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Abstract: The aim of this paper is to compare the relative accuracies between predictor-corrector methods, Adams-Bashforth 
method and Adams-Moulton method for solving initial value Differential Equations numerically to observe which methods 
tend to function well in which step-size brackets as well as which ones provide the minimum amount of error when compared 
to the true value. The statistical analysis shows that there is always a small amount of error present using Heun’s method; 
however, the error is rarely large enough unless the function is rapidly rising. 
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1 Introduction 

There are several techniques to solving differential equations of these techniques, analytical methods are the most common 
which include different types of integration methods and other formulae derived from said methods [1,2,3]. However, not all 
differential equations are easily solvable using analytical techniques [4,5]. Sometimes, the complexity of the differential 
equations can be too high, or previously known techniques cannot be applied to certain differential equations. For example, 
some techniques include the separation of variables, while others involve using Bernoulli’s equation, variation of parameters, 
or other techniques. However, when none of the techniques can be applied, we can resort to other methods of solution known 
as numerical methods [6,7]. 

Numerical methods are known as numerical integration methods which can be used to approximate the solutions to different 
types of ordinary differential equations by repetitive iterations. For many practical applications, it’s often not required to 
know the analytical solution of a differential equation. It is adequate to find the numeric approximation which leads us to 
apply the different algorithms to solve differential equations numerically. Alternate methods include using series expansions 
of the solutions using calculus to achieve an approximate solution [6]. 

There are also other techniques that convert partial differential equations into ordinary differential equations which then allow 
these equations to be numerically solved. There are many different types of numerical methods that can be used to solve 
initial value problems (hereafter abbreviated at IVP). The generalized name of these numerical method solutions is general 
linear methods [8].  

General linear methods are further categorized into two different variations. The first variation is known as linear multistep 
methods. The second variation is known as Runge-Kutta methods. Each of these two methods is further divided into implicit 
and explicit methods. The primary example of implicit linear multistep methods is the Adams-Moulton method and the 
backwards differentiation method. The primary example of implicit Runge-Kutta methods is known as the Diagonally 
Implicit Runge-Kutta method. The explicit form of linear multistep methods is known as the Adams-Bashforth method. There 
are other types of explicit Runge-Kutta methods that are designated using a low diagonal Butcher tableau. Differential 
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equations are also classified into different types, mainly stiff and non-stiff, which also helps to decide which techniques can 
be applied to achieve a numerical solution. Generally, stiff differential equations are easily solvable using implicit methods 
while non-stiff problems can be tackled using explicit methods [9,10,11]. 

Many of the initial methods that have been mentioned were initially discovered in the 18th and 19th centuries, with Euler’s 
method all the way back in 18th century. In 1883, Bashforth and Adams published their method and shortly, two years later, 
Runge followed suit [10]. The Adams-Bashforth method, hence, was released which was integrated into many computer 
softwares for interpolation techniques. It was also the starting point for the Adams-Moulton method and the first integration 
of Taylor series methods to practically aid in numerical integration. The paper by Runge is often credited to be the first one-
step method for numerical integration. These two, combined with Euler’s method, were the first techniques on which other 
numerical methods are based [12,13]. 

Many of these papers tend to follow a similar technique for the development of their methods. They begin with an initial 
value problem in which some function has been given (usually defined as the		𝑓(𝑡, 𝑦))  where the initial value has been given 
at the initial value xo. The objective, then, is to solve the differential equation 𝑦((𝑡) = 𝑓*𝑡, 𝑦(𝑡)+		given the initial 
value	𝑦(𝑡,) = 𝑦,. The approach to the problem begins with the objective of finding an approximation for the value of 𝑦(𝑡). 

The first method of solving the differential equations numerically, provided by Bashforth and Adams, consists of an arbitrary 
second-order differential equation, with y and t as the variables. The derivation of the method consists of using the initial 
equation and differentiating it repeatedly to get formulae for higher derivatives of the same function. By substituting the 
initial value, we can evaluate the initial value and expand the solution using Taylor series. Eventually, the technique leads us 
to what is famously known as Adams-Bashforth method. 

