/p).

(H3) For all z ∈ F , the function β(·, ·) satisfies the conditions below,

C1|δ(x, z)| ≤ |β(x, z)| ≤ C2|δ(x, z)|,

hK

∫
B(x,hK)

β(u, x)dPX(u) = o

(∫
B(x,hK)

β2(u, x)dPX(u)

)
,

where B(x, r) = {z ∈ F : |δ(z, x)| ≤ r}.
(H4) (1) The kernel K(.) is a positive, differentiable function which is supported within (−1, 1)

satisfies

K2(1)−
∫ 1

−1

(K2(u))′χx(u)du > 0.

(2) The distribution H(.) is positive and Lipschitzian function, where its first derivative H ′(.)
are bounded and symmetric function, such that∫

H ′(t)dt = 1,

∫
|t|b2H ′

(t)dt <∞ and
∫

(H ′(t))2dt <∞.

4
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(H5) The bandwidths hK and hH are satisfied:

lim
n→∞

hK = lim
n→∞

hH = 0 and lim
n→∞

log n

nhjHϕ(hK)
= 0, for j = 0, 1.

(H6) There exists a sequences of positive integers (rn) and (pn), such that (rn) → ∞, (pn) → ∞,
and

(a) pn = o
(√

nhHϕ(hK)
)

and lim
n→∞

(√
n

hHϕ(hK)

)
α(pn) = 0,

(b) qnpn = o
(√

nhHϕ(hK)
)

and qn lim
n→∞

(√
n

hHϕ(hK)

)
α(pn) = 0,

where qn is the largest integer, (rn + pn) = O(n) and qn(rn + pn) = O(n).

Some discussion on the hypotheses

The assumption (H1) is the concentration property of the explanatory variable in small balls. The
assumption (H2) is about the negligible of the variance term. The assumption (H3) is the same
assumption in Barrientos-Marin et al. (2010). The assumptions (H4) and (H5) on the kernels
K(.), H(.) and the bandwidths hK and hH . Finally, the assumption (H6) is a technical hypoth-
esis for our proofs.

4. Results

4.1. Asymptotic Normality

In this section, we get the asymptotic normality of ĥ(y|x) by the convergence in distribution (
D−→),

which the results below are the goal of this paper and there’s a theorem and lemmas in the Appendix
to help to get this asymptotic property.

Theorem 4.1.

Under hypotheses (H1)-(H6) and for any x ∈ Λ, such that Λ = {x ∈ F , f(y|x)(1−F (y|x) ̸= 0},
we have: (

nhHϕ(hK)

V h
HK(x, y)

)1/2 (
ĥ(y|x)− h(y|x)−Bn(x, y)

)
D−→ N (0, 1) as n −→ ∞,

with

V h
HK(x, y) =

h(y|x)
(1− F (y|x))


(
K2(1)−

∫ 1

−1
(K2(u))(1)χx(u)du

)
(
K(1)−

∫ 1

−1
(K(u))(1)χx(u)du

)2
 ,

Bn(x, y) =
(Bf,H − h(y|x)BF,H)h

2
H + (Bf,K − h(y|x)BF,K)h

2
K

1− F (y|x)
,

5
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and

Bf,H(x, y) =
1
2
∂2fx(y)

∂y2

∫
t2H(1)(t)dt,

Bf,K(x, y) =
1
2
Ψ

(2)
0,1(0)

[(
K(1)−

∫ 1

−1
(u2K(u))(1)χx(u)du

)(
K(1)−

∫ 1

−1
K(1)(u)χx(u)du

) ] ,
BF,H(x, y) =

1
2
∂2Fx(y)

∂y2

∫
t2H(1)(t)dt,

BF,K(x, y) =
1
2
Ψ

(2)
0,0(0)

[(
K(1)−

∫ 1

−1
(u2K(u))(1)χx(u)du

)(
K(1)−

∫ 1

−1
K(1)(u)χx(u)du

) ] ,
where, for any l ∈ {0, 2} and j = 0, 1, the functions

ψl,j(x, y) =
∂lFx(j)

(y)
∂yl and Ψl,j(s) = E [ψl,j(X, y)− ψl,j(x, y) | β(x,X) = s] .

Proof:

The proof of Theorem 4.1 is based on the following decomposition:

ĥ(y|x)− h(y|x) = 1

F̂D(x)− F̂N(y|x)

[
f̂N(y|x)− E[f̂N(y|x)]

]
+

1

F̂D(x)− F̂N(y|x)

[
h(y|x)

(
E[F̂N(y|x)]− F (y|x)

)
+
(
E[f̂N(y|x)]− f(y|x)

)]
+

h(y|x)
F̂D(x)− F̂N(y|x)

[
1− E[F̂N(y|x)]−

(
F̂D(x)− F̂N(y|x)

)]
,

where

f̂N(y|x) =
1

nhHE[Γ1K1]

n∑
j=1

ΓjKjH
′
j,

F̂D(x) =
1

nE[Γ1K1]

n∑
j=1

ΓjKj,

F̂N(y|x) =
1

nE[Γ1K1]

n∑
j=1

ΓjKjHj,

and Γj = K−1(h−1
K δ(Xj, x))

(∑n
i=1Wij(x)

)
.

