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Abstract: In this paper we analyze the behavior of product-type radialbasis functions (RBFs) and splines, which are used in a partition
of unity interpolation scheme as local approximants. In particular, we deal with the case of bivariate and trivariate interpolation on a
relatively large number of scattered data points. Thus, we propose the local use of compactly supported RBF and spline interpolants,
which take advantage of being expressible in the multivariate setting as a product of univariate functions. Numerical experiments show
good accuracy and stability of the partition of unity methodcombined with these product-type interpolants, comparingit with the one
obtained by replacing compactly supported RBFs and splineswith Gaussians.

Keywords: multivariate approximation, local interpolation schemes, partition of unity methods, radial basis functions, splines,
scattered data

1 Introduction

We consider the problem of interpolating a continuous
function g : Ω → R on a compact domainΩ ⊂ R

m,
m= 2,3, defined on a finite setXN = {xi , i = 1,2, . . . ,N}
of data pointsor nodes, which are situated inΩ . It
consists of finding an interpolantI : Ω → R such that,
given thexi and the corresponding function valuesgi , the
interpolation conditionsI (xi) = g(xi), i = 1,2, . . . ,N,
are satisfied.

In particular, we are interested in considering the
interpolation of large scattered data sets, a problem which
has gained much interest in several areas of applied
sciences and scientific computing, where the need of
having accurate, fast and stable algorithms is often
essential (see, e.g, [19,22,26,27]). Among the various
multivariate approximation techniques, the partition of
unity methods such as Shepard’s type interpolants turn
out to be particularly effective inmeshfreeor meshless
interpolation (see [2,8,12,13,14,16,23,24,28,30,31]).

In this paper, we propose the use of product-type
compactly supported radial basis functions (RBFs) and
splines, which are used in a partition of unity
interpolation scheme as local approximants. Specifically,
here we consider two families of basis functions, known
as Wendland functionsand Lobachevsky splines, which

can be expressed in the multivariate setting as products of
univariate functions. The former are well-known in
approximation theory and practice, and are usually used
as radial functions in the field of multivariate
interpolation and approximation (see e.g. [10,19,21,34]).
On the other hand, the latter, firstly considered in
probability theory [20,29], have successfully been
proposed for multivariate scattered data interpolation and
integration in [4,5,6] and for landmark-based image
registration in [1,3]. We remark that both of these
families of univariate functions (depending on a shape
parameter) are compactly supported, strictly positive
definite, and enjoy noteworthy theoretical and
computational properties, such as the spline convergence
to the Gaussian function. Furthermore, we observe that
the multivariate spline interpolant is noteworthy because
it is neither a mesh-based formula nor a radial one, but it
asymptotically behaves like a Gaussian interpolant (see
[4,9]). Numerical experiments point out that, for
sufficiently regular basis functions such as the
product-type radial basis function and spline of smothness
C4, the partition of unity scheme combined with RBF and
spline interpolants is comparable in accuracy with that
obtained by using Gaussian ones, even if they are usually
much better conditioned than Gaussians.
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The paper is organized as follows. In Section2 at first
we consider the problem of scattered data interpolation by
product-type Wendland functions and Lobachevsky
splines, recalling their analytic expressions and some
properties; then, we describe the partition of unity
method, which makes use of product-type RBF and spline
interpolants as local approximants. In Section3 we refer
to the corresponding partition of unity algorithms
designed for bivariate and trivariate interpolation. Section
4 summarizes several numerical results in order to
analyze accuracy and stability of the local approximation
scheme combined with compactly supported radial basis
function and spline interpolants, also comparing their
errors with those of the Gaussian. Finally, Section5 deals
with conclusions and future work.

2 Partition of unity scheme

Let us consider a continuous functiong : Ω → R on a
compact domain Ω ⊂ R

m, m ≥ 1, a set
XN = {xi = (x1i ,x2i , . . . ,xmi), i = 1,2, . . . ,N} ⊂ Ω of
scattered data points, and the set
GN = {g(xi), i = 1,2, . . . ,N} of the corresponding
function values.

2.1 Product-type functions

2.1.1 Radial basis functions

In order to construct an interpolation formula generated by
compactly supported RBFs, for evenp≥ 0 we consider the
product-type interpolant of the form

Fp(x) =
N

∑
j=1

c jφp j(x), x ∈ Ω ,

requiringFp(xi) = g(xi), i = 1,2, . . . ,N. The interpolant
Fp is a linear combination of products of univariate shifted
and rescaled functionsζp, calledWendland functions[32],
i.e.