The second method provided for solving differential equations numerically was developed by Runge. While the Adams-
Bashforth method is a multistep method, Runge developed a single step algorithm for the calculation of the approximate 
solution. While Adams-Bashforth used a series of different known approximations to estimate the next approximation, the 
Runge method focused on the most recent computed point to find the next. To reach the required level of accuracy, the 
approximations are found between the two computed points. 

The next two significant contributors to these methods were Heun and Kutta. The method provided by Kutta is named the 
Runge-Kutta method and was the first time that differential equations being solved numerically became viable for equations 
other than quadrature formulae. The Runge-Kutta methods deal with the different inaccuracies present in the Runge methods 
which are used to satisfy the conditions of the three-order behavior of a differential equation. Kutta found classifications of 
the solutions to all the conditions required in the 4th order Runge method which have widely become a reliable method to 
achieve solutions to numerical methods. Heun also later published his method, widely, also known as the improved Euler’s 
method, which is a classification of a predictor-corrector method, as opposed to the Bashforth method which is a predictor 
method [3]. 

The last method that we will discuss is the Adams-Moulton method. The implicit part of the Adams method was not discussed 
in their own paper initially, until Moulton published his technique. This was called the Adams-Moulton method which had 
some significant improvements over the previous methods. Firstly, the number of previous values required was reduced 
significantly. Secondly, the error constants became very small. However, since their implicit nature comes with a certain 
level of difficulty, the method has limited practical usage. The Moulton method is known as a corrector method. By 
combining the Adams-Bashforth and Adams-Moulton methods, a predictor-corrector mode can be accomplished, similar to 
the Heun’s method. This is the most common use of the Moulton method, in which the initial values predicted 𝑦- are corrected 
using Heun’s method which reduces the over-all error and leads to a more accurate result, at the cost of twice the processing 
power [1, 14]. 

Our paper will focus on a simulation of three methods, the Adams-Bashforth method, the Adams-Moulton method and the 
Heun’s predictor-corrector method which uses Euler’s method as a predictor and the trapezoidal method as the corrector. We 
will use the MATLAB software to program the methods into different iterations in which we will take two arbitrary 
differential equations as samples which will be solved using numerical methods mentioned above. The errors for all the 
iterations will be calculated, and each simulation will be run twice with different step sizes to observe the effect of step size 
on the accuracy of the system. A table will be generated in each method, with values of 𝑡 the numerically calculated value of 
𝑦, the true value of 𝑦 achieved through analytical solution of the differential equation, and the percentage error between the 
two. 

Eventually, we will also attempt to measure the performance of each algorithm in terms of the time taken to see which one 
reaches minimal levels of error fastest, if at all. 
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2 Methodology 

For the purposes of our experiment, we will use the MATLAB software. We will program three different methods, namely, 
the Adams-Bashforth method, the Adams-Moulton method and the Heun’s Predictor-Corrector method and solve two 
different equations. Each differential equation will be solved twice, once with a step size of 0.1 and then with a step size of 
1 to compare the accuracy of the method with different step sizes. In some cases, other step sizes may be used to gain further 
insight, to be able to view the results clearly on a graph. In each iteration, a graph will be generated and compared with the 
previous graph to see whether the graph converges, diverges, or is unstable. 

2.1 Differential Equations 

For the purposes of this experiment, we will be taking two random differential equations with their initial conditions provided. 
These will be ordinary differential equations, treated as initial value problems. 

