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Abstract: Several algorithms of different domains in distributed systems are designed over the principle of theHappened-Before
Relation(HBR). One common aspect among them is that they intend to be efficient in their implementation by identifying and ensuring
the necessary and sufficient dependency constraints. In this pursuit, some previous works talk about the use of a transitive reduction of
the causality. However, none of these works formally prove in a broad manner that such transitive reduction is the minimal expression
of the HBR. In this paper, a formal study of the minimal binaryrelation (transitive reduction) of the HBR is presented, which is called
the Immediate Dependency Relation(IDR). The study shows that since the transitive closure of the HBR is antisymmetric and finite, it
implies that the IDR is unique. This is important because it means that all of the works that deal with a minimal expressionof the HBR
discuss the same minimal binary relation. In addition, an extension to the IDR to identify causal immediate dependencies only among
a subset of relevant events is presented. Finally, as case ofstudy, the extension of the IDR is applied to the causal delivery of messages.
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1 Introduction

The Happened-Before Relation(HBR) introduced by
Lamport [5], denoted by “→”, without using global
references establishes the conditions to determine for any
pair of single eventsa,b in a system if the eventa
causally occurs before the eventb (denoted bya → b).
Several solutions in different domains are designed over
this principle. For example, the HBR was applied to
ensure temporal and causal dependencies among
heterogeneous data in multimedia distributed systems
such as telehealth systems [9]. One common aspect
among works based on the HBR is that most of them
intend to be efficient in their implementation by
identifying and ensuring the necessary and sufficient
dependency constraints among events. In this pursuit, the
present paper analyzes theminimal binary relation
(transitive reduction) of the HBR that is called the
Immediate Dependency Relation(IDR). The IDR,
denoted in this paper by “↓”, identifies the smallest set of
causally related pair of events in a given distributed

computationÊ = (E,→), such that for every causal path
between a pair of events established with the HBR, there
exists a causal path between those events established by
the IDR. This property means in graph theory that the
(E,→) and the(E,↓)⊂ Ê have the same reachability.

Some previous works for a particular domain deal
with a transitive reduction of the HBR; nevertheless, none
of these works formally prove in a general way that such
transitive reduction is the minimal expression of the
HBR. Some of the most important works are: [2,4] in
causality tracking for relevant events, [7] for context
graphs, [11] and [8] for multicast and group
communication, respectively, and [10] for a consistent
and compact representation of a distributed system. As far
as I know, the first work that indirectly talked about the
transitive reduction of the causality by considering only
immediate causal predecessors was the work presented by
Peterson in [7].

In this paper, an abstract and general study of the IDR
with the objective of being independent of a particular
domain is presented. The IDR is proven to be the
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Fig. 1: A Distributed Computation Scenario

transitive reduction of the HBR. In particular, it is proven
that the IDR has the same transitive closure as does the
HBR. Moreover, it is shown that since the transitive
closure of the HBR is antisymmetric and finite, it implies
that the IDR is unique. This property is important because
it means that all present, past or future works that deal
with or will deal with a minimal expression or a transitive
reduction of the HBR discuss the same binary relation.

In addition, an extension to the IDR in order to
identify causal immediate dependencies only among a
subset ofrelevantevents1 is presented. This is important
since for a given distributed computation, usually only a
subset of events is taken into account according to the
problem to be solved. For example, for snapshot
algorithms, a relevant event corresponds to the
modification of a local variable involved in a global
predicate; and for checkpointing algorithms, a relevant
event is the definition of a local checkpoint [2].

The extension of the IDR applied to the set of relevant
events for the causal delivery of messages is presented as
case of study. It is shown that ensuring the IDR
dependencies among the set of relevant events is
necessaryand sufficient in order to ensure the causal
delivery of messages in the system.