φp j(x)≡ φp j(x;δ ) =
m

∏
h=1

ζp(δ (xh− xh j)), (1)

where, settingr = (xh− xh j), for j = 1,2, . . . ,N

ζ0(δ r)
.
= (1− δ r)+ ,

ζ2(δ r)
.
= (1− δ r)3+ (3δ r +1) ,

ζ4(δ r)
.
= (1− δ r)5+

(

8(δ r)2+5δ r +1
)

,

ζ6(δ r)
.
= (1− δ r)7+

(

21(δ r)3+19(δ r)2+7δ r +1
)

,

andδ ∈ R
+ is a shape parameter. Note that the support of

ζp is [−1/δ ,1/δ ]. The coefficientsc= {c j} are computed
by solving the linear system

Ac= g,

where the interpolation matrix

A= {ai j}= {φp j(xi)}, i, j = 1,2, . . . ,N, (2)

is symmetric and depends on the values ofp andδ in (1).
Since these compactly supported RBFs are strictly
positive definite, the interpolation matrixA in (2) is
positive definite for any set of distinct nodes (see [19]).

Furthermore, since Wendland functions are
(univariate) strictly positive definite functions, we can
construct multivariate strictly positive definite functions
from univariate ones (see, e.g., [34]).

Theorem 1.Suppose that λ1,λ2, . . . ,λm are strictly
positive definite and integrable functions onR, then

Λ(x)= λ1(x1)λ2(x2) · · ·λm(xm), x=(x1,x2, . . . ,xm)∈R
m,

is a strictly positive definite function onRm.

2.1.2 Spline functions

For evenn ≥ 2, we construct the product-type spline
interpolant ofg at the nodesxi in the form

F̃n(x) =
N

∑
j=1

c̃ j φ̃n j(x), x ∈ Ω ,

requiring F̃n(xi) = g(xi), i = 1,2, . . . ,N. The interpolant
F̃n is a linear combination of products of univariate shifted
and rescaled functionsf ∗n , known asLobachevsky splines
[4], i.e.

φ̃n j(x)≡ φ̃n j(x;α) =
m

∏
h=1

f ∗n (α(xh− xh j)), (3)

where for j = 1,2, . . . ,N

f ∗n (α(xh− xh j)) =

√

n
3

1
2n(n−1)!

n

∑
k=0

(−1)k
(n

k

)

×
[
√

n
3

α(xh− xh j)+ (n−2k)

]n−1

+

,

or, equivalently,

f ∗n (α(xh− xh j)) =

√

n
3

1
2n(n−1)!

⌊

n
2+

1
2

√
n
3αx

⌋

∑
k=0

(−1)k
(n

k

)

×
[
√

n
3

α(xh− xh j)+ (n−2k)

]n−1

,

andα ∈ R
+ is a shape parameter. Here the support off ∗n

is given by[−
√

3n/α,
√

3n/α]. The coefficients̃c= {c̃ j}
are obtained by solving the system of linear equations

Ãc̃= g,

whose interpolation matrix

Ã= {ãi j}= {φ̃n j(xi)}, i, j = 1,2, . . . ,N, (4)
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is symmetric and depends on the choice ofn andα in (3).
As also these splines turn out to be strictly positive definite
for any evenn ≥ 2, the interpolation matrix̃A in (4) is
positive definite for any distinct node set.

From the central limit theorem (see [20,29]), we
remark that them-variate spline converges forn → ∞ to
them-variate Gaussian, i.e.

lim
n→∞

m

∏
i=1

f ∗n (αxi) =
1

(2π)m/2
exp

(−α2(∑m
i=1x2

i )

2

)

.

Hence, these product-type functions asymptotically
behave like radial functions, though they are not radial in
themselves.

Finally, since also these splines are (univariate)
strictly positive definite functions for evenn ≥ 2, from
Theorem1 it follows that we can construct multivariate
strictly positive definite functions from univariate ones.

2.2 Interpolation method

In this subsection we present the partition of unity
method. It was firstly suggested in [7,25] in the context of
meshfree Galerkin methods for the solution of partial
differential equations, but then it became a common tool
also used in the field of approximation theory (see [34]).