1) First equation and its initial conditions. The first differential equation will be: 

 
./
.0
+ 𝑦 = 𝑡								                                                                                             (1) 

Where the initial conditions are given to be: 

	𝑦, = 𝑦(𝑡,) = 𝑦(0) = −2 , 

 And after analytically solving the differential equation, the solution to the above differential equation comes 
out to be: 

 
                            𝑦 = 𝑡 − 1 − 6

78
																																																																																																																														(2) 

2) Second equation and its initial conditions.       The second differential equation will be: 
./
.0
+ 3 = 5𝑦                                                                                                                 (3) 

 

where the initial conditions are given to be:  

𝑦, = 𝑦(𝑡,) = 𝑦(0) = 2 

And the analytical solution gives us the equation: 

																												𝑦 = 1.4𝑒>0 + 0.6																																																																																																																					 (4) 

Both of these differential equations will be solved using three separate techniques outlined below. 

2.2 Heun’s Method (Predictor-Corrector) 

Heun’s method is often called the improved Euler’s method, which can be used to solve ordinary differential equations 
with provided initial values. The idea behind solving equations numerically using this method consists of using Euler’s 
method as a predictor while using the trapezoidal rule as a corrector to increase the accuracy of the method. To implement 
the Heun’s method, the following equations have to be used: 

𝑦@A6′ = 𝑦@ + [ℎ𝑓(𝑡@	, 𝑦@)]																																																																																																																	(5) 

𝑦@A6 = 𝑦@ +
ℎ
2 F𝑓

(𝑡@	, 𝑦@) + 𝑓*𝑡@A6	, 𝑦@A6′ +G																																																																																(6) 

Where h = stepsize and 𝑥@A6 = 𝑥@ + ℎ. 

This means that for each iteration, the first step, equation (5) will be used to predict the next value for y, and this 
predicted  value will be used in the next step, equation (6), to correct for errors and achieve the corrected value of 
𝑦@A6. 

This is a relatively accurate and easy method to execute, and the accuracy of this method is improved quadratically. 
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2.3.   4th Order Adams-Bashforth Method 

Adams-Bashforth is one of the very first numerical methods proposed to solve differential equations. This is an 
explicit method, which is also known as a predictor method. The core concept remains the same as the other multi-
step methods, in which previous known values are used to predict other future values. Thus, the following equation 
is used to predict the fourth value, given that the first three values are known. 

𝑦-AI		 = 𝑦-AJ +
ℎ
24	*55	𝑓

(𝑡-AJ	, 𝑦-AJ) − 59𝑓(𝑡-AL	, 𝑦-AL) + 37	𝑓(𝑡-A6	, 𝑦-A6) − 9	𝑓(𝑡-	, 𝑦-)+																	(7) 

Obviously, first looking at this method, we realize that just the initial conditions are inadequate to apply the 4th Order 
Adams-Bashforth Method. However, there are other methods that can be applied to get the subsequent 3 values using initial 
conditions. One approach is to use the Euler’s method to find the first value, and then use the first order Adams- Bashforth 
method to find the second value, use the consequent value in the second order Adams-Bashforth method and so on, until 
we have enough initial values to substitute into the equation for the fourth order Adams-Bashforth method. However, for 
the sake of simplicity, we used the 4th order Runge-Kutta method which can be repeated three times to get the initial values 
required. The process to numerically calculate the required values will be outlined in the last part of this section. 

2.4. 4th Order Adams-Moulton Method 

Adams-Moulton method was proposed by Adams, similar to the Adams-Bashforth method, and Moulton was credited with 
coming up with the realization that the two methods could be combined into a predictor-corrector pair. Adam used Newton’s 
methods to solve the implicit equations which are what makes this an implicit method, as compared to the previous explicit 
Adams-Bashforth method. Since on its own, the Adams-Moulton method is a corrector method, it requires one more initial 
value than the Adams-Bashforth method. The equation to predict the fifth value, given the first five values, is: 

𝑦-AI = 𝑦-AJ +
ℎ
720	*251𝑓	

(𝑡-AI	, 𝑦-AI) + 646𝑓	(𝑡-AJ	, 𝑦-AJ) − 264𝑓	(𝑡-AL	, 𝑦-AL) + 106𝑓	(𝑡-A6	, 𝑦-A6)

− 19𝑓(𝑡-	, 𝑦-)+																																																																																																																				(8) 

Once again, to calculate the first four values using a given initial condition, we will be using the order Runge Kutta method. 
We could use the Moulton-methods of lower orders as well, but for consistency, we used the Runge Kutta methods to 
calculate the first few values for both the Adams-Moulton and Adams-Bashforth methods. 