If we put under the hypotheses of Theorem 4.1, lim
n−→∞

(h2H + h2K)
√
nϕ(hK) = 0, we get

(
nhHϕ(hK)

V h
HK(x, y)

)1/2

(ĥ(y|x)− h(y|x)) D−→ N (0, 1), as n→ ∞. (2)

Then, from these results, we finish the proof of the Theorem 4.1 by Lemma 4.1, 4.2 and Corollary
4.1. ■
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Lemma 4.1.

Under hypotheses of Theorem 4.1, we have(
nhHϕ(hK)

V f
HK(x, y)

)1/2 (
f̂N(y|x)− E[f̂N(y|x)]

)
D−→ N (0, 1), as n→ ∞,

where V f
HK(x, y) =

A2

A2
1
f(y|x)

∫
(H

′
(t))2dt, and Ak = Kk(1)−

∫ 1

−1
(Kk(t))′χx(t)dt, for k = 1, 2.

Lemma 4.2.

Under the conditions of Theorem 4.1, we obtain(
nhHϕ(hk)

V h
HK(x, y)

)1/2

(F̂D(x)− F̂N(y|x)− 1 + E[F̂N(y|x)]) = oP(1).

Corollary 4.1.

Under hypothesis of Theorem 4.1, we obtain

F̂D(x)− F̂N(y|x)
P−→ 1− F (y|x).

4.2. Application: Confidence interval

We know that the confidence interval gives us a range of plausible values for some unknown value
based on results from a sample. So, to construct a confidence interval for the true value of h(y|x),
we need to estimate the variance term V h

HK(x, y) and the bias term Bn(x, y) by the empirical
estimators, but from (4.1), we ignore the bias term Bn(x, y).

First, we estimate the function ϕ(hK) by

ϕ̂(hK) =
♯{i : |δ(x,Xi) ≤ hK |}

n
,

and ♯{.} is the cardinal number and about the functions δ(., .) and β(., .) (see Barrientos-Marin et
al. (2010)). Then, we give the V h

HK(x, y) as follows,

V̂ h
HK(x, y) =

(
ĥ(y|x)

(1− F̂ (y|x))
Â2

(Â1)2

)1/2

;

observe that from Ferraty and Vieu (2006),

1

ϕ(hK)
E
[
K

(
|δ(X1, x)|

hK

)]
−→ A1 and

1

ϕ(hK)
E

[
K

(
|δ(X1, x)|

hK

)2
]
−→ A2

2,

so, we estimate empirically these terms by

Â1 =
1

nϕ̂(hK)

n∑
i=1

K

(
|δ(Xi, x)|

hK

)
and Â2 =

1

nϕ̂(hK)

n∑
i=1

K

(
|δ(Xi, x)|

hK

)2

.

7
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Finally, the asymptotic (1 − λ) confidence interval of h(y|x) with zλ/2 is the λ/2 quantile of the
standard normal distribution, given by:

ĥ(y|x)− zλ/2

√√√√ V̂ h
HK(x, y)

nϕ̂(hK)
, ĥ(y|x) + zλ/2

√√√√ V̂ h
HK(x, y)

nϕ̂(hK)

 .

5. Simulation

Our main purpose of this section is to illustrate the performance and the superiority of the local
linear method. More precisely, we compare the mean square error (MSE) of the local linear ap-
proach (L.L.), studied here, over the kernel (L.C.) one when data are of functional kind, which are
defined as

h
x

L.L.(y)) =

h−1
H

n∑
i,j=1

WijH
′(h−1

H (y − Yj))

n∑
i,j=1

Wij −
n∑

i,j=1

WijH(h−1
H (y − Yj))

, (3)

h
x

L.C.(y) =

h−1
H

n∑
i=1

K(h−1
K d(x,Xi))H

′(h−1
H (Yi − y))

n∑
i=1

K(h−1
K d(x,Xi))−

n∑
i=1

K(h−1
K d(x,Xi))H(h−1

H (Yi − y))

. (4)

For this aim, we first present a functional dependent processes generated in the following way:

Xi(t) = 1− sin (ηit) , i = 1, . . . , 300; t ∈
[
0,
π

3

]
, (5)

where t takes 100 equispaced values in
[
0, π

3

]
and ηi = 1

3
ηi−1 + ξi, ξi are i.i.d. ∼ N (0, 1), and are

independent from ηi, which is generated independently by η0 ∼ N (0, 1). For simplicity, Figure
1 presents a sample of n = 100 of such curves Xi(t). Second, the scalar response variables are
obtained from the model Yi = r (Xi) + ϵi, where r is the nonlinear regression operator with

r(X) = 7
(∫ π

3

0
(X ′(t)) dt

)2
and ϵi ∼ N (0, 0.075).

