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Abstract: In this paper we analyze the behavior of product-type rdadials functions (RBFs) and splines, which are used in dioarti
of unity interpolation scheme as local approximants. Irtipalar, we deal with the case of bivariate and trivariateipolation on a
relatively large number of scattered data points. Thus, wegse the local use of compactly supported RBF and splitegpolants,

which take advantage of being expressible in the multitsatting as a product of univariate functions. Numerigpke@ments show
good accuracy and stability of the partition of unity methoanbined with these product-type interpolants, compaitimgth the one

obtained by replacing compactly supported RBFs and spliitesGaussians.
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1 Introduction can be expressed in the multivariate setting as products of
univariate functions. The former are well-known in
approximation theory and practice, and are usually used
as radial functions in the field of multivariate
interpolation and approximation (see e.§j0[19,21,34)]).

On the other hand, the latter, firstly considered in
probability theory P0,29], have successfully been
proposed for multivariate scattered data interpolatiosh an
integration in #,5,6] and for landmark-based image
registration in 1,3]. We remark that both of these
families of univariate functions (depending on a shape
arameter) are compactly supported, strictly positive
efinite, and enjoy noteworthy theoretical and
omputational properties, such as the spline convergence
o the Gaussian function. Furthermore, we observe that
he multivariate spline interpolant is noteworthy because
it is neither a mesh-based formula nor a radial one, but it
asymptotically behaves like a Gaussian interpolant (see
rf4,9]). Numerical experiments point out that, for

We consider the problem of interpolating a continuous
functiong: Q — R on a compact domaif2 C R™,
m= 2,3, defined on a finite se¥n = {x;,i = 1,2,...,N}

of data pointsor nodes which are situated inQ. It
consists of finding an interpolant : Q — R such that,
given thex; and the corresponding function valugsthe
interpolation conditions# (x;) = g(xi), i = 1,2,...,N,
are satisfied.

In particular, we are interested in considering the
interpolation of large scattered data sets, a problem whic
has gained much interest in several areas of applie
sciences and scientific computing, where the need o
having accurate, fast and stable algorithms is oftent
essential (see, €.919,22,26,27]). Among the various
multivariate approximation techniques, the partition of
unity methods such as Shepard’s type interpolants tur
out to be particularly effective imeshfreeor meshless sufficiently regular basis functions such as the

mtelrpotlﬁtlon (seeZ,8,1213 14 16t,hZB, 24’28’?0’31](1)' " product-type radial basis function and spline of smothness
n IIS paper, Wg pr;p:)sbe : ef use o prsBl[J:c “YPEC4 the partition of unity scheme combined with RBF and
compactly supported radial basis functions ( S) andspline interpolants is comparable in accuracy with that

§rillnes|, t.Wh'Chh are usled Im a partltl':)n SOf .}J.n'tﬁ obtained by using Gaussian ones, even if they are usually
Interpolation scheme as local approximants. Speciiicallyyy, oy petter conditioned than Gaussians.
here we consider two families of basis functions, known

as Wendland functionsand Lobachevsky splinesvhich

* Corresponding author e-maibberto.cavoretto@unito.it

(@© 2015 NSP
Natural Sciences Publishing Cor.


http://dx.doi.org/10.12785/amis/090101

2 NS P2 R. Cavoretto: Two and Three Dimensional Partition of Unity.

The paper is organized as follows. In Sectiat first ~ where the interpolation matrix
we consider the problem of scattered data interpolation b -
product-type W%ndland functions and Lol?achevskyy (@} ={gix)},  Li=12..N, (2)
splines, recalling their analytic expressions and somds symmetric and depends on the valuepaindd in (1).
properties; then, we describe the partition of unity Since these compactly supported RBFs are strictly
method, which makes use of product-type RBF and splingoositive definite, the interpolation matrid in (2) is
interpolants as local approximants. In Sect®bwe refer  positive definite for any set of distinct nodes (s&€]].
to the corresponding partition of unity algorithms Furthermore, since Wendland functions are
designed for bivariate and trivariate interpolation. 8ct (univariate) strictly positive definite functions, we can
4 summarizes several numerical results in order toconstruct multivariate strictly positive definite funat®
analyze accuracy and stability of the local approximationfrom univariate ones (see, e.g34]).
scheme combined with compactly supported radial basis ,
function and spline interpolants, also comparing their |€orém 1Suppose thatAs,Az,...,Am are strictly
errors with those of the Gaussian. Finally, Secieals ~ POSitive definite and integrable functions Bnthen
with conclusions and future work. A () = M (X0)A2(2) - Am(Kem)s X = (X0, X, .., Xen) € R,

is a strictly positive definite function d&™.