2.5. 4th Order Runge Kutta 

Of the single step methods, the 4th order Runge-Kutta methods were proposed by Runge and Kutta in the beginning of the 
20th century. The Runge method uses specific increments between the present and next number to predict the next number 
provided the present number is known. This means, the 4th order Runge-Kutta methods require just a single initial condition 
to reliably predict the next value. The 40OOrder Runge Kutta method is: 

𝑘6 = ℎ𝑓(𝑡-	, 𝑦-)                                                                                                 (9) 

𝑘L = ℎ𝑓 Q𝑡- +
O
L
	, 𝑦- +

RS
L
T                                                                                 (10) 

𝑘J = ℎ𝑓 Q𝑡- +
	O
L
	 , 𝑦- +

RU
L
T                                                                                (11) 

  𝑘I	 = ℎ𝑓(𝑡-	 + ℎ, 𝑦- + 𝑘J)                                                                               (12) 

𝑦-A6 = 𝑦- +
O
V
(𝑘6 + 2𝑘L + 2𝑘J + 𝑘I)                                                            (13) 

Despite there being four separate calculations, since there is no need to know any value of y other than the previous one, 
this is a Runge-Kutta method instead of a linear multi-step method. For the purposes of our experiment, we will use the 4th 
order Runge-Kutta method to find unknown values in multi-step methods to allow the multi-step methods to kick-off. 

3 Analysis 

During our analysis, we conducted simulations of our three methods of choice, which is the Heun’s method, Adams- 
Bashforth method, and Adams-Moulton method. Each method was simulated to solve two differential equations whose 
solutions were known and compare how accurate each method was. Each differential equation was solved twice, from the 
values t0 = 0  to  t = 10, while varying the step size from h = 0.1 and h = 1. Then, the true value of the function was calculated, 
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and the error between the true value and the predicted value was generated in a table. 

3.1 Heun's Method (Predictor-Corrector) 

(i) First differential equation. 

(i) Step size h = 1 

 
Fig. 1: Graphical comparison of solution of function (1) with step size h = 1: Heun’s Method 

From the graph generated when running the simulation of Heun’s method, we can observe that there is an 
initial error when using the step size 1. However, this error is quickly diminished to zero as the number of 
iterations increase. 

 

Table 1: comparison of solution of function (1) with step size h = 1: Heun’s Method 
 

t y ytrue error 
0 -2 -2 0 
1 -0.5 -0.36788 -35.914 

2 0.75 0.86466 13.261 

3 1.875 1.9502 3.8567 

4 2.9375 2.9817 1.4819 

5 3.9688 3.9933 0.61384 

6 4.9844 4.9975 0.26306 

7 5.9922 5.9991 0.11503 

8 6.9961 6.9997 0.051014 

9 7.998 7.9999 0.022872 

10 8.999 9 0.010346 
 

From the table generated using the simulation, we can observe the accuracy of the system, with an initial 
error of 35% and a final error of 0.01%. Thus, in just five iterations, the error was reduced to less than 1%. 

(ii) Step size h = 0.1 
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Fig. 2: Graphical comparison of solution of function (1) with step size h = 0.1: Heun’s Method 

When reducing the step size to0.1, we can observe an immediate increase in the accuracy of the system. The initial error 
that was previously present is now completely diminished. This leads to the idea that, reducing the step size will sometimes 
cause a method to converge while increasing the step size can cause a method to diverge. 