8
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Figure 1. A sample of 100 curves X for t ∈
[
0, π3

]

Concerning the smoothing parameters (hH and hK)
The bandwidth parameters is very crucial in nonparametric estimation because this parameters
intervenes in all the asymptotic properties as in the case which we are studying, in particular in the
improvement of the rate of convergence.

In this application we using the cross-validation method (CV) to select the bandwidths hH and
hK . By the similar technique introduced by Rachdi et al. (2014) for the quadratic error in the local
linear estimation of the conditional density for functional data, we consider the minimization of
the following criterion

1

n

n∑
i=1

W1(Xi)

∫ [
h(−i)(y|Xi)

]2
W2(y)dy −

2

n

n∑
i=1

[
h(−i)(Yi|Xi)

]
W1(Xi)W2(Yi),

where

h(−k)(y|Xk) =

h−1
H

n∑
j=1,j ̸=k

n∑
i=1,i̸=k

Wij(Xk)H
′(h−1

H (y − Yj))

n∑
j=1,j ̸=k

n∑
i=1,i̸=k

Wij(Xk)−
n∑

j=1,j ̸=k

n∑
i=1,i̸=k

Wij(Xk)H(h−1
H (y − Yj))

. (6)

with h(−k) is the estimator of h without using the kth observation (k = 1, ..., n), this estimator is
called the leave-one-out curve estimator and W1 (respectively, W2) is some positive weight func-
tion. In our simulation study, we take W1(y) = 1 and W2(y) = I[0.9×mini=1,..,n(Yi);1.1×mini=1,..,n(Yi)],

9
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(see, for instance, Demongot et al. (2014) for more discussions on the choice about weight func-
tion).

On the choice of the locating functions (δ and β).
The shape of the curves has great consideration in the choice of bi-functional operators δ and β.
For instance, if the functional data are smooth curves, we may use the following family of locating
functions:

β(x1, x2) =

∫ π

3

0

θ(t)(x
(s)
1 (t)− x

(s)
2 (t))dt,

and

δ(x1, x2) =

√∫ π

3

0

(x
(s)
1 (t)− x

(s)
2 (t))2dt,

where x(s)(t) denoting the sth derivative of the curve x(t) and θ is the eigenfunction of the empir-
ical covariance operator

1

|Λ|
∑
i∈Λ

(X
(s)
i (t)−X(s)(t))t(X

(s)
i (t)−X(s)(t)), where X(s)(t) =

1

|Λ|
∑
i∈Λ

X
(s)
i (t),

associated with the q-greatest eigenvalue.

In this simulation study, we take the following parameters:

s = 2, q = 5, Λ = {1, ...., 100} and |Λ| = 100.

In the following graphs, the covariance operator for Λ = {1, ...., 100} gives the discretization
of the eigenfunctions θi(t) (the eigenfunction is presented by a continuous curve). First, the five
eigenfunctions θ1(t), θ2(t), θ3(t), θ4(t) and θ5(t), are represented in Figure 2. Next, we plot twenty
eigenfunctions θ1(t), ...., θ20(t) in Figure 3. Finally, all the 100 eigenfunctions are represented in
Figure 4.

Finally, we choose a quadratic kernel K on [−1, 1] and take K = H ′. To illustrate the performance
of our estimator, we proceed with the following algorithm.

• Step 1. We generate n = 100 independent replications of (Xi, Yi)i=1,...,n.
• Step 2. We divide our observations into two subsets:

– (Xi, Yi)i=1,..,80, training sample.
– (Xj, Yj)j=81,..,100, test sample.

• Step 3. We calculate the two estimators by using the learning sample and we find the local
linear (hL.L.) and the local constant (hL.C.) estimators of the conditional hazard function.

10
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• Step 4. We present our results by plotting the boxplot of the prediction error represented in
Figure 6 and we compute the empirical mean square error with

– MSE(hL.L.) =
1

20

20∑
i=1

(Yi − λL.L.(Yi))
2,

– MSE(hL.C.) =
1

20

20∑
i=1

(Yi − λL.C.(Yi))
2.