The basic idea of the partition of unity method is to
start with a partition of the open and bounded domain
Ω ⊆ R

m into d subdomainsΩ j such thatΩ ⊆ ⋃d
j=1 Ω j

with some mild overlap among the subdomains. Firstly,
we take a partition of unity, which consists of a family of
compactly supported, non-negative, continuous functions
Wj with supp(Wj)⊆ Ω j such that

d

∑
j=1

Wj(x) = 1.

Then, we consider the global approximant of the form

I (x) =
d

∑
j=1

H j(x)Wj(x), x ∈ Ω , (5)

where

H j(x) =
mj

∑
k=1

ckϕk(x),

is a local interpolant, which is constructed using themj
nodes belonging to the subdomainΩ j and solving a local
interpolation problem. In particular,H j denotes either a
RBF interpolantFp j or a spline interpolant̃Fn j, whereas
ϕk represents the generick-th basis,φpk or φ̃nk. In fact, we
note that if the local approximants satisfy the interpolation
conditions at data pointxi , i.e.

H j(xi) = g(xi),

the global approximant also interpolates at this node, i.e.

I (xi) = g(xi), i = 1,2, . . . ,N.

Then, we give the following definition (see [33]).

Definition 1.Let Ω ⊆ R
m be a bounded set. Let{Ω}d

j=1
be an open and bounded covering ofΩ . This means that
all Ω j are open and bounded and thatΩ ⊆ ⋃d

j=1Ω j . Set
δ j = diam(Ω j) = supx,y∈Ω j

||x− y||2. We call a family of

nonnegative functions{Wj}d
j=1 with Wj ∈ Ck(Rm) a

k-stable partition of unity with respect to the covering
{Ω j}d

j=1 if

1)supp(Wj)⊆ Ω j ;
2)∑d

j=1Wj(x)≡ 1 onΩ ;
3)for everyβ ∈ N

m
0 with |β | ≤ k there exists a constant

Cβ > 0 such that

||DβWj ||L∞(Ω j ) ≤Cβ/δ |β |
j ,

for all 1≤ j ≤ d.

In accordance with the statements in [33] we require
additional regularity assumptions on thecovering
{Ω j}d

j=1.

Definition 2.Suppose thatΩ ⊆ R
m is bounded and

XN = {xi , i = 1,2, . . . ,N} ⊆ Ω are given. An open and
bounded covering{Ω j}d

j=1 is called regular for(Ω ,XN)
if the following properties are satisfied:

1)for eachx ∈ Ω , the number of subdomainsΩ j with
x ∈ Ω j is bounded by a global constant K;

2)each subdomainΩ j satisfies an interior cone
condition;

3)the local fill distances hX j ,Ω j are uniformly bounded
by the global fill distance hXN,Ω , whereX j = XN ∩
Ω j .

Therefore, after defining the spaceCk
ν(R

m) of all
functions g ∈ Ck whose derivatives of order|β | = k
satisfyDβ g(x) = O(||x||ν2) for ||x||2 → 0, we consider the
following convergence result (see, e.g., [19,34]).

Theorem 2.Let Ω ⊆ R
m be open and bounded and

suppose thatXN = {xi , i = 1, 2, . . . ,N} ⊆ Ω . Let
ϕ ∈ Ck

ν (R
m) be a strictly positive definite function. Let

{Ω j}d
j=1 be a regular covering for(Ω ,XN) and let

{Wj}d
j=1 be k-stable for{Ω j}d

j=1. Then the error between
g ∈ Nϕ(Ω), whereNϕ is the native space ofϕ , and its
partition of unity interpolant (5) can be bounded by

|Dβ g(x)−Dβ
I (x)| ≤Ch(k+ν)/2−|β |

XN,Ω |g|Nϕ (Ω),

for all x ∈ Ω and all |β | ≤ k/2.

Remark.We observe that the partition of unity method
preserves the local approximation order for the global fit.
In fact, we can efficiently compute large product-type
interpolants by solving small interpolation problems and
then combine them along with the global partition of
unity {Wj}d

j=1. This approach allows us to decompose a
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large problem into many small problems, ensuring at the
same time that the accuracy obtained for the local fits is
carried over to the global one. In particular, the partition
of unity method can be thought as a Shepard’s method
with higher-order data, since local approximationsH j
instead of data valuesg j are used.