2 Partition of unity scheme

Let us consider a continuous functign Q — R on a  2,1.2 Spline functions

compact domain Q ¢ R™ m > 1, a set

2N = {Xi = (X5, %, Xmi),i = 1,2,...,N} C Q of For evenn > 2, we construct the product-type spline
scattered data points  and the set interpolant ofg at the nodeg; in the form

9 = {g(xi),i = 1,2,...,N} of the corresponding

function values. « N~
Fa(x) = > €jgnj(x), XeQ,
=1
2.1 Product-type functions requiring Fa(xi) = g(xi), i = 1,2,...,N. The interpolant
) i i Fn is a linear combination of products of univariate shifted
2.1.1 Radial basis functions and rescaled functionfs, known asLobachevsky splines

. . [4],i.e.
In order to construct an interpolation formula generated by

compactly supported RBFs, for evp» 0 we consider the () = @i a) = M (alxn— X 3
product-type interpolant of the form i (x) = i () (@00 =))). ®)

3

=
[|
fax

whereforj =1,2,...,N

CjPpj(X), XeQ,
= fabo ) = /3 3y 5.0 (})

Mz

Fp(x) =

%

requiring Fp(xj) = g(xi), i = 1,2,...,N. The interpolant n-1
Fp is a linear combination of products of univariate shifted ~ \/ﬁa (X — Xnj) + (N —2K) ,
and rescaled functior, calledWendland function§32], 3 +
.. or, equivalently,
(Pp( )= (pPJX5 rlZp xh_XhJ ), (1) a \/gaxJ /N
fn (@06 =) \[32n n—1 Z =0 ()
where, setting = (X, — Xhj), for j =1,2,...,N k=0
n—-1
{o(or) = (1—5r)§, X \/;a(xh—xhj) +(n— 2k)] ,
{o(0r) = (1—0r)7 (30r+1),
Za(5r) = (1— 5r)§ (8(3r)2+55r + 1), anda € R* is a shape parameter. Here the support;of
Z6(81) = (1— 5r)? (21(8r)3 + 19(8r)2 + 78 + 1) is given by[—+/3n/a,/3n/a]. The coefficient€ = {¢;}
+ are obtained by solving the system of linear equations
andd € R* is a shape parameter. Note that the support of Az —
{pis[—1/0,1/d]. The coefficients = {c;} are computed =9
by solving the linear system whose interpolation matrix
Ac=g, A= &} ={mix)}.  1,j=12...N, 4)
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is symmetric and depends on the choiceafhda in (3). Definition 1.Let Q C R™ be a bounded set. Le{lQ}?zl
As also these splines turn out to be strictly positive definit be an open and bounded covering®f This means that
for any evenn > 2, the interpolation matribA in (4) is all Q; are open and bounded and thét C U?=1Qj- Set
positive definite for any distinct node set. 8 = diam(Qj) = sup, ,cq; /X — ¥||2. We call a family of
From the central limit theorem (se&€( 29]), we ) . ' d . K
nonnegative functiongW;}7_, with Wi € CY(R™) a

remark that them-variate spline converges for— o to h . - .
them-variate Gaussian, i.e. k-stable partition of unity with respect to the covering
{Q}_, if

m
H *
[ (%) = g 1)supW;) < Qj;
. . 2)5_1Wi(x)=1onQ;

Hence, these product-type functions asymptotically 3)for everyB € NI with |B| < k there exists a constant
behave like radial functions, though they are not radial in ~ 0such thgt -
themselves. P

Finally, since also these splines are (univariate)
strictly positive definite functions for even > 2, from
Theoreml it follows that we can construct multivariate
strictly positive definite functions from univariate ones.

( —a?(31 %) ) .
2

exp

|IDPWi |, (o)) < Cp /8",

forall1<j<d.