Finally, we find that the method based on the local linear estimation is much better and more
efficient than the kernel method. This is confirmed by the mean squared error MSE(hL.L.) =
0.16064 whereas MSE(hL.C.) = 0.26352. This conclusion shows the good performance of
our approach. Figure 5 gives an idea on the accuracy of the predictions corresponding to one
run while Figure 6 displays the distribution of the mean squared error of prediction.
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Figure 2. The curves θi(tj), tj ∈ [0, 1], i = 1, ..., 5
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Figure 3. The curves θi=1,..,20(tj), tj=1,..,100 ∈ [0, 1], i = 1, .., 20
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Figure 4. The curves θi(tj), tj ∈ [0, 1], i = 1, .., 100
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Figure 5. Comparison of the Point at high risk between the local linear estimator and the local constant
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Figure 6. Comparison of the distribution of MSE between the local linear estimator and the local constant
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6. Conclusion

As a general conclusion, we have established the asymptotic normality property of the local linear
estimate of the conditional hazard function in α-mixing data framework. Our theoretical analysis
shows that our estimator has excellent asymptotic characteristics. For practical purposes, we can
say that the local linear estimate approach outperforms the kernel method in terms of squared
error MSE. As a result, we can provide and estimate confidence bands. The k-NN method is a
smoothing method that includes an adaptive estimator. The very important feature of this method
is that it allows the construction of a neighbourhood adapted to the local structure of the data.
So, it would be also of interest to study the asymptotic properties of the k-NN estimator of the
conditional hazard function. This will be considered in future works.
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Appendix

In what follows, we denote for (i, j = 1, . . . , n),

Ki = K(h−1
K δ(Xi, x)), Hj = H(h−1

H (Yj − y)), βi = β(., .).

The next lemma is for the proof of Lemma 4.1.

Lemma 6.1.

We have
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(1) nVar(N2,1)
n→+∞−−−−→ A2

A2
1
f(y|x)

∫
(H

′
(t))2dt.

(2)

(
n2ϕ(hK)E2[(β2

1K1)]
hHE2[Γ1K1]

∑
1≤i<j≤n

Cov
(
Ki(H

′
i − hHf(y|x)), Kj(H

′
j − hHf(y|x))

)) n→+∞−−−−→ 0.

(3) E[(N1,i − 1)2]
n→+∞−−−−→ 0.

(4) E[N2
2,j]

n→+∞−−−−→ V f
HK(x, y).

Proof:

(1) We have

nVar(N2,1) =
n2ϕ(hK)E2[(β2

1K1)]

hHE2[Γ1K1]
E
[(
K1(H

′
1 − hHf(y|x))− E[K1(H

′
1 − hHf(y|x))

)2]
.

Then, from the Lemma 2 in Bouanani et al. (2018), we get

E[K1(H
′
1 − hHf(y|x))] = E[K1(E[H ′

1|X1]− hHf(y|x))]
n→+∞−−−−→ 0. (7)

Moreover, we still have to prove the remaining term,

nVar(N2,1) =
n2ϕ(hK)E2[(β2

1K1)]

hHE2[Γ1K1]
E
[
K2

1E[(H ′
1 − hHf(y|x))2|X1]

]
=
n2ϕ(hK)E2[(β2

1K1)]

hHE2[Γ1K1]

(
E[Var(H ′

1|X1)K
2
1 ] +

(
E[E[H ′

1|X1]− hHf(y|x)]2K2
1

))
.

Again, we use (7) to get

nVar(N2,1) =
n2ϕ(hK)E2[(β2

1K1)]

hHE2[Γ1K1]

(
E[Var(H ′

1|X1)K
2
1 ]
)
,

and we have from Lemma 2 in Bouanani et al. (2018) that

E[Var(H ′
1|X1)K

2
1 ] −→ A2ϕ(hK)hHf(y|x)

∫
(H ′(t))2dt as n→ ∞.

However, by Lemma 1 in Zhou and Lin (2016):

nVar(N2,1) =
n2ϕ(hK)(N(1, 2)h2Kϕ(hK)

2)2

hH((n− 1)N(1, 2)A1h2Kϕ(hK))
2
hHA2ϕ(hK)f(y|x)

∫
(H ′(t))2dt

=
n2

(n− 1)2A2
1

A2f(y|x)
∫
(H ′(t))2dt.

Then,

nVar(N2,1) −→
A2

A2
1

f(y|x)
∫
(H ′(t))2dt as n −→ ∞.

(2) The technique of Masry (1986) defines the sets ∆1 and ∆2 as follows,

∆1 = {(i, j) ∈ {1, 2, ...., n}, 1 ≤| i− j |≤ sn},
∆2 = {(i, j) ∈ {1, 2, ...., n}, sn + 1 ≤| i− j |≤ n− 1},

and sn is a sequence of integers such that sn −→ +∞, and we denote by

Gi = Ki(H
′
i − hHf(y|x)) and Gj = Kj(H

′
j − hHf(y|x)).
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Then,

Cov(N2,i, N2,j) =
nϕ(hK)E2[(β2

1K1)]

hHE2[Γ1K1]

∑
∆1

Cov(Gi, Gj)

+
nϕ(hK)E2[(β2

1K1)]

hHE2[Γ1K1]

∑
∆2

Cov(Gi, Gj)

= P1 + P2.