3 Algorithms

In this section, we describe in detail the partition of unity
algorithms used in the interpolation processes, first
referring to the bivariate algorithm and then to the
trivariate one. They are characterized by the partition of
the domainΩ in square or cube cells, enabling us to use
efficient searching procedures. The basic versions of these
interpolation algorithms have been proposed and widely
tested in [17,18]. Here, such algorithms have been
modified and efficiently updated to locally apply the
product-type interpolants.

3.1 Bivariate interpolation

INPUT:

–N, number of data;
–XN = {(x1i ,x2i), i = 1,2, . . . ,N}, set of data points;
–GN = {gi, i = 1,2, . . . ,N}, set of data values;
–d, number of subdomains;
–Cd = {(x̄1i , x̄2i), i = 1,2, . . . ,d}, set of subdomain
points;

–s, number of evaluation points;
–Es= {(x̃1i , x̃2i), i = 1,2, . . . ,s}, set of evaluation points.

OUTPUT:

–As = {I (x̃1i , x̃2i), i = 1,2, . . . ,s}, set of approximated
values.

Stage 1. The set XN of nodes and the setEs of
evaluation points are ordered with respect to thex2-axis
direction by applying aquicksortx2 procedure.

Stage 2. For each subdomain point(x̄1i , x̄2i),
i = 1,2, . . . ,d, a local circular subdomain is constructed,
whose radius depends on the subdomain numberd, that is

δsubdom=

√

2
d
. (6)

This value is suitably chosen, supposing to have a nearly
uniform node distribution and assuming that the ratio
n/d ≈ 4.

Stage 3. A double structure of crossed strips is
constructed as follows:

i)a first family of q strips, parallel to thex1-axis
direction, is considered taking

q=

⌈

1
δsubdom

⌉

, (7)

and aquicksortx1 procedureis applied to order the
nodes belonging to each strip;

ii)a second family ofq strips, parallel to thex2-axis
direction, is considered.

Note that each of the two strip structures are ordered and
numbered from 1 toq; moreover, the choice in (7) follows
directly from the side length of the domainΩ (unit
square), that here is 1, and the subdomain radiusδsubdom
in (6).

Stage 4. The unit square is partitioned by a
square-based structure consisted ofq2 squares, whose
length of the sides is given byδsquare≡ δsubdom. Then, the
following structure is considered:

–the setsXN, Cd andEs are partitioned by the square
structure into q2 subsets XNk , Cdk and Esk,
k= 1,2, . . . ,q2,

whereNk, dk andsk are the number of points in thek-th
square.

Stage 5. In order to identify the squares to be examined
in the searching procedure, we consider the following two
steps:

(I)since δsquare ≡ δsubdom, the ratio between these
quantities is denoted byi∗ = δsubdom/δsquare = 1.
Thus, the numberj∗ = (2i∗ + 1)2 of squares to be
examined for each node is 9.

(II)for each squarek = [v,w], v,w = 1,2, . . . ,q, a
square-based searching procedure is considered,
examining the points from the square[v− i∗,w− i∗] to
the square[v+ i∗,w+ i∗], with the exception of those
points close to the boundary ofΩ , where we reduce
the total number of squares to be examined.

Then, after defining which and how many squares are
to be examined, the square-based searching procedure is
applied:

–for each subdomain point ofCdk, k = 1,2, . . . ,q2, to
determine all nodes belonging to a subdomain. The
number of nodes of the subdomain centred at(x̄1i , x̄2i)
is counted and stored inmi , i = 1,2, . . . ,d;

–for each evaluation point ofEsk, k = 1,2, . . . ,q2, to
find all those belonging to a subdomain of centre
(x̄1i , x̄2i) and radius δsubdom. The number of
subdomains containing thei-th evaluation point is
counted and stored inr i , i = 1,2, . . . ,s.

Stage 6.A local interpolantH j , j = 1,2, . . . ,d, is found
for each subdomain point.

Stage 7. A local approximantH j and a weight function
Wj , j = 1,2, . . . ,d, is found for each evaluation point.

Stage 8. Applying the global fit (5), one can find
approximated values computed at any evaluation point
(x̃1, x̃2) ∈ Es.