This paper proceeds as follows. In Section 2, the
system model is presented, as well as some order theory
concepts and the Happened-Before Relation. In Section 3,
the immediate dependency relation is presented, along
with its extension for relevant events. Next, in Section 4,
the IDRs minimality proof is given. Finally, in Section 5,
some conclusions are presented.

2 Preliminaries

System Model

Processes. The system (see Figure 1) is composed of a set
of processesP = {p1, p2, ..., pn}. The processes present
an asynchronous execution and communicate only by
message passing.

Messages. There is a finite set of messagesM, where
each messagem∈ M is sent considering an asynchronous
reliable network that is characterized by no transmission

1 In general, the relevant events are also referred asobservable
events.

time boundaries, no order delivery, and no loss of
messages. The set of destinations of a messagem is
identified byDest(m).

Events. There are two types of events under
consideration: internal and external events. Aninternal
event is a unique action that occurs at a processp in a
local manner (denoted in this paper byinternal(p)) and
which changes only the local process state. The finite set
of internal events is denoted asEi . On the other hand,
while an external event is also a unique action that occurs
at a process, it is seen by other processes, thus, affecting
the global state of the system. The external events
considered in this paper are thesendanddeliveryevents.
Let m be a message.send(m) denotes the emission event,
while delivery(p,m) represents the delivery event ofm to
participantp∈ P. The set of events associated toM is the
set Em = {send(m) : m ∈ M} ∪ {delivery(p,m) : m ∈
M ∧ p ∈ P}. The whole set of events in the system is the
finite setE = Ei ∪Em. Each evente∈ E is identified by a
tuplee= (p,x), wherep∈ P is the producer ofe, andx is
the local logical clock for events ofp, whene is carried
out.

2.1 Order Theory Concepts

Transitive Closure. The transitive closure in our domain
establishes thereachabilitybetween events. For a pair of
events in the system, it is said that an eventa is reachable
from an eventb if a causal path exists between them. The
transitive closure is defined in general as follows [6].

Definition 1 The transitive closure of a binary relation R
on a set W is the smallest transitive relation on W that
contains R.

Property 1 If the original relation is transitive, the
transitive closure will be that same relation; otherwise,
the transitive closure will be a different relation.

Transitive Reduction. The transitive reduction of a
binary relation is the minimal binary relation that
expresses the same behavior (in this case, distributed
computation) with the smallest set of related pair of
elements. Its definition is as follows [1].

Definition 2 A transitive reduction of a binary relation R
on a set W is a minimal relation R′ on W, such that the
transitive closure of R′ is the same as the transitive closure
of R.

Property 2 If the transitive closure of R is antisymmetric
and finite, then R′ is unique.

However, neither existence nor uniqueness of
transitive reduction are generally guaranteed .

Covering Relation. In the order theory, a covering
relation is a binary relation which holds between two
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comparable elements in a partially ordered set if they are
immediate neighbors [1]. The covering relation is
commonly used to graphically express the partial order by
means of the Hasse diagram. Its definition is as follows:

Definition 3 Let u and v be elements of a partially ordered
set W. Then v covers u, written as u<: v, if u< v and there
is no element w∈W such that u< w< v.

Property 3 If a partially ordered set(W,R) is finite, then
its covering relation R′ is the transitive reduction of the
partial order relation R.

Only if Property3 is accomplished, a partially ordered
set(W,R) is completely described by its Hasse diagram.
On the other hand, for example in adense order, such as
in the case of the rational numbers, no element covers
another.

2.2 Happened-Before Relation

The Happened-Before Relation (HBR) was defined by
Lamport [5]. It establishes logical precedence
dependencies over a set of events. The HBR is a strict
partial order (transitive, irreflexive and antisymmetric)
defined as follows:

Definition 4 The causal relation “→” is the smallest
relation on a set of events E satisfying the following
properties:

1.If a and b are events belonging to the same process,
and a was originated before b, then a→ b.

2.If a is the sending of a message by one process, and b is
the reception of the same message in another process,
then a→ b.

3.If a→ b and b→ c, then a→ c.