First, we calculate the sum over the set ∆1,

Cov(Gi, Gj) = E [KiKjE [((H ′
i − hHf(y|x))(H ′

i − hHf(y|x))|(Xi, Yj)]]

− E2 [K1(H
′
1 − hHf(y|x))] .

After (H2)(a) and (H4)(2), the following inequality is obtained,

| Cov(Gi, Gj) | ≤ E(KiKj) + E2(K1)

≤ CP((Xi, Xj) ∈ B(x, hK)×B(x, hK)) + A2
1ϕ

2(hK)

≤ CΦ(hK) + A2
1ϕ

2(hK).

Then, by Lemma 1 in Zhou and Lin (2016),

| P1 |≤
Cn2ϕ(hK)sn
(n− 1)2A2

1hH

((
Φ(hK)

ϕ2(hK)

)
+ A2

1

)
,

and taking sn = (ϕ(hK) log n)
−(1/p)(1/z) and from (H1), we obtain P1 −→ o(1) as n −→ +∞.

Second, computing the sum over the set ∆2 by using the proposition A.10 (ii) in Ferraty and
Vieu (2006), we get:∑

∆2

| Cov(Gi, Gj) | ≤
∑
∆2

C (α | j − i |)
1

p (E | Gi |q)
1

q (E | Gj |r)
1

r

≤
∑
∆2

C (α | j − i |)
1

p E (| Ki |q E (| H ′
i(y)− hHf(y|x) |q |X1))

E (| Ki |r E (| H ′
i(y)− hHf(y|x) |r |X1))

≤
∑
|k|>sn

kδ(α(| k |))
1

pC(ϕ(hK))
1

qC1(ϕ(hK))
1

r ,

so, by Lemma 1 in Zhou and Lin (2016),

| P2 |≤
Cn2(ϕ(hK))

1

q
+ 1

r
=1− 1

p

hH(n− 1)2A2
1ϕ(hK)(sn)

z

∑
|k|>sn

kδ(α(| k |))
1

p .

By the assumption (H3) and with the same choice of sn as before, we obtain

P2 −→ o(1) as n −→ +∞.
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Therefore, we prove the asymptotic normality of the conditional density function,

N2,j − E[N2,j] =

√
nhHϕ(hK)E(β2

1K1)

hHE(Γ1K1)

n∑
j=1

(Kj(H
′
j − hHf(y|x)− E(H ′

j − hHf(y|x)))

=

∑n
j=1 (Vj − E(Vj))√

n
= Θn,

where,

Vj =
n
√
hHϕ(hK)E(β2

1K1)

hHE(Γ1K1)

(
Kj(H

′
j − hHf(y|x))− E[Kj(H

′
j − hHf(y|x))]

)
.

We know that from (18) the term
∑

1≤i<j≤n

Cov(Vi, Vj) goes to 0 as n tends to infinity. Then, it

require to show the following assertion:

N2,j − E[N2,j]
D−→ N (0, V f

HK(x, y)).

To prove this we will use the classic big and small-block decomposition to overcome the
dependence problem. We divided the set {1, 2, 3...., n} into 2kn + 1 subsets with large blocks
of size rn and small blocks of size pn and put kn =

⌊
n

rn+pn

⌋
and the condition (H6) allows as

to define the large block size as follows:

rn =
⌊(nhHϕ(hK)

qn

) 1

2 ⌋
.

Furthermore, under the same condition and simple algebra:

lim
n→+∞

pn
rn

= 0, lim
n→+∞

rn
n

= 0, lim
n→+∞

rn√
nhHϕ(hK)

= 0.

Now, let Υj , Υ′
j and Mn be defined as follows:

Υj =

j(r+p)+r∑
i=j(r+p)+1

Vi,Υ
′
j =

(j+1)(r+p)∑
i=j(r+p)+r+1

Vi,Mn =
n∑

i=k(r+p)+1

Vi.

It is clear that

Θn =
k−1∑
j=0

Υj√
n
+

k−1∑
j=0

Υ′
j√
n
+
Mn√
n

= S1,n + S2,n + S3,n.