3.2 Trivariate interpolation

INPUT:

c© 2015 NSP
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–N, number of data;
–XN = {(x1i,x2i ,x3i), i = 1,2, . . . ,N}, set of data points;
–GN = {gi , i = 1,2, . . . ,N}, set of data values;
–d, number of subdomains;
–Cd = {(x̄1i , x̄2i , x̄3i), i = 1,2, . . . ,d}, set of subdomain
points;

–s, number of evaluation points;
–Es = {(x̃1i , x̃2i , x̃3i), i = 1,2, . . . ,s}, set of evaluation
points.

OUTPUT:

–As = {I (x̃1i , x̃2i , x̃3i), i = 1,2, . . . ,s}, set of
approximated values.

Stage 1. The set XN of nodes and the setEs of
evaluation points are ordered with respect to thex3-axis
direction by applying aquicksortx3 procedure.

Stage 2. For each subdomain point(x̄1i , x̄2i , x̄3i),
i = 1,2, . . . ,d, a local spherical subdomain is constructed,
whose spherical radius depends on the subdomain
numberd, that is

δsubdom=

√
2

3
√

d
. (8)

Although other choices ofδsubdomare possible, this value
is suitably chosen, supposing to have a nearly uniform
node distribution and assuming that the ration/d ≈ 8.

Stage 3. A triple structure of intersecting
parallelepipeds is constructed as follows:

i)a first family of q parallelepipeds, parallel to thex1-
axis direction, is considered taking

q=

⌈

1
δsubdom

⌉

, (9)

and aquicksortx1 procedureis applied to order the
nodes belonging to each parallelepiped;

ii)a second family ofq parallelepipeds, parallel to the
x2-axis direction, is constructed and aquicksortx2
procedureis used to order the nodes belonging to
each of the resulting parallelepipeds;

iii)a third family of q parallelepipeds, parallel to thex3-
axis, is considered.

Note that each of the three families of parallelepipeds are
ordered and numbered from 1 toq; the choice in (9)
follows directly from the side length of the domain, i.e.
the unit cube, and the subdomain radiusδsubdomin (8).

Stage 4. The unit cube is partitioned by a cube-based
structure consisted ofq3 cubes, whose side length is
δcube ≡ δsubdom. Then, the following structure is
considered:

–the setsXN, Cd and Es are partitioned by the cube
structure into q3 subsets XNk , Cdk and Esk,
k = 1,2, . . . ,q3, whereNk, dk andsk are the number of
points in thek-th cube.

Stage 5. In order to identify the cubes to be examined
in the searching procedure, we consider the following two
steps:

(I)sinceδcube≡ δsubdom, the ratio between these quantities
is denoted byi∗ = δsubdom/δcube= 1. Thus, the number
j∗ = (2i∗+1)3 of cubes to be examined for each node
is 27.

(II)for each cubek = [u,v,w], u,v,w= 1,2, . . . ,q, a cube-
partition searching procedure is considered, examining
the points from the cube[u− i∗,v− i∗,w− i∗] to the
cube[u+ i∗,v+ i∗,w+ i∗], with the exception of those
points close to the boundary ofΩ , where we reduce
the total number of cubes to be examined.

Then, after defining which and how many cubes are
to be examined, the cube-partition searching procedure is
applied:

–for each subdomain point ofCdk, k = 1,2, . . . ,q3, to
determine all nodes belonging to a subdomain. The
number of nodes of the subdomain centred at
(x̄1i , x̄2i , x̄3i) is counted and stored in mi ,
i = 1,2, . . . ,d;

–for each evaluation point ofEsk, k = 1,2, . . . ,q3, in
order to find all those belonging to a subdomain of
centre(x̄1i , x̄2i , x̄3i) and radiusδsubdom. The number of
subdomains containing thei-th evaluation point is
counted and stored inr i , i = 1,2, . . . ,s.

Stage 6.A local interpolantH j , j = 1,2, . . . ,d, is found
for each subdomain point.
Stage 7. A local approximantH j and a weight function
Wj , j = 1,2, . . . ,d, is found for each evaluation point.

Stage 8. Applying the global interpolant (5), one can
find approximated values computed at any evaluation point
(x̃1, x̃2, x̃3) ∈ Es.