In accordance with the statements 88| we require
additional regularity assumptions on theovering

{Qj}(jj:l'

In this subsection we present the partition of unity _ . . .
method. It was firstly suggested ii, R5] in the context of Iaef|n|t|oh 2.Suppose that < Rm. is bounded and
meshfree Galerkin methods for the solution of partial BXN :d{g"' =1 2"".’Nd} cQ ﬁr?j g'VeT' ,?n open and
differential equations, but then it became a common toolPounded coveringQ;}7_, is calle regutar or(Q, Zn)
also used in the field of approximation theory (s&4). if the following properties are satisfied:

The basic idea of the partition of unity method is to  1)for eachx € @, the number of subdomair@; with
start with a partition of the open and bounde;d domain 'y ¢ Q; is bounded by a global constant K;
© C R into d subdomaing2; such that € Uj_, Q; 2)each subdomainQ; satisfies an interior
with some mild overlap among the subdomains. Firstly,

2.2 Interpolation method

cone

we take a partition of unity, which consists of a family of

compactly supported, non-negative, continuous functions

W; with supgWj) C Q;j such that
d
Y Wi(x) =1
=1
Then, we consider the global approximant of the form
d
FX) =3 H W (x), (5)
=1

where

XeQ,

)= 3 ,
i (%) k;Ckak(X)

is a local interpolant, which is constructed using the
nodes belonging to the subdomaa; and solving a local
interpolation problem. In particulakl; denotes either a
RBF interpolant=,; or a spline interpolanﬁnj, whereas
¢« represents the geneiketh basis gk or @hi. In fact, we
note that if the local approximants satisfy the interpaolati
conditions at data poing, i.e.

Hj(xi) = g(xi),
the global approximant also interpolates at this node, i.e.
JXi)=09(), i=12...N.

Then, we give the following definition (se83]).

condition;

3)the local fill distances byj’gj are uniformly bounded
by the global fill distance b o, where 2] = ZnN
Qj.

Therefore, after defining the spa&f(R™) of all
functions g € C* whose derivatives of ordejB| = k
satisfyDPg(x) = &/(||x||%) for ||x||2 — O, we consider the
following convergence result (see, €.d.9[34)).

Theorem 2Let Q € R™ be open and bounded and
suppose thatZy = {x,i = 1, 2,....N} C Q. Let
¢ € CS(R™) be a strictly positive definite function. Let
{Qj}‘j’:l be a regular covering for(Q, Zn) and let
{W;}9_; be k-stable fo{ Q;}_;. Then the error between
g e 4(Q), where_# is the native space af, and its
partition of unity interpolant®) can be bounded by

IDPg(x) — DF.7 (x)] < CH S Pligl 1y g,
forall x e Q and all|B] <k/2.

RemarkWe observe that the partition of unity method
preserves the local approximation order for the global fit.
In fact, we can efficiently compute large product-type
interpolants by solving small interpolation problems and
then combine them along with the global partition of
unity {W; }?zl. This approach allows us to decompose a
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large problem into many small problems, ensuring at the ii)a second family ofq strips, parallel to thexy-axis
same time that the accuracy obtained for the local fits is  direction, is considered.

carried over to the global one. In particular, the partmon(%:Iote that each of the two strip structures are ordered and

umbered from 1 tg; moreover, the choice ir¥] follows
directly from the side length of the domai@® (unit
square), that here is 1, and the subdomain radigiom
in (6).
3 Algorithms Stage 4. The wunit square is partitioned by a
square-based structure consisted gdf squares, whose
In this section, we describe in detail the partition of unity length of the sides is given b¥quare= dsubdom Then, the
algorithms used in the interpolation processes, firstfollowing structure is considered:
referring to the bivariate algorithm and then to the
trivariate one. They are characterized by the partition of .
the domainQ in square or cube cells, enabling us to use structure m;o o* subsets IN Ca and Sy,
efficient searching procedures. The basic versions of these k=1,2,....q9%
interpolation algorithms have been proposed and widelywhereN, di ands, are the number of points in tHeth
tested in 17,18. Here, such algorithms have been square.
modified and efficiently updated to locally apply the Stage 5
product-type interpolants.

of unity method can be thought as a Shepard’s metho
with higher-order data, since local approximatiods
instead of data valueg are used.

-the setsZn, ¢y and&s are partitioned by the square

. Inorderto identify the squares to be examined
in the searching procedure, we consider the following two

steps:
3.1 Bivariate interpolation (I)since Osquare = Jsubdom the ratio between these
quantities is denoted by = Jsubdon/ Ssquare = 1.
INPUT: Thus, the numbej* = (2i* + 1)? of squares to be
—N, number of data; examined for each node is 9.
—-2n = {(xai,%2),i = 1,2,...,N}, set of data points; (INfor each squarek = [vyw], vw = 1,2,...,q, a
- ={0,i =1,2,...,N}, set of data values; square-based searching procedure is considered,
—d, number of subdomains; examining the points from the squgve-i*,w—i*] to
64 = {(Xai,%2),i = 1,2,...,d}, set of subdomain the squardv+ i*,w+i*], with the exception of those
points; points close to the boundary @, where we reduce
—s, number of evaluation points; the total number of squares to be examined.

—¢s={(%i. %i),i =1,2,....s}, setof evaluation points. Then, after defining which and how many squares are

OUTPUT: to be examined, the square-based searching procedure is
—dls= {7 (%,%),i = 1,2,...,s}, set of approximated ~applied:
values. —for each subdomain point &fg,, k= 1,2,...,¢, to
Stage 1. The set.2y of nodes and the sefs of determine all nodes belonging to a subdomain. The
evaluation points are ordered with respect to xpexis number of nodes of the subdomain centreikgt X,i)
direction by applying ajuicksor, procedure is counted and stored imy, i =1,2,....d;

—for each evaluation point ofs,, k =1,2,...,¢% to

Stage 2. For each subdomain point(x, i), find all those belonging to a subdomain of centre

i=12,....d, alocal circular subdomain is constructed =~ = .
169t . C o0 (Xgj,%i)  and  radius dgupgom The number of
whose radius depends on the subdomain nurdberat is subdomains containing thieth evaluation point is

2 counted and storedip, i =1,2,...,s.
5subdom: \/g (6)

t age 6. Alocalinterpolantj, j=1,2,...,d, isfound

This value is suitably chosen, supposing to have a nearl or each subdomain point.

uniform node distribution and assuming that the ratio

n/d~ 4. St age 7. Alocal approximanH; and a weight function

Stage 3. A double structure of crossed strips is W, j=12...d '_S found for each.evaluatlon pomt..

constructed as follows: St age 8. Applylng the gIObaI fit 6), one can find
approximated values computed at any evaluation point

i)a first family of q strips, parallel to thex;-axis o

direction, is considered taking (%1, %) € &5
1
a= 5] ™ o |
Ssubdom 3.2 Trivariate interpolation
and aquicksorf;, procedureis applied to order the
nodes belonging to each strip; INPUT:
(@© 2015 NSP
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N SS = 5

—N, number of data;

2N = {(xaj, %2, %3i),1 = 1,2,...,N}, set of data points;

- ={0,i=12,... N}, set of data values;

—d, number of subdomains;

—6q = {(X1i, %2, %31),i = 1,2,...,d}, set of subdomain
points;

—s, number of evaluation points;

—&s = {(Xi, %01, %51),1 = 1,2,...,s}, set of evaluation
points.

OUTPUT:

s = {5 (%, %, %i),0 = 1,2,...
approximated values.

set of

,S},

Stage 1. The setZy of nodes and the sefs of
evaluation points are ordered with respect to xgexis
direction by applying auicksor, procedure

Stage 2. For each subdomain pointxa,Xoi, X3i),

St age 5. In order to identify the cubes to be examined
in the searching procedure, we consider the following two
steps:

(Nsincedeube= dsubdom the ratio between these quantities
is denoted by* = dsupdonf dcube= 1. Thus, the number
j* = (2i* +1)® of cubes to be examined for each node
is 27.

(INfor each cubek = [u,v,w], u,v,w=1,2,...,q, a cube-
partition searching procedure is considered, examining
the points from the cub@i—i*,v—i*,w—i*] to the
cubelu+i*,v+i*,w+i*], with the exception of those
points close to the boundary @2, where we reduce
the total number of cubes to be examined.

Then, after defining which and how many cubes are
to be examined, the cube-partition searching procedure is
applied:

i=1,2,....d, alocal spherical subdomain is constructed, —for each subdomain point ofg,, k = 1, 2,...,03, to
whose spherical radius depends on the subdomain determine all nodes belonging to a subdomain. The

numberd, that is

V2
6subd0m— 3_\/6

Although other choices ddsypgomare possible, this value

(8)

is suitably chosen, supposing to have a nearly uniform

node distribution and assuming that the ratid ~ 8.