Now, these results permit us to examine the following,

(S2,n + S3,n)
P−→ 0, (8)

and

S1,n
D−→ N (0, V f

HK(x, y)). (9)
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In regard to (8).
It suffices to show that by Markov’s Inequality to write ∀ε > 0:

P(| S2,n |> ε) ≤ E2(S2,n)

ε2
n→+∞−−−−→ 0, (10)

P(| S3,n |> ε) ≤ E2(S3,n)

ε2
n→+∞−−−−→ 0. (11)

• To prove (10), by the second-order stationary, we have

E2(S2,n) =
1

n

(
k−1∑
j=0

V ar(Υ′
j) + 2

∑
0≤i<j≤k−1

Cov(Υ′
i,Υ

′
j)

)

=
1

n

k−1∑
j=0

V ar

 (j+1)(r+p)∑
i=j(r+p)+r+1

Vi

+ 2
∑

0≤i<j≤k−1

Cov(Υ′
i,Υ

′
j)


≤ 1

n

k−1∑
j=0

pnV ar(V1) + 2
k−1∑
j=0

pn∑
i̸=j

Cov(Vi, Vj) + 2
k−1∑

|i−j|>0

Cov(Υ′
i,Υ

′
j)


≤ 1

n
kpnV ar(V1) +

2

n

k−1∑
j=0

vn∑
i̸=j

Cov(Vi, Vj)︸ ︷︷ ︸
T1

+
1

n
2

k−1∑
|i−j|>0

pn∑
l=1

pn∑
j′=1

Cov(V(i(rn+pn)+rn)+l, V(i(rn+pn)+rn)+j′)︸ ︷︷ ︸
T2

,

then, from (H6), we obtain T1

n
−→ 0, as n −→ +∞.

Now, for T2, since i ̸= j, we have | (i(rn + pn) + rn)− (j(rn + pn) + rn) + l− j′ |≥ pn:

T2
n

≤ 2

n

n∑
i,j=1

| Cov(Vi, Vj) |,

where | i− j |≥ rn and this latter extend to T2

n
−→ 0, as n −→ +∞.

• To prove (11), from that n− kn(rn + pn) < rn + pn, we have the following:

E2(S3,n) =
1

n
V ar(Mn)

=
n− kn(rn + pn)

n
V ar(V1) +

2

n

n−kn(rn+pn)∑
i̸=j

Cov(Vi, Vj)

≤ rn + pn
n

V ar(V1) + o(1),

and, again by the condition (H6), we complete the proof of (11).
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• In regard to (9).
We have from lemma in Volkonskii and Rozanov (1959) as n −→ +∞:∣∣∣E [exp(S1,n√

n
it

)]
−

k−1∏
j=0

E
[
exp

(
Υj√
n
it

)] ∣∣∣ −→ 0,

then,

V ar(S1,n) =
krn
n
V ar(Z1),

from assumption (H6), we have krn
n

−→ 1 as n −→ +∞. Thus,

1

n

k−1∑
j=0

E
[
Υ2

j

]
−→ V f

HK(x, y) as n −→ +∞,

and by the central limit theorem (Lindeberg’s version) on Υj and because the set {| Υj |>

ε
√
nV f

HK(x, y)} is empty due to
∣∣∣Υj

n

∣∣∣ ≤ rn
n
|V1|

n→+∞−−−−→ 0, we obtain

∀ε > 0,
1

n

k−1∑
j=0

E
[
Υ2

j1|Υj |>ε
√

nV f
HK(x,y)

]
−→ 0 as n −→ +∞. (12)

Finally, the proof of (9) is terminated.
(3) We have

E[(N1,i − 1)2] = nV ar(N1,1) + 2Cov(N1,i, N1,i′)

=
nV ar(β2

1K1)

n2E[β2
1K1]

+ 2
1

n2E[β2
1K1]

∑
1≤i̸=i′≤n

Cov(β2
iKi, β

2
i′Ki′)

= O

(
1

nϕ(hK)

)
+ 2

1

n2E[β2
1K1]

∑
1≤i̸=i′≤n

Cov(β2
iKi, β

2
i′Ki′).

According to the same procedure in (18), we split the sum into two separate summations over
the sets ∆1 and ∆2, and sn −→ ∞ as n −→ ∞:

∆1 = {(i, i′) ∈ {1, ..., n}, 1 ≤ |i− i′| ≤ sn},
∆2 = {(i, i′) ∈ {1, ..., n}, 1 + sn ≤ |i− i′| ≤ n− 1}.

We write
1

n2E[β2
1K1]

∑
1≤i̸=i′≤n

Cov(β2
iKi, β

2
i′Ki′)

=
1

n2E[β2
1K1]

(∑
∆1

Cov(β2
iKi, β

2
i′Ki′) +

∑
∆2

Cov(β2
iKi, β

2
i′Ki′)

)
. (13)

The sum over ∆1:
We have ∣∣∣Cov(β2

iKi, β
2
i′Ki′)

∣∣∣ ≤ ∣∣∣E[β2
iKiβ

2
i′Ki′ ]

∣∣∣+ E2[β2
1K1]

≤ Ch4E[KiK
′
i] + E2[β2

1K1]

≤ Ch4Φ(hK) + E2[β2
1K1],
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then, ∣∣∣∑
∆1

Cov(β2
iKi, β

2
i′Ki′)

∣∣∣ ≤ nsn
1

n2E[β2
1K1]

(
Ch4Φ(hK) + E[β2

1K1]
)

≤ CsnΦ(hK))

C ′nϕ2(hK)
+
sn
n
,

and by choosing sn =
√
n, as n −→ +∞, we get

∑
∆1

Cov(β2
iKi, β

2
i′Ki′) −→ 0.