Table 2: comparison of solution of function (1) with step size h = 0.1: Heun’s Method 
 

t y ytrue error 
0 -2 -2 0 
0.1 -1.805 -1.8048 -0.0090081 

0.2 -1.619 -1.6187 -0.018178 

0.3 -1.4412 -1.4408 -0.027721 

0.4 -1.2708 -1.2703 -0.037936 

0.5 -1.1071 -1.1065 -0.049263 

0.6 -0.9494 -0.94881 -0.062387 

0.7 -0.79721 -0.79659 -0.07845 

0.8 -0.64998 -0.64933 -0.099532 

0.9 -0.50723 -0.50657 -0.12988 

1 -0.36854 -0.36788 -0.17983 
 

The table generated for the first ten values shows the error doesn’t exceed 0.2% for the first ten values. Comparing previously 
to when the step size was 1, the error at the value of t = 1 is now 0.009% whereas previously this error was 35%. 

1) Second differential equation.  

(i) Step size h = 1 
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Fig. 3: Graphical comparison of solution of function (2) with step size h = 1: Heun’s Method 

When using Heun’s method to calculate the value of the second differential equation, using step size 1, we can 
observe                that the algorithm has difficulty in keeping up with the sudden increase in the value of the function. This 
is partially due to the fact that the step size is too high; however, another contributor to this factor is the nature of 
the function itself, which is an exponential function and as we can see, in just ten values of t, the value of the 
function is in the 21st power of ten.  

 

 

Table 3: comparison of solution of function (2) with step size h = 1: Heun’s Method 

 
t Y ytrue error 
0 2 2 0 
1 26.5 208.38 87.283 

2 479.75 30838 98.444 

3 8864.9 4.5766 exp (+06) 99.806 

4 1.6399 exp (+05) 6.7923 exp (+08) 99.976 

5 3.0338 exp (+06) 1.0081 exp (+11) 99.997 

6 5.6125 exp (+07) 1.4961 exp (+13) 100 

7 1.0383 exp (+09) 2.2204 exp (+15) 100 

8 1.9209 exp (+10) 3.2954 exp (+17) 100 

9 3.5536 exp (+11) 4.8908 exp (+19) 100 

10 6.5742 exp (+12) 7.2586 exp (+21) 100 
 

From the table of this graph, we can see that the method is actually chasing after the true value; it’s not a case of complete 
diversion. However, the true value increases at an extremely high rate, which is why the Heun’s method has trouble keeping 
up. 
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(ii) Step size h = 0.1 

 
Fig. 4: Graphical comparison of solution of function (2) with step size h = 0.1: Heun’s Method 

When we decrease the step size, we see a much closer graph. Where previously it only took two iterations for the error to reach   
100%, now, we can see a relatively accurate graph with deviations only becoming significant when the value of t is 
significantly large.  

Table 4: comparison of solution of function (2) with step size h = 0.1: Heun’s Method 
 

t y ytrue error 
0 2 2 0 

0.1 2.875 2.9082 1.1419 

0.2 4.2969 4.4056 2.4678 

0.3 6.6074 6.8744 3.8832 

0.4 10.362 10.945 5.3233 

0.5 16.463 17.655 6.7523 

0.6 26.378 28.72 8.154 

0.7 42.489 46.962 9.5237 

0.8 68.67 77.037 10.862 

0.9 111.21 126.62 12.17 

1 180.35 208.38 13.452 
 

From the table of the first ten values of the function, we can observe that the initial error is 2% and this error is increasing 
with the number of iterations. The reduction in step size led to a significant increase in accuracy; however, the algorithm still 
has trouble keeping up with the rapidly increasing true value of the function. Consequently, for exponential functions that rise 
quickly, the step size needs to further decrease to maintain accuracy. 
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3.2 Adams--Bashforth Method  

1) First differential equation. 

(i) Step size h = 1 

 
Fig. 5: Graphical comparison of solution of function (1) with step size h = 1: Adams-Bashforth 

From the first iteration of the Adams-Bashforth simulation, we can observe a diverging pattern of the predicted value as 
compared with the true value. Therefore, for this function, the Adams-Bashforth algorithm is not approaching an error of 
zero.  