3.3 Complexity

The algorithms make a repeated use of thequicksort
routine along different directions. They require on
average a time complexityO(M logM), M being the
number of nodes to be sorted. In particular, we need a
preprocessing phase to build the data structure, whose
computational cost is of the orderO(N logN) for the
sorting of allN nodes andO(slogs) for the sorting of all
s evaluation points inStage 1. Then, to compute the
local product-type interpolants, we solved linear systems
of (relatively) small sizes and the computational cost is of
orderO(m3

i ), i = 1,2, . . . ,d, for each subdomain, where
mi is the number of nodes in thei-th subdomain (see
Stage 6). Moreover, inStage 5, 7 and8 we also
have a cost ofrk ·O(mi), i = 1,2, . . . ,d, k= 1,2, . . . ,s, for
thek-th evaluation point ofEs.
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4 Numerical results

In this section we investigate the performances of the
partition of unity interpolants obtained by using
product-type interpolants as local approximants. In doing
so, we focus on accuracy and stability of such
interpolation formulas, considering some setsXN of
Halton scattered data points contained in
Ω = [0,1]m ⊂ R

m, for m = 2,3. They are uniformly
distributed random points and generated by using the
MATLAB program haltonseq.m [19]. In particular,
here we consider some sets of Halton points of size
N = 16641,66049, andN = 35937,274625, for bivariate
and trivariate interpolation, respectively. Note that in this
local interpolation scheme we need to solved linear
systems, one for each subdomainΩ j , j = 1,2, . . . ,d, of
relatively small sizemj ×mj .

Thus, we analyze the behavior of the partition of unity
scheme combined with radial basis function (R) and spline
(S) interpolants of smoothnessC2 (p = 2 andn = 4) and
C4 (p = 4 andn = 6), which are denoted by R2, R4 and
S2, S4, respectively. Moreover, for a comparison we also
report the results obtained by using the Gaussian (G) as
local approximant.

All the results reported below are obtained computing
on the following bivariate and trivariate Franke’s test
functions (see, e.g., [2,11]), i.e.,

g1(x1,x2) =
3
4

e−
(9x1−2)2+(9x2−2)2

4 +
3
4

e−
(9x1+1)2

49 − 9x2+1
10

+
1
2

e−
(9x1−7)2+(9x2−3)2

4 − 1
5

e−(9x1−4)2−(9x2−7)2,

and

g2(x1,x2,x3) =
3
4

e−
(9x1−2)2+(9x2−2)2+(9x3−2)2

4

+
3
4

e−
(9x1+1)2

49 − 9x2+1
10 − 9x3+1

10

+
1
2

e−
(9x1−7)2+(9x2−3)2+(9x3−5)2

4

− 1
5

e−(9x1−4)2−(9x2−7)2−(9x3−5)2,

the root mean square error (RMSE), whose formula is
given by

RMSE=

√

1
s

s

∑
i=1

|g(xi)−I (xi)|2.

However, in order to have a more complete picture on the
local interpolation scheme, we have tested other functions
which we here omit for shortness, since accuracy and
stability have shown a uniform behavior of the errors.

In Figures1–2 we show the behavior of compactly
supported radial basis function and spline interpolation
errors both for 2D and 3D cases by varying the value of
the shape parametersα ∈ [1,10], δ ∈ [0.1,1.9]. Note that
there is an exact correspondence between the spline and

Gaussian shape parameterα, whereas it does not hold by
varying δ ; hence, though this study turns out to be
significant from a numerical standpoint, a direct
comparison ofδ and α should be viewed as purely
indicative.

Numerical experiments highlight that the variation of
α and δ may greatly influence the quality of
approximation results. Moreover, the behavior of such
errors turns out to be more regular and uniform for
compactly supported radial basis functions and splines of
product-type, whereas it is quite unstable for the Gaussian
above all when we take small values ofα. More precisely,
comparing for example spline and Gaussian results, this
study points out that the interpolation scheme with
product-type interpolants is more stable than the one with
the Gaussian. In fact, in the latter case we have
interpolation matrices that are very ill-conditioned, thus
producing the fast and sudden error variation shown in
Figure 1 for (i) α ∈ [1,3.9), (ii) α ∈ [1,6.3), (iii)
α ∈ [1,2.5) and (iv) α ∈ [1,3.9). Thus, in practice, this
error analysis also provides useful information on the
conditioning of the different local approximants.
Furthermore, analyzing all the tests done, we observe that
the product-type functions such as the R4 and S4 (of
smoothnessC4) are comparable in accuracy with the
Gaussians.