The sum over ∆2:
By the inequality for bounded mixing processes, for i ̸= i′ we get∣∣∣Cov(β2

iKi, β
2
i′Ki′)

∣∣∣ ≤ Ch4Kα(|i− i′|),

and using
∑

j≥x+1 j
−t ≤

∫
m≥x

m−t = ((1− t)mt−1)
−1, thus, after some simplification of

calculations, we get ∣∣∣Cov(β2
iKi, β

2
i′Ki′)

∣∣∣ ≤ Cs1−t
n

t− 1(Cnϕ2(hK))
,

and for the same sn in above, as n −→ +∞, we get∑
∆2

Cov(β2
iKi, β

2
i′Ki′) −→ 0.

(4) Observe that

E[N2
2,j] = V ar(N2,j) + E2[N2,j]

= V ar(N2,j) +
n3ϕ(hK)E2(β2

1K1)

hHE2[Γ1K1]
E2[Kj(H

′
j − hHf(y|x))].

We have E[H ′
1|X1]− hHf(y|x) −→ 0 as n −→ ∞ from Lemma 2 in Bouanani et al. (2018).

Then, by Lemma 1 in Zhou and Lin (2016) for E2(β2
1K1)

hHE2[Γ1K1]

n→+∞−−−−→ 0, we get E2[N2,j]
n→+∞−−−−→ 0.

So,

E[N2
2,j]

n→+∞−−−−→
(
V ar(N2,j) = V f

HK(x, y)
)
. ■

Proof:

The proof of the Lemma 4.1 is based on the same concept in Bouanani et al. (2018).

First, we denote

Υ(x, y) = f̂N(y|x)− hHf(y|x)F̂D(x)− E
[
f̂N(y|x)− hHf(y|x)F̂D(x)

]
,
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and let

Ωn =
√
nhHϕ(hK)

n∑
j=1

Υj(x, y)

=

√
nhHϕx(hK)

nhHE[Γ1K1]

( n∑
j=1

(
ΓjKj(H

′
j − hHf(y|x))− E

[
ΓjKj(H

′
j − hHf(y|x))

] ))
,

thus, our claim is to prove Ωn
D−→ N (0, V f

HK(x, y)).

By some simplification on Ωn, we get

Ωn =

(
N1N2 − E[N1N2]−

(
N3N4 − E[N3N4]

))
,

where
N1,i =

1
nE[β2

1K1]

n∑
i=1

β2
iKi, N2,j =

√
nhHϕ(hK)E(β2

1K1)

hHE[Γ1K1]

n∑
j=1

Kj(H
′
j − hHf(y|x)),

N3,i =
1

nE[β1K1]

n∑
i=1

βiKi, N4,j =

√
nhHϕ(hK)E(β1K1)

hHE[Γ1K1]

n∑
j=1

βjKj(H
′
j − hHf(y|x)).

So, we must prove that

N1,iN2,j − E[N1,iN2,j]
D−→ N (0, V f

HK(x, y)), (14)

and

N3,iN4,j − E[N3,iN4,j]
P−→ 0. (15)

• Concerning (14):
We begin by taking apart this equation, such that

N1,iN2,j − E[N1,iN2,j] = (N2,j − E[N2,j])︸ ︷︷ ︸
R1

+
(
(N1,i − 1)N2,j − E[(N1,i − 1)N2,j]

)
︸ ︷︷ ︸

R2

, (16)

now, we need to show that R1
D−→ N (0, V f

HK(x, y)) and R2
P−→ 0.

• For R1, we have

R1 = N2,j − E[N2,j]

=

√
nhHϕ(hK)E(β2

1K1)

hHE[Γ1K1]

n∑
j=1

Kj(H
′
j − hHf(y|x))− E[Kj(H

′
j − hHf(y|x))],

then, we need to evaluate the variance of N2,j . We obtain

Var(N2,j) = nVar(N2,1) + 2
nϕ(hK)E2[β2

1K1]

hHE2[Γ1K1]∑
1≤i<j≤n

Cov
(
Ki(H

′
i − hHf(y|x)), Kj(H

′
j − hHf(y|x))

)
.
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Therefore, to prove that lim
n→+∞

Var(N2,j) = V f
HK(x, y), it necessary to establish the fol-

lowing results:

lim
n→+∞

nVar(N2,1) =
A2

A2
1

f(y|x)
∫
(H

′
(t))2dt, (17)

lim
n→+∞

(
nϕ(hK)E2[β2

1K1]

hHE2[Γ1K1]

∑
1≤i<j≤n

Cov
(
Ki(H

′
i − hf (y|x)), Kj(H

′
j − hHf(y|x))

))
= 0.