Table 5: comparison of solution of function (1) with step size h = 1: Adams-Bashforth 

 

t y ytrue error 
0 -2 -2 0 
1 -0.375 -0.36788 -1.9356 

2 0.85938 0.86466 0.61177 

3 1.9473 1.9502 0.15113 

4 2.9255 2.9817 1.8831 

5 4.0427 3.9933 -1.2384 

6 4.7903 4.9975 4.1457 

7 6.4708 5.9991 -7.8638 

8 5.7826 6.9997 17.387 

9 11.069 7.9999 -38.367 

10 1.2385 9 86.239 
 

From the first ten values of the table, we can see this in effect, that the code is failing to achieve an accurate value after the 
first six values. For some reason, the predicted value has a final error of 86% which proves that the method is diverging for 
this function with this step size. 

(ii) Step size h = 0.1 
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Fig. 6: Graphical comparison of solution of function (1) with step size h = 0.1: Adams-Bashforth 

Now, with a step size of 0.1, the function   suddenly is exactly and correctly predicted by the algorithm and the error has been 
diminished to zero from the start. This tells us that there are some conditions in which a function can be both diverging and 
converging when predicting the solution of a differential equation, depending on the step size that has  been selected.  

Table 6: comparison of solution of function (1) with step size h = 0.1: Adams-Bashforth 

T y ytrue error 
0 -2 -2 0 

0.1 -1.8048 -1.8048 -4.5414exp (-06) 

0.2 -1.6187 -1.6187 -9.1632exp (-06) 

0.3 -1.4408 -1.4408 -1.3973exp (-05) 

0.4 -1.2703 -1.2703 -0.00024033 

0.5 -1.1065 -1.1065 -0.00045037 

0.6 -0.94882 -0.94881 -0.00072927 

0.7 -0.79659 -0.79659 -0.0010325 

0.8 -0.64934 -0.64933 -0.0014343 

0.9 -0.50658 -0.50657 -0.0019868 

1 -0.36789 -0.36788 -0.0028858 
 

From the graph of the first ten values, we see a certain pattern in the error. First of all, it’s always negative. Secondly, it seems 
to be increasing; however, since it’s difficult to display all 100 values, we have to observe the graph to see that the error is 
actually not increasing. From the complete table, however, we observed that the maximum error reached 0.01% at a value of 
t = 0 and then began decreasing again. 

2) Second differential equation. 

(i) Step size h=1 
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Fig. 7: Graphical comparison of solution of function (2) with step size h = 1: Adams-Bashforth 

For the Adams-Bashforth method applied to the second equation we can observe, once again, a diverging result where the 
true value rises quite sharply as the algorithm struggles to rise with the true value. This is, once again, partially due to the 
large step size and partially due to the nature of the solution of the function which is an exponential curve.  

Table 7: comparison of solution of function (2) with step size h = 1: Adams-Bashforth 

t Y ytrue error 
0 2 2 0 
1 92.125 208.38 55.79 

2 5984 30838 80.595 

3 3.9117exp (+05) 4.5766exp (+06) 91.453 

4 4.8005exp (+06) 6.7923exp (+08) 99.293 

5 5.5044exp (+07) 1.0081exp (+11) 99.945 

6 6.2975exp (+08) 1.4961exp (+13) 99.996 

7 7.2053exp (+09) 2.2204exp (+15) 100 

8 8.2441exp (+10) 3.2954exp (+17) 100 

9 9.4326exp (+11) 4.8908exp (+19) 100 

10 1.0792exp (+13) 7.2586exp (+21) 100 
 

The table provides further evidence of the diverging nature of the solution. The error quickly reaches 80% in two iterations 
and becomes 100% in the first seven iterations. This also reinforces the idea that, the nature of the solution for any method 
relies on the step size. 

