

Journal of Statistics Applications & Probability An International Journal

http://dx.doi.org/10.18576/jsap/120118

An Exponential Ratio Type Estimator of the Population Mean in The Presence of Non-Response Using Double Sampling

Adnan Khan¹, Amjad Ali¹, Muhammad Ijaz², Muhammad Azeem¹ and Mahmoud El-Morshedy^{3,4,*}

¹Department of Statistics, Islamia College, Peshawar, Pakistan

²Department of Mathematics and Statistics, University of Haripur, Haripur, Pakistan

³ Department of Mathematics, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia

⁴ Department of Mathematics, Faculty of Science, Mansoura University, Mansoura, Egypt

Received: 22 Nov. 2021, Revised: 13 Feb. 2022, Accepted: 15 May 2022 Published online: 1 Jan. 2023

Abstract: In modern era, proper and effective planning can be only possible using statistical techniques to estimate different characteristics of population under studies. An appropriate sample design based on efficient estimation technique is desirable to extract maximum information from sample data. It is a well-known phenomenon to use auxiliary information and to reduce the negative impact of non-response using Hansen & Hurwitz approach that further increase the efficiency of an estimator. Information on one or more auxiliary variables correlated with study variable in several ways to get more reliable estimate. The current paper presents a novel Exponential ratio type estimator to estimate the population mean under the problem of non- response. The proposed estimator further reduces the mean square error in the case of double sampling scheme. Approximate algebraic expressions of the mean square error are discussed; in addition, two real applications are also presented. Several ratio and regression type estimators were developed which perform better with several optimization constants under double sampling in the presence of non-response. However, the proposed estimator has utilized information on auxiliary variables in exponential form and place optimization constants in such positions which further increase the efficiency of the estimator even in all level of correlation coefficients among study and auxiliary variables. Real world data examples, as well as simulation study have been performed to know efficiency of the proposed method over mentioned competitors.

Keywords: Auxiliary Information, Non-response, Estimation, Mean Square Error, Double sampling.

1 Introduction

In recent years, estimating the population mean in the presence of non-response using auxiliary information has gained much more attention from the researchers. In practice, during survey sampling, some of the sampling units do not respond on the first attempt due to certain reasons such as lack of understanding, unavailability of the respondents, or other serious reasons. When non-responding units are totally ignored, the reliability of the estimate decreases. So, it is mandatory to keep the non-response into account to get more reliable estimates. To improve sample surveys, the auxiliary information is used at design or at the stage of estimation to control sampling error. Auxiliary variable(s) is chosen at the estimation stage having a significant correlation with the variable of interest. Moreover, when information is not available about population characteristics of auxiliary variables then two phase sampling approach is useful to estimate it from the first phase sample relatively cheaper than on main variable during the survey process. For detailed information and study on the use of auxiliary variables, we refer to see [1-4].

The pioneer work to deal with the problem of non-response had been done by Hansen and Hurwitz [5]. They introduced sub-sampling method to draw apart from the bulk of non-respondents in the original sample to collect information about no responding units which reduced systematic error due to non-responses. They also developed a weighted estimator of the population mean. Later on, the idea of Hansen and Hurwitz [5] has been expanded to reduce the impact of non-response in