(18)
From the Lemma 6.1, we get (17) and (18).

• For R2, by Bienayme-Tchebychev’s inequality and the Cauchy-Schwartz’s inequality,
one can write

P
(∣∣∣((N1,i − 1)N2,j − E[(N1,i − 1)N2,j]

)∣∣∣ ≥ ϵ
)

≤
E
[∣∣∣((N1,i − 1)N2,j − E[(N1,i − 1)N2,j]

)∣∣∣]
ϵ

≤ 2

√
E[(N1,i − 1)2]

√
E[N2

2,j]

ϵ
.

Based on the results of Lemma 6.1, we get as n −→ ∞,

E[(N1,i − 1)2] −→ 0 and E[N2
2,j] −→ V f

HK(x, y).

• Concerning (15):
It is enough to check as n −→ ∞:

E|N4,j − E[N4,j]|
L1

−→ 0, (19)

E|(N3,j − 1)N4,j − E[(N3,j − 1)N4,j]| −→ 0. (20)

• About (19), we show the L2 consistency:

E[(N4,j − E[N4,j])
2] = nV ar(N4,1) + 2

nϕ(hK)E2[β1K1]

hHE2[Γ1K1]∑
1≤i<j≤n

Cov
(
βiKi(H

′
i − hHf(y|x)), βjKj(H

′
j − hHf(y|x))

)
=
nϕ(hK)E2[β1K1]

hHE2[Γ1K1]
nV ar (β1K1(H

′
1 − hHf(y|x)))︸ ︷︷ ︸

F1

+2
nϕ(hK)E2[β1K1]

hHE2[Γ1K1]

∑
1≤i<j≤n

Cov
(
βiKi(H

′
i − hHf(y|x)), βjKj(H

′
j − hHf(y|x))

)
︸ ︷︷ ︸

F2

.
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For F1, we have

V ar (β1K1(H
′
1 − hHf(y|x))) = E

[
β2
1K

2
1(H

′
1 − hHf(y|x))2

]
− E2 [β1K1(H

′
1 − hHf(y|x))] .

We obtain the term E2 [β1K1E[(H ′
1|X1)− hHf(y|x)]]

n→+∞−−−−→, 0 from Lemma 2 in Boua-
nani et al. (2018); then, after simplification in the term F1, we get

F1 =
n2ϕ(hK)E2[β1K1]

hHE2[Γ1K1]
×(

E[V ar(H ′
1|X1)β

2
1K

2
1 ] + E

[
β2
1K

2
1 (E[H ′

1|X1]− hHf(y|x))2
])
.

(21)

Also, from the Lemma 2 in Bouanani et al. (2018), we have the second term of (21) tends
to 0 as n tends to the infinity. About the first term and by Lemma 1 in Zhou and Lin
(2016) and the same way for (17), we get F1

n→+∞−−−−→ 0.

For F2, and through (18), it follows that F2
n→+∞−−−−→ 0.

• About (20), the Cauchy Schwartz inequality permits us to write that

E|(N3,j − 1)N4,j − E[(N3,j − 1)N4,j]| ≤ 2
√

E[(N3,i − 1)]2
√
E[N4,j]2.

We have as n→ ∞:

E[(N3,i − 1)]2 = nV ar(N3,1) + 2Cov(N3,i, N3,j)

≤ nV ar(β1K1)

n2E2[β1K1]
+ 2Cov(N3,i, N3,j)

= O

(
1

nϕ(hK)

)
+ 2Cov(N3,i, N3,j).

Similar to the steps of (13), we obtain Cov(N3,i, N3,j) −→ 0.

Consequently, from (14) and (15) the proof of Lemma 4.1 is achieved. ■

Proof:

We have from the Lemma 3.5 of Bouanani et al. (2019) that F̂D(x)
P−→ E[F̂D(x)] = 1, such

that

E
[
(F̂D(x)− F̂N(y|x)− 1 + E[F̂N(y|x)])

]
= 0,

and (
nhHϕ(hK)

V h
HK(x, y)

)1/2

Var
(
(F̂D(x)− F̂N(y|x)− 1 + E[F̂N(y|x)])

)
−→ 0.

So, the results permit us to finish the proof of Lemma 4.2. ■
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Proof:

For the proof of Corollary 4.1.

By Lemma 4.2 and Theorem 1 in Merouan et al. (2018), we can write

E[F̂D(x)− F̂N(y|x)− 1 + F (y|x)] −→ 0,

Var(F̂D(x)− F̂N(y|x)− 1 + F (y|x)) −→ 0.

Then, F̂D(x)− F̂N(y|x)− 1 + F (y|x) P−→ 0. ■
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