Specifically, we remark that the best level of Gaussian
accuracy is reached whenα ∈ [1,6], which is exactly the
interval where the Gaussian is unstable. Conversely,
though the optimality interval remains the same also for
the spline, in that region we have a complete stability;
similar considerations, even if depending on the valueδ ,
can also be done for the radial basis function case. Hence,
it follows that these tests point out reliability of
product-type interpolants also when they are used as local
approximants in partition of unity interpolation schemes.

Finally, in Tables1–2 we report the errors obtained
considering optimal values ofδ andα, i.e. taking values
for which we obtain the smallest RMSEs.

Table 1 RMSEs obtained by using optimal values ofδ andα for
g1.

N 16641 66049

RMSE δopt,αopt RMSE δopt,αopt

R2 2.4893E−5 0.88 6.9639E−6 0.84

R4 1.8259E−6 0.46 2.9154E−7 0.66

S2 2.3715E−5 2.9 6.5901E−6 2.7

S4 1.5553E−6 2.5 2.5635E−7 2.6

G 7.9092E−7 2.9 3.1658E−7 2.6

c© 2015 NSP
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(iv) N = 274625 - 3D

Fig. 1 RMSEs obtained by varying the shape parametersα for
bivariate and trivariate Franke’s functions.
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Fig. 2 RMSEs obtained by varying the shape parametersδ for
bivariate and trivariate Franke’s functions.

5 Conclusions and future work

In this paper we studied the performance of product-type
interpolants when they are applied as local approximants
in a local interpolation scheme such as the partition of
unity method. More precisely, we analyzed the behavior
of such interpolants in the bivariate and trivariate setting,

Table 2 RMSEs obtained by using optimal values ofδ andα for
g2.

N 35937 274625

RMSE δopt,αopt RMSE δopt,αopt

R2 1.2433E−4 0.70 3.4168E−5 0.74

R4 2.4558E−5 0.96 4.3705E−6 1.16

S2 1.1088E−4 2.5 2.8425E−5 2.5

S4 2.2148E−5 4.0 3.3542E−6 4.6

G 8.8797E−6 2.7 1.4928E−6 2.8

considering some sets of scattered data points. This study
highlighted that these product-type functions work well
also in local approaches. Finally, as confirmed by several
numerical experiments, they turn out to be more stable
than Gaussians and in general, for sufficiently regular
basis functions, comparable in accuracy.

As future work, starting from [15] we are going to
implement adaptive partition of unity algorithms for
scattered data interpolation in high-dimensions, adopting
suitable data structures likekd-treesandrange trees.
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[29] A. Rényi, Calcul des Probabilités, Dunod, Paris, (1966).
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Garcı́a-Ruiz, V. Marco, I. Pérez-Moreno and F. Javier Sáenz-
de-Cabezón, Math. Comput. Simulation82, 2–14 (2011).

[31] W.I. Thacker, J. Zhang, L.T. Watson, J.B. Birch, M.A. Iyer
and M.W. Berry, ACM Trans. Math. Software37, Art. 34,
1–20 (2010).

[32] H. Wendland, Adv. Comput. Math.4, 389–396 (1995).
[33] H. Wendland, In: C.K. Chui et al. (Eds.), Approximation

Theory X: Wavelets, Splines, and Applications, Vanderbilt
Univ. Press, Nashville, TN pp. 473–483.(2002)

[34] H. Wendland, Scattered Data Approximation, Cambridge
University Press, Cambridge, (2005).

Roberto Cavoretto is a
Fixed-Term Research Fellow
of Numerical Analysis at the
University of Torino, Italy.
He got his Ph.D. degree in
Science and High Technology
(Mathematics) at the
University of Torino in 2010.
In the same University he
held a post-doc position until

2011. His research activity is mainly focused on topics of
numerical analysis and applied mathematics such as:
scattered data approximation, spherical interpolation, and
applications to image registration. He has published
research articles in international refereed journals of
applied mathematics.

c© 2015 NSP
Natural Sciences Publishing Cor.


	Introduction
	Partition of unity scheme
	Algorithms
	Numerical results
	Conclusions and future work