*Corresponding author e-mail: mah_elmorshedy@mans.edu.eg

A. Khan et al.: An Exponential Ratio Type...

ratio, regression and product type estimators. For example, ratio and regression estimators to inculcate information from the non-respondents as well in single phase paradigm [6]. Singh et al [7] studied exponential estimator, Bahl and Tuteja [8] exponential estimator in the same situation, and confirmed its performance in case of double sampling and under nonresponse. In similar fashion, Khare and Srivastava [9] suggested transform ratio type estimator for population mean for the said purpose. Furthermore, a number of ratio, product, regression and exponential ratio type estimators have been developed to estimate the population mean. Considering information on a single auxiliary variable, many researchers developed different estimators for estimating the population mean [10-12]. Singh et.al [13] and Shabbir and Saeed [14] use two auxiliary variables for further extensions of the existing estimator. The estimation method introduced by Shabbir and Saeed [14] in the presence of non-response under sampling using auxiliary information with mixture idea of ratio and regression estimators compared and confirmed their efficiency with Singh et.al [13] in four different possible situations. Following the work given in [14-15] proposed a class of estimators in same situations with different strategies show equal efficiency in all situations with Shabbir and Saeed [14]. Muneer et al. [16-17] developed classed of ratio estimators coping non-response in single phase sampling. Unal and Kadilar [18] introduced a new ratio cum exponential estimator using single auxiliary variable for population mean in the presence non-response. Ensuing the idea of [13-15] and [15] several efficient types of estimators of population mean in the presence of non-response in different situations, Boushun and Pandey [3] a modified regression estimator with three optimization constants dealing the problem of non-response and compared with mentioned competitors in terms of efficiency in double sampling. . In practice, several ratio and regression type estimators were developed in literature including [13-15], and [3] utilized auxiliary information strongly correlated with study variable and perform better with several optimization constants under double sampling in the presence of non-response. However, the proposed estimator has utilized information on auxiliary variables in exponential form and place optimization constants in such positions which further increase the efficiency of the estimator even in all level of correlation coefficients among study and auxiliary variables.

The novelty of the proposed work is to make the estimation results better than others by reducing the mean square error. Secondly, the proposed estimator performs better for all possible levels of the correlation among the study and auxiliary variables in the case of ratio and regression type estimator. Thirdly, the additional parameters k_1 , k_2 are used to control abnormal variation happened in the study variable in both situations.

In the remaining parts of the manuscript, in section 2, the mathematical expression of the proposed estimators with optimization constants and minimum mean square errors in both situations are mentioned. In section 3, we placed pioneer estimators and some recently developed estimators studied in the same situations and properly cited for the purpose of comparison. In section 4, a Monte Carlo simulation and a real data set have been considered for comparison purposes, and in last section 5, the concluding remarks are presented. The mathematical derivation of the mean square error with proper notations are given in the appendix.

2 Proposed Estimator

The motivation behind the proposed exponential type estimator of the population mean handling non-response under two phase sampling are mentioned in introduction section. Moreover, the proposed estimator has utilized information on auxiliary variables in exponential form and place optimization constants in such positions which further increase the efficiency of the estimator even in all level of correlation coefficients among study and auxiliary variables. The proposed estimator is presented under different situations in the following ways:

2.1 Proposed Estimator under condition-I: (When \overline{X} and \overline{Z} are unknown and non-response occurs on Y only) The proposed estimator under condition-I is defined by

$$T_{n(1)} = k_1 \overline{y}^* \exp\left(\frac{\overline{x}_1 - \overline{x}}{\overline{x}_1 + (\alpha_1 - 1)\overline{x}} + \frac{\overline{z}_1 - \overline{z}}{\overline{z}_1 + (\beta_1 - 1)\overline{z}}\right)$$
(1)

where k_1, α_1 and β_1 are optimization constants

The Mean square error of (1) is given by

J. Stat. Appl. Pro. 12, No. 1, 191-205 (2023)/ http://www.naturalspublishing.com/Journals.asp

$$MSE(T_{n(1)}) \approx k_{1}^{2}\lambda_{3}\overline{Y}^{2}\left(C_{y}^{2} + \frac{1}{\alpha_{1}^{2}}C_{x}^{2} + \frac{1}{\beta_{1}^{2}}C_{z}^{2} - \frac{2\rho_{yx}C_{y}C_{x}}{\alpha_{1}} - \frac{2\rho_{yz}C_{y}C_{z}}{\beta_{1}} + \frac{2\rho_{xz}C_{z}C_{x}}{\alpha_{1}\beta_{1}}\right) + (k_{1} - 1)^{2}\overline{Y}^{2} + k_{1}^{2}\lambda_{1}\overline{Y}^{2}C_{y}^{2} + k_{1}^{2}\theta\overline{Y}^{2}C_{y(2)}^{2}$$

$$(2)$$

Differentiating (2) w.r.t. k1, α 1 and β 1, the optimum values of k1, α 1 and β 1 are given by

$$\alpha_{1opt} = \frac{1 - H_{zx}H_{xz}}{H_{yx} - H_{yz}H_{zx}}, \qquad \beta_{1opt} = \frac{1}{H_{yz} - \frac{1}{\alpha_{1opt}}H_{xz}}, \quad k_{1opt} = \frac{1}{\left(1 + \lambda_3 A^* + \lambda_1 C_y^2 + \theta C_{y(2)}^2\right)}$$

where

$$H_{yx} = \rho_{yx} \frac{C_{y}}{C_{x}}, \quad H_{yz} = \rho_{yz} \frac{C_{y}}{C_{z}}, \quad H_{xz} = \rho_{xz} \frac{C_{x}}{C_{z}}, \quad H_{zx} = \rho_{zx} \frac{C_{z}}{C_{x}}, \\ A^{*} = C_{y}^{2} + \frac{1}{\alpha_{opt}^{2}} C_{x}^{2} + \frac{1}{\beta_{opt}^{2}} C_{z}^{2} - \frac{2\rho_{yx}C_{y}C_{x}}{\alpha_{opt}} - \frac{2\rho_{yz}C_{y}C_{z}}{\beta_{opt}} + \frac{2\rho_{xz}C_{z}C_{x}}{\alpha_{opt}\beta_{opt}}.$$

2.2 Proposed Estimator under condition-II (When $\overline{X}, \overline{Z}$ are unknown and non-response occurs on X, Z and Y) The proposed estimator under condition-II is defined by

$$T_{n(2)} = k_2 \overline{y}^* \exp\left(\frac{\overline{x}_1 - \overline{x}^*}{\overline{x}_1 + (\alpha_2 - 1)\overline{x}^*} + \frac{\overline{z}_1 - \overline{z}^*}{\overline{z}_1 + (\beta_2 - 1)\overline{z}^*}\right)$$
(3)

where k_2, α_2 and β_2 are optimization constants

•

The Mean square error of (3) is given by

$$MSE(T_{n(2)}) \approx k_{2}^{2}\lambda_{3}\overline{Y}^{2}\left(C_{y}^{2} + \frac{1}{\alpha_{2}^{2}}C_{x}^{2} + \frac{1}{\beta_{2}^{2}}C_{z}^{2} - \frac{2\rho_{yx}C_{y}C_{x}}{\alpha_{2}} - \frac{2\rho_{yz}C_{y}C_{z}}{\beta_{2}} + \frac{2\rho_{xz}C_{z}C_{x}}{\alpha_{2}\beta_{2}}\right) \\ + k_{2}^{2}\theta\overline{Y}^{2}\left(C_{y(2)}^{2} + \frac{1}{\alpha_{2}^{2}}C_{x(2)}^{2} - \frac{2\rho_{yx(2)}C_{y(2)}C_{x(2)}}{\alpha_{2}} - \frac{2\rho_{yz(2)}C_{y(2)}C_{z(2)}}{\beta_{2}} + \frac{2\rho_{xz(2)}C_{x(2)}C_{x(2)}}{\alpha_{2}\beta_{2}}\right) \\ + (k_{2}-1)^{2}\overline{Y}^{2} + k_{2}^{2}\lambda_{1}\overline{Y}^{2}C_{y}^{2}.$$
(4)

where,

$$\alpha_{2opt} = \frac{FL - E^2}{GL - EM}, \qquad \beta_{2opt} = \frac{L}{M - \frac{1}{\alpha_{2opt}}E}, \quad k_{2opt} = \frac{1}{1 + \lambda_3 A^* + \theta C^* + \lambda_1 C_y^2},$$

where

$$F = \lambda_3 C_x^2 + \theta C_{x(2)}^2, \qquad G = \lambda_3 \rho_{yx} C_y C_x + \theta \rho_{yx(2)} C_{y(2)} C_{x(2)},$$
$$E = \lambda_3 \rho_{xz} C_x C_z + \theta \rho_{xz(2)} C_{x(2)} C_{z(2)}, \qquad L = \lambda_3 C_z^2 + \theta C_{z(2)}^2,$$

193

$$M = \lambda_3 \rho_{yz} C_y C_z + \theta \rho_{yz(2)} C_{y(2)} C_{z(2)},$$

$$C^* = C_{y(2)}^2 + \frac{1}{\alpha_{opt}^2} C_{x(2)}^2 + \frac{1}{\beta_{opt}^2} C_{z(2)}^2 - \frac{2\rho_{yx(2)} C_{y(2)} C_{x(2)}}{\alpha_{opt}} - \frac{2\rho_{yz(2)} C_{y(2)} C_{z(2)}}{\beta_{opt}} + \frac{2\rho_{xz(2)} C_{z(2)} C_{z(2)}}{\alpha_{opt} \beta_{opt}}$$

3 Comparisons with other Estimators

The proposed estimator is compared with the following estimators under condition I and II. The detail properties with proper notations of the proposed estimator are given in Appendix.

T₀ Hansen & Hurwitz [5]

 $T_{1(1)}, T_{1(2)}$ Cochran's [6] Ratio and regression estimators under Situation-I

 $T_{2(1)}, T_{2(2)}$ Cochran's [6] Ratio and regression estimators under situation-II

 $T_{3(1)}$, $T_{3(2)}$ Singh &Kumar [7] Estimator under Situation-I &II

 $T_{4(1)}$, $T_{4(2)}$ Shabbir & Saeed [14] under Situation-I & II

 $T_{5(1)}$, $T_{5(2)}$ Boushun and Naqvi [15] under Situation-I &II

 $T_{6(1)}, T_{6(2)}$ Boushun and Pandey [3] under Situation-I &II

 $T_{n(1)},\ T_{n(2)}$ $\$ Proposed Estimators under situation -I & II

4 Monte Carlo Simulations

A Simulation study is conducted to study the performance of the proposed estimators against other competitors as the expressions of MSEs are very complicated to compare the relative efficiencies analytically. To validate the performance of proposed estimators, we use the computational of power of modern computing package R. For this purpose, we have generated data from the multivariate normal distribution having three positively correlated variables Y, X, and Z with different parameters and sample sizes. The notations of the proposed estimator are $T_{n(1)}$, and $T_{n(2)}$ under condition -I

and II respectively. The population data of size N=1000 on three correlated variables is taken from a multivariate normal distribution which consists of a study variable and two supplementary or auxiliary variables.

The Relative Efficiency of each estimator has been calculated with respect to Hansen and Hurwitz [1] estimator. The general form of the percent relative efficiency (PRE) is defined by

$$PRE = \frac{MSE(T_0)}{MSE(T_0)} \times 100$$

Table 1 describes various a sets of parameter values. Table 2-6 reflects the average MSE and the percent relative efficiency averaged out over 1000 simulations.

Parameters	Set 1	set 2	set 3	set 4	set 5
<i>n</i> ₁	100	100	100	100	100
<i>n</i> ₂	40	20	20	40	20

Table 1: Various sets of Parameter values.

ρ_{yx}	0.45	0.45	0.75	0.92	0.92
$ ho_{yz}$	0.50	0.50	0.75	0.88	0.88
$ ho_{_{XZ}}$	0.35	0.35	0.75	0.80	0.80
C _y	1.35	1.35	1.35	1.35	1.35
	1.0	1.0	1.0	1.0	1.0
C_z	1.9	1.9	1.9	1.9	1.9

Table 2: MSE and Percent Relative Efficiencies for set 1.

Estimators		(1/)			
		(/h)				
	(1/5)	(1/4)	(1/3)	(1/2)		
T ₀	1.634329	1.483181	1.219081	1.004967		
	100.0000	100.000	100.0000	100.0000		
T ₁₍₁₎	1.634233	1.482757	1.219015	1.003272		
	100.0059	100.0286	100.0055	100.1690		
T ₂₍₁₎	1.634233	1.411284	1.148108	0.933821		
	104.5127	105.0945	106.1817	107.6188		
T ₃₍₁₎	1.503126	1.348766	1.086992	0.870359		
	108.7287	109.9658	112.1518	115.4658		
T ₄₍₁₎	1.494941	1.340186	1.078694	0.861615		
	109.3240	110.6699	113.0146	116.6375		
T ₅₍₁₎	1.494941	1.340186	1.078694	0.861615		
	109.3240	110.6699	113.0146	116.6375		
T ₆₍₁₎	1.40435	1.309866	1.004436	0.830003		
	116.3758	113.2315	121.3697	121.1755		
$T_{n(1)}$	1.301963	1.186910	0.980592	0.801034		
	125.5280	124.9616	124.3210	125.4587		
T ₁₍₂₎	1.600430	1.450891	1.215516	0.995926		
	102.1181	102.2255	100.2933	100.9077		
T ₂₍₂₎	1.423808	1.291105	1.094117	0.899795		
	114.786	114.8769	111.4215	111.6885		
T ₃₍₂₎	0.977480	0.968753	0.876200	0.810320		
	167.1982	153.1021	139.1327	124.0210		
T ₄₍₂₎	0.972697	0.988059	0.891680	0.787975		
	168.0203	150.1105	136.7174	130.9930		

	A. Khan et al.: An Exponential Ratio Type				
T ₅₍₂₎	0.972697 168.0203	0.988059 150.1105	0.891680 136.7174	0.787975 130.9930	
T ₆₍₂₎	0.932366 175.2884	0.956734 155.0254	0.856789 142.2849	0.776455 129.4302	
$T_{n(2)}$	0.904341 180.7204	0.893936 182.8239	0.824948 147.7768	0.736555 136.4416	

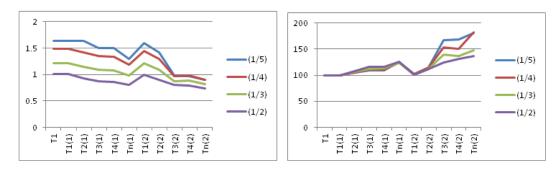


Fig. 1: MSE and PRE for a data set 1.

 Table 3: MSE and Percent Relative Efficiencies for Set 2.

Estimators	$\left(\frac{1}{h}\right)$				
	(1/5)	(1/4)	(1/3)	(1/2)	
T ₀	2.500784	2.150689	1.800594	1.450499	
	100.0000	100.0000	100.0000	100.0000	
T ₁₍₁₎	2.494205	2.144110	1.794015	1.443920	
	100.2638	100.3069	100.3667	100.4557	
T ₁₍₂₎	2.381696	2.031601	1.681506	1.331411	
	105.0001	105.8618	107.0822	108.9445	
T ₃₍₁₎	2.280354	1.930259	1.580164	1.230069	
	109.6665	111.4197	113.9498	117.9201	
T ₄₍₁₎	2.266653	1.916558	1.566463	1.216368	
	110.3294	112.2162	114.9465	119.2484	
T ₅₍₁₎	2.266653	1.916558	1.566463	1.216368	
	110.3294	112.2162	114.9465	119.2484	
T ₆₍₁₎	2.097543	1.789666	1.497666	1.19876	
	119.224	120.172	120.226	120.999	
$T_{n(1)}$	1.815391	1.592595	1.353122	1.092920	
	137.7546	135.0431	133.0696	132.7177	
T ₁₍₂₎	2.378845	2.057590	1.736335	1.415080	
	105.1260	104.5247	103.7009	102.5030	
T ₂₍₂₎	2.117582	1.833516	1.549449	1.265383	
	118.0962	117.2986	116.2087	114.6293	
T ₃₍₂₎	1.425446	1.318801	1.198985	1.057357	
	175.4387	163.0791	150.1766	137.1816	

$T_{n(2)}$	1.256729	1.176607	1.083170	0.968047
	198.9915	182.7874	166.2337	149.8376
T ₆₍₂₎	1.268776	1.197659	1.099865	0.997544
	197.102	179.574	163.710	145.407
T ₅₍₂₎	1.299034	1.212813	1.111711	1.003516
	192.5111	177.3306	161.9660	144.5417
T ₄₍₂₎	1.299034	1.212813	1.111711	1.003516
	192.5111	177.3306	161.9660	144.5417

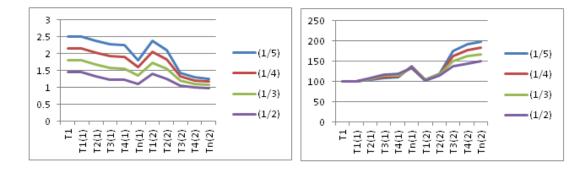


Fig. 2: MSE and PRE for a data set 2.

Estimators	$\begin{pmatrix} 1/h \end{pmatrix}$				
	(1/5)	(1/4)	(1/3)	(1/2)	
T ₀	17.44664	13.77122	10.09581	6.420394	
	100.0000	100.0000	100.0000	100.0000	
T ₁₍₁₎	16.58908	12.91367	9.238250	5.562834	
	105.1694	106.6407	109.2827	115.4159	
T ₁₍₂₎	16.04594	12.37053	8.695110	5.019695	
	108.7293	111.3229	116.1090	127.9041	
T ₃₍₁₎	15.83601	12.16059	8.485175	4.809759	
	110.1707	113.2447	118.9817	133.4868	
T ₄₍₁₎	15.73187	12.05645	8.381037	4.705621	
	110.9000	114.2229	120.4601	136.4409	
T ₅₍₁₎	15.73187	12.05645	8.381037	4.705621	
	110.9000	114.2229	120.4601	136.4409	
T ₆₍₁₎	5.982344	3.965344	2.90568	2.002444	
	291.6355	347.2894	347.4509	320.6279	
$T_{n(1)}$	2.297296	1.977292	1.622300	1.218076	
	759.4425	696.4691	622.3146	527.0930	
T ₁₍₂₎	15.46558	12.07104	8.676498	5.281958	
	112.8095	114.0849	116.3581	121.5533	
T ₂₍₂₎	14.48700	11.20132	7.915639	4.629959	
	120.4296	122.9429	127.5426	138.6706	

		A. K	Exponential Ratio	у Туре	
T ₃₍₂₎	3.790468 460.2767	3.179638 433.1067	2.552019 395.6009	1.891580 339.4197	
T ₄₍₂₎	7.400583 235.7468	6.438146 213.9005	5.257791 192.0162	3.661943 175.3275	
T ₅₍₂₎	7.400583 235.7468	6.438146 213.9005	5.257791 192.0162	3.661943 175.3275	
T ₆₍₂₎	3.446343 506.2363	2.998756 459.2311	1.987222 508.0363	1.009563 635.9577	
$T_{n(2)}$	1.136067 1535.705	1.062612 1295.979	0.978234 1032.044	0.874580 734.1109	

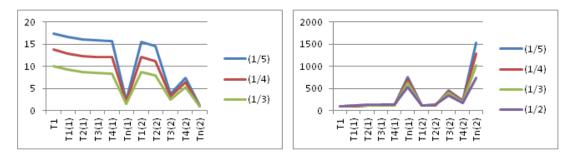