By using Definition4, one can say that a pair of events
is concurrently related “a||b ” only if ¬(a→ b∨b→ a).

The posetÊ = (E,→) constitutes the formal model
adopted in this paper for a distributed computation.

The Happened-Before Relation for Relevant
Events (HBR-R). Usually for a given distributed
computationÊ, only a subset of eventsR⊆ E is relevant.
The HBR for relevant events denoted in this paper by

“
R
→” has been defined in [3] in the following way:

∀(a,b) ∈ R×R : (a
R
→ b)⇔ (a→ b)

The poset R̂ = (R,
R
→) ⊆ (E,→) constitutes the

abstraction considered in this paper of the distributed
computation for the relevant events.

Fig. 2: Hasse Diagram for the IDR of the scenario in Figure 1
(the partial order is established from left to right)

3 Immediate Dependency Relation

The Immediate Dependency Relation (IDR) is known in
order theory as acovering relation (see Definition3).
According to Property3, if a partially ordered set is finite,
its covering relation is thetransitive reductionof the
partial order relation. In this context, the IDR is then the
covering relation of the HBR. Moreover, according to
Property2, since the poset(E,→) is finite and the HBR is
a strict partial order, the IDR is unique. In this paper, the
IDR is denoted by “↓”, and its formal definition is as
follows:

Definition 5 Two events a,b ∈ E have an immediate
dependency relation “a↓ b” if the following restriction is
satisfied.

a ↓ b if a→ b and∀c∈ E,¬(a→ c→ b)

Thus, an eventa causal immediately precedes an event
b, if and only if no other eventc belonging toE exists (E
is the set of events of the system), such thatc belongs to
the causal future ofa and to the causal past ofb. In Section
4 it is proved that the IDR is the transitive reduction of the
HBR.

Based on the IDR, the following property is presented.

Property 4 For all a,b∈ E, a 6= b

if ∃c∈ E such that(a ↓ c and b↓ c) or (c ↓ a and c↓ b)
then a||b

This means that for every pair of eventsa,b∈ E with
common IDR dependencies, the events are concurrently
related. This property is leveraged in [10] in order to
achieve a compact and consistent representation of a
distributed system.

Finally, it is noted that(E,↓)⊂ (E,→).

The Hasse diagram for the IDR of the scenario in
Figure 1 is shown in Figure 2.

Immediate Dependency Relation for Relevant
Events (IDR-R). As for the HBR-R, the IDR must only
reflect the IDR among the relevant events that belong to
R⊆ E. For this case, the IDR is referred as IDR-R, and it
is denoted by “↓R”. It is defined overR̂ as follows:

a ↓R b if a
R
→ b and∀c∈ R,¬(a

R
→ c

R
→ b)
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Fig. 3: Relevants Events for Message Causal Delivery

Remark 1(R,↓R)⊂ (R,
R
→)⊆ (E,→), but

(R,↓R) 6⊂ (E,↓)

This means that the IDR-R is no longer a transitive
reduction of the HBR. Instead, the IDR-R is the transitive
reduction of the HBR-R (the proof is similar as for the
IDR).

3.1 Case of Study: Message Causal Delivery

The selection of the set of relevant events must be
determined according to the problem to be solved. For
message causal delivery, there are two possible types of
relevant events which are thesend and the delivery
events. It has been shown in [8] and [11] for group and
multicast communication, respectively, that in order to
ensure the causal delivery of messages in the system, it
suffices to ensure the causal delivery of immediately
related send events. Therefore, in general, to ensure
message causal delivery for group and multicast
communication, the set of relevant events is determined to
be R= {send(m) : m∈ M} (see Figure 3). Formally, the
message causal delivery based on the IDR-R can be
defined as follows:

Theorem 1
I f ∀((send(m),send(m′)) ∈ R,send(m) ↓R send(m′)⇒
∀p ∈ Dest(m)