Stage 3. A triple structure of intersecting
parallelepipeds is constructed as follows:

i)a first family of q parallelepipeds, parallel to tha-
axis direction, is considered taking

|5
a= 6subd0m’

and aquicksory, procedureis applied to order the
nodes belonging to each parallelepiped;

iija second family ofg parallelepipeds, parallel to the
Xo-axis direction, is constructed and @uicksory,

(9)

number of nodes of the subdomain centred at
(X1i,X2i,%3) is counted and stored inm,
i=12....d;

—for each evaluation point ofy, k= 1, 2,...,02, in
order to find all those belonging to a subdomain of
centre(Xyj, Xoi, X3 ) and radiusdsypgom The number of
subdomains containing theth evaluation point is
counted and stored i, i =1,2,...,s.

Stage 6. Alocalinterpolantj, j=1,2,...,d,is found
for each subdomain point.

St age 7. Alocal approximanH; and a weight function
W, j=1,2,....d, is found for each evaluation point.

St age 8. Applying the global interpolants), one can
find approximated values computed at any evaluation point
(2175('275(‘3) S @QS.

procedureis used to order the nodes belonging to 3.3 Complexity

each of the resulting parallelepipeds;
iii)a third family of q parallelepipeds, parallel to the-
axis, is considered.

The algorithms make a repeated use of thacksort
routine along different directions. They require on

Note that each of the three families of parallelepipeds areaverage a time complexity’(MlogM), M being the

ordered and numbered from 1 tp the choice in 9)

follows directly from the side length of the domain, i.e.

the unit cube, and the subdomain raddyg,qomin (8).

number of nodes to be sorted. In particular, we need a
preprocessing phase to build the data structure, whose
computational cost is of the orde?(NlogN) for the

Stage 4. The unit cube is partitioned by a cube-basedsorting of allN nodes and’(slogs) for the sorting of all
structure consisted of cubes, whose side length is S evaluation points irSt age 1. Then, to compute the

Ocube = Osubdom Then,
considered:

the following structure is

—the setsZn, %y and &s are partitioned by the cube
structure into g subsets 2y, %y and &,
k=1,2,...,0% whereNy, dy ands, are the number of
points in thek-th cube.

local product-type interpolants, we solddinear systems

of (relatively) small sizes and the computational cost is of
orderﬁ(nﬁ), i=12,...,d, for each subdomain, where
m; is the number of nodes in thieth subdomain (see
St age 6). Moreover, inSt age 5, 7 and8 we also
have a cost ofx- 0(my),i=1,2,...,d, k=1,2,... s, for
thek-th evaluation point o&s.

(@© 2015 NSP
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4 Numerical results Gaussian shape parameterwhereas it does not hold by
varying d; hence, though this study turns out to be
In this section we investigate the performances of thesignificant from a numerical standpoint, a direct
partition of unity interpolants obtained by using comparison ofd and a should be viewed as purely
product-type interpolants as local approximants. In doingindicative.
so, we focus on accuracy and stability of such  Numerical experiments highlight that the variation of
interpolation formulas, considering some se#y of a and & may greatly influence the quality of
Halton  scattered data points contained in approximation results. Moreover, the behavior of such
Q = [0,1]™ c R™, for m = 2,3. They are uniformly errors turns out to be more regular and uniform for
distributed random points and generated by using thesompactly supported radial basis functions and splines of
MATLAB program hal t onseq. m[19]. In particular,  product-type, whereas it is quite unstable for the Gaussian
here we consider some sets of Halton points of sizeabove all when we take small valuesmfMore precisely,
N = 1664166049, and\ = 35937274625, for bivariate  comparing for example spline and Gaussian results, this
and trivariate interpolation, respectively. Note thathist  study points out that the interpolation scheme with
local interpolation scheme we need to soldelinear  product-type interpolants is more stable than the one with
systems, one for each subdoma®), j = 1,2,....d, of  the Gaussian. In fact, in the latter case we have
relatively small sizem; x m. interpolation matrices that are very ill-conditioned, shu
Thus, we analyze the behavior of the partition of unity producing the fast and sudden error variation shown in
scheme combined with radial basis function (R) and splineFigure 1 for (i) a < [1,3.9), (i) a € [1,6.3), (iii)
(S) interpolants of smoothne€8 (p=2andn=4) and g € [1,2,5) and (iv) a € [1,3.9). Thus, in practice, this
C* (p = 4 andn = 6), which are denoted by R2, R4 and error analysis also provides useful information on the
S2, S4, respectively. Moreover, for a comparison we alsaconditioning of the different local approximants.
report the results obtained by using the Gaussian (G) asurthermore, analyzing all the tests done, we observe that
local approximant. the product-type functions such as the R4 and S4 (of
All the results reported below are obtained computingsmoothnes<C*) are comparable in accuracy with the
on the following bivariate and trivariate Franke’s test Gaussians.

functions (see, e.g.2[11]), i.e., Specifically, we remark that the best level of Gaussian
3 9q-2219-22 3 (912 94l accuracy is reached whene [1, 6], which is exactly the
01(X1, %) = 2 3 tgae @ interval where the Gaussian is unstable. Conversely,
1 oa 7200 32 1 R R though.the pptimality ipterval remains the same alsq 'for
+ e 7 —Ze (977 the spline, in that region we have a complete stability;
2 S similar considerations, even if depending on the value
and can also be done for the radial basis function case. Hence,
(9% 221 (9 22+ (9xg2)2 it follows that these tests point out reliability of
4

O2(X1,X2,X3) = — € product-type interpolants also when they are used as local
t1? ol il apprQX|maqts in partition of unity interpolation schemes.

€ 49 ~ 10 10 Finally, in Tables1-2 we report the errors obtained

considering optimal values @ anda, i.e. taking values

72 2 52 . .
O 170 97+ 5 for which we obtain the smallest RMSEs.

+ z€

e (9X1—4)2—(9X2—7)2—(9X3—5)2’

3
4
3
4
1
2
1
5

the root mean square error (RMSE), whose formula iSTabIel RMSESs obtained by using optimal valuesdodnda for

given by G-

N 16641 66049

RMSE= \/é iii|g(Xi) — 7 (xi)|2

RMSE 5opt7Cf0pt RMSE 5opbaopt

However, in order to have a more complete picture on the R2 | 24893E-5 0.88 6.9639E-6 0.84
local interpolation scheme, we have tested other functions R4 | 1.8259E—6 0.46 2.9154E-7 0.66
whic.h we here omit for_shortness, _since accuracy and g5 | 23715E_5 29 6.5901E—6 27
stability have shown a uniform behavior of the errors.
In Figures1-2 we show the behavior of compactly | S4 | 1.5553E-6 25 | 2.5635E-7 26
supported radial basis function and spline interpolation G | 7.9092E-7 2.9 3.1658E—7 2.6
errors both for 2D and 3D cases by varying the value of
the shape parametesse [1,10], o € [0.1,1.9]. Note that
there is an exact correspondence between the spline and

(@© 2015 NSP
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N 5SS = 7

Fig. 1 RMSEs obtained by varying the shape parametefer

(i) N = 16641 - 2D

2 4 6 8 1

2 4 6 8

(iii) N = 35937 - 3D

2 4 6 8 10

(iv) N = 274625 - 3D

bivariate and trivariate Franke’s functions.

Fig. 2 RMSEs obtained by varying the shape paramedefsr

05 1
H

(i) N = 16641 - 2D

05 1 15
5

(iii) N = 35937 - 3D

—

——R2
— R4

05 1
H

(i) N = 66049 - 2D

05 1 15
5

(iv) N = 274625 - 3D

bivariate and trivariate Franke’s functions.

5 Conclusions and future work

Table 2 RMSEs obtained by using optimal valuesdodnda for
92

N 35937 274625

RMSE dopt, Aopt RMSE dopt, Aopt
R2 | 1.2433E-4 0.70 3.4168E-5 0.74
R4 | 2.4558E-5 0.96 4.3705E- 6 1.16

S2 | 1.1088E-4 25
S4 | 2.2148E-5 4.0
G | 8.8797E-6 2.7

2.8425E-5 25
3.3542E-6 4.6
1.4928E-6 2.8

considering some sets of scattered data points. This study
highlighted that these product-type functions work well
also in local approaches. Finally, as confirmed by several
numerical experiments, they turn out to be more stable
than Gaussians and in general, for sufficiently regular
basis functions, comparable in accuracy.

As future work, starting from 15 we are going to
implement adaptive partition of unity algorithms for
scattered data interpolation in high-dimensions, adgptin
suitable data structures likal-treesandrange trees
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