(ii) Step size h = 0.1 
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Fig. 8: Graphical comparison of solution of function (2) with step size h = 0.1: Adams-Bashforth 

As we proceed to run the simulation with a step size of 0.1, we immediately notice a change in the accuracy of the system as 
it gets closer and closer to the actual solution. Compared to the previous run at h = 1, the performance is much better; however, 
it’s still not quite convergent as the higher we proceed in values of t, the more the solution diverges. 

Table 8: comparison of solution of function (2) with step size h = 0.1: Adams-Bashforth 

t y Ytrue error 
0 2 2 0 

0.1 2.9078 2.9082 0.013661 

0.2 4.4043 4.4056 0.029732 

0.3 6.8711 6.8744 0.04712 

0.4 10.897 10.945 0.43445 

0.5 17.487 17.655 0.95196 

0.6 28.301 28.72 1.4567 

0.7 46.047 46.962 1.9484 

0.8 75.158 77.037 2.4396 

0.9 122.91 126.62 2.9297 

1 201.26 208.38 3.4163 
 

The first ten readings from the table also reinforce the idea that, as the function is rising, the error between the predicted 
and the true value is increasing. However, where previously at t = 1 the error was 55%, this time at t = 1 the error is only 
3.4%. In fact, from the full table of data, we observed that the maximum error in the simulation only reached 38% and never 
reached 100%. This can be largely attributed to the exponential function of the solution.  

4 Adams-Moulton Method 

4.1 First differential equation.  

(i)    Step size h = 1 
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Fig. 9: Graphical comparison of solution of function (1) with step size h = 1: Adams-Moulton 

When we ran the simulation for h = 1 using the Adams-Moulton method, the initial result showed the worst performance. 
After a certain point, the predicted value deviates from the true value and never re-converges. This is by far the worst result 
achieved so far. 

Table 9: comparison of solution of function (1) with step size h = 1: Adams-Moulton 

t y ytrue error 
0 -2 -2 0 
1 -0.375 -0.36788 -1.9356 

2 0.85938 0.86466 0.61177 

3 1.9473 1.9502 0.15113 

4 2.9787 2.9817 0.099052 

5 5.3837 3.9933 -34.82 

6 6.8815 4.9933 -37.699 

7 8.7942 5.9991 -46.591 

8 10.213 6.9997 -45.908 

9 11.903 7.9999 -48.792 

10 13.355 9 -48.39 
 

The table displays results that show how the initial error is just about 2% or less; after values of t = 5 the graph suddenly 
deviates, and the error seems to increase. 

(ii) Step size h = 0.1 
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Fig. 10: Graphical comparison of solution of function (1) with step size h = 0.1: Adams-Moulton 

When we decrease the step size, the result is counter-intuitive. Previously, there was a significant improvement in the 
performance of the algorithm when the step size was reduced. However, in this case, the algorithm remains divergent and 
seems to never converge with the true value. This is, thus, the first instance of our experiment where reducing step size did 
not have a significant effect on the error.  

Table 10: comparison of solution of function (1) with step size h = 0.1: Adams-Moulton 

t y ytrue error 
0 -2 -2 0 

0.1 -1.8048 -1.8048 -4.5414exp(-06) 

0.2 -1.6187 -1.6187 -9.1632exp(-06) 

0.3 -1.4408 -1.4408 -1.3973exp(-05) 

0.4 -1.2703 -1.2703 -1.5272exp(-05) 

0.5 -1.1451 -1.1065 -3.4861 

0.6 -1.017 -0.94881 -7.187 

0.7 -0.88784 -0.79659 -11.456 

0.8 -0.75697 -0.64933 -16.577 

0.9 -0.62465 -0.50657 -23.31 

1 -0.49098 -0.36788 -33.461 
 

The table provides further proof, with performance actually decreasing. Previously, with a large step size of h = 1, the function 
at t = 1 showed an error of 1.9% whereas in this case, the error at x=1 is 33%. This means the performance of the method has 
significantly deteriorated. 
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4.2 Second differential equation. 

(i) Step size h = 1 

 
Fig. 11: Graphical comparison of solution of function (2) with step size h = 1: Adams-Moulton 

From the figure above, running the algorithm for the second differential equation with a step size of 1, we can see not much 
difference in the performance between all the three methods. Each method quickly gets to a large error; however, this is the 
only method where the error didn’t reach 100% even at the last value of t = 10 which means this algorithm has had the most 
effective solution to the differential equation.  

Table 11: comparison of solution of function (2) with step size h = 1: Adams-Moulton 

t y ytrue Error 
0 2 2 0 
1 92.125 208.38 55.79 

2 5984 30838 80.595 

3 3.9117exp (+05) 4.5766exp (+06) 91.453 

4 4.671exp (+07) 6.7923exp (+08) 93.123 

5 3.1696exp (+09) 1.0081exp (+11) 96.856 

6 2.0781exp (+11) 1.4961exp (+13) 98.611 

7 1.3589exp (+13) 2.2204exp (+15) 99.388 

8 8.8837exp (+14) 3.2954exp (+17) 99.73 

9 5.8077exp (+16) 4.8908exp (+19) 99.881 

10 3.17exp (+17) 7.2586exp (+21) 99.996 
 

As the table provides further evidence of the fact that the algorithm is quickly adjusting, and the error never reaches 100% as 
it was previously assessed in the other two algorithms. This is by far the most effective solution. 

(ii) Step size h = 0.1 
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Fig. 12: Graphical comparison of solution of function (2) with step size h = 0.1: Adams-Moulton 

 

Finally, as we decrease the step size for this algorithm, we can see a near overlap of the true and predicted values. We can 
see that the previous two methods were unable to accurately keep up with the rapidly rising nature of the exponential curve; 
however, with a step size of 0.1, the solution calculated by this algorithm is nearly overlapping with the true solution.  

Table 12: comparison of solution of function (2) with step size h = 0.1: Adams-Moulton 

t y ytrue error 
0 2 2 0 

0.1 2.9078 2.9082 0.013661 

0.2 4.4043 4.4056 0.029732 

0.3 6.8711 6.8744 0.04712 

0.4 10.94 10.945 0.04026 

0.5 17.649 17.655 0.035501 

0.6 28.71 28.72 0.034732 

0.7 46.944 46.962 0.042072 

0.8 77.005 77.037 0.042072 

0.9 126.56 126.62 0.049264 

1 208.26 208.38 0.058271 
 

The first ten values of the table also provide concrete evidence of the accuracy of this method. The error never goes beyond 
1% and is able to easily sustain itself with the rapidly rising values of the exponential curve. 

5 Conclusion 

From our experiments, we can conclude that there are different applications for the different types of methods. The Heun’s 
method has shown the most robustness of the three. As it is a predictor corrector method, there always tends to be small 
amounts of error present using Heun’s method; however, the error is rarely large enough unless the function is rapidly rising. 
The first differential equation was most accurately solved by Heun’s method, even with a large step size. This lets us know 
that Heun’s method is quite robust and works for larger step sizes too. The second differential equation was most accurately 
solved by the Adams-Moulton method with a small step size, which tells us that this method is most viable using low step 
sizes (thus requiring higher computing power) and is most effective at correcting itself, which means that the larger the 
change between two consequent solutions of the function the more viable this process gets. The worst two performances of 
the algorithms were on solving the first differential equation, which becomes a linear equation for certain parts of the curve 
which the Adams-Moulton and Adams-Bashforth methods are ineffective at predicting, since one of them is a predictor 
algorithm and tends to approach the previous value as accurately as possible, thus leading towards overshoots in the prediction 
of the solution. The Adams-Moulton method is a corrector method and tends to be more stable; we can observe that the error 
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is increasing; however, there are no overshoots and the graph produced is always stable. Although the computation time of 
each approach is important but not mentioned in this paper, thanks to parallel computing there is most of time an adaptive 
solution to have a reasonable execution time for a more complicated problem which not the case. 
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