⋂
Dest(m′) : delivery(p,m) →

delivery(p,m′)
then
∀((send(m),send(m′)) ∈ R,send(m)

R
→ send(m′)⇒

∀p ∈ Dest(m)
⋂

Dest(m′) : delivery(p,m) →
delivery(p,m′)

The proof relies on the fact that for any pair

send(m)
R
→ send(m′) if send(m) ↓R send(m′) does not

hold, then a messagem′′ exists such that

send(m)
R
→ send(m′′)

R
→ send(m′). Using inductive

reasoning and the fact that the eventsend(m′) may only
have a finite number of “causes” or predecessors for the
causal relation, (at least) one sequence
(send(mi), i = 0,1, ...,h) can be found, such thatm= m0,
m′ = mh and send(mi) ↓R send(mi+1), for all
i = 0,1, ...,h − 1. For any participantp, we have

Fig. 4: Hasse Diagram for the IDR-R of the Relevant Events
Example in Figure 3

delivery(p,mi) → delivery(p,mi+1), and by transitivity,
the required property is obtained.

Clearly, the causal delivery of messages ensured by
the IDR-R is not only asufficientbut also anecessary
condition for the causal delivery of all causally related
messages. From an algorithmic point of view, if the
reference of some messagem′ IDR-R related to a
messagem is not piggy-backed (attached) withm, the
causal delivery ofm with respect tom′ may fail. Theorem
1 shows that this information is sufficient. The Hasse
diagram for the relevant events for message causal
delivery of the scenario example is shown in Figure 4.

4 Minimality Proof of the IDR

In this section a proof to demonstrate that the IDR is the
transitive reduction (minimal relation) of the HBR is
given. In order to prove this, it must be demonstrated that,
according to Definition 2, the IDR must have the same
transitive closure as the HBR. By Property 1, which says
that if the original binary relation (in this case the HBR) is
transitive, then the transitive closure will be the same, one
can conclude that the only property to demonstrate is that
the transitive closure of the IDR is the HBR. By using the
graph theory, the proof of this property is as follows.

Let Ê be a poset with strict partial order→. ThenÊ
can be viewed as a directed graph where the vertex set is
the ground setE, and the edge set is defined by→.

Proposition 1 Suppose every interval of̂E has a finite
height. Then→ is the transitive closure of↓.

Proof.This is proven by induction on height. By definition
of ↓, if a→ b and the height of[a,b] is 1, thena ↓ b.

Assume by induction that whenevera → b and the
height of[a,b] is at mostn, then(a,b) is in the transitive
closure of↓. Suppose thata → b and that the height of
[a,b] is n+ 1. Since every chain in[a,b] is finite, it
contains an elementc which is strictly larger thana and
minimal with respect to this property. Therefore[a,c] =
{a,c}, from which it is concluded thata ↓ c. Since the
interval [c,b] is a proper subinterval of[a,b], it has a
height of at mostn, so by the induction assumption one
can conclude that(c,b) is in the transitive closure of↓ .
Since(a,c) and(c,b) are in the transitive closure of↓, so
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is (a,b). Hence, whenevera→ b and the height of[a,b] is
at mostn+1, then(a,b) is in the transitive closure of↓.
⊓⊔

5 Conclusions

A formal study of the minimal binary relation of the HBR
(Happened-Before Relation) which is called the
Immediate Dependency Relation(IDR) is presented. In
this paper, it is shown that the IDR identifies the smallest
set of causally related pair of events in a given distributed
computation. One important aspect is that because the
HBR is a strict partial ordering, it implies that the IDR is
unique. In addition, the IDR-R relation to identify causal
immediate dependencies only among a subset of relevant
events is introduced. As case of study, the IDR-R was
applied to the particular problem of causal delivery of
messages. The IDR-R has shown that it suffices to ensure
the causal delivery of messages with IDR-R relatedsend
events in order to ensure the causal delivery of all
messages in the system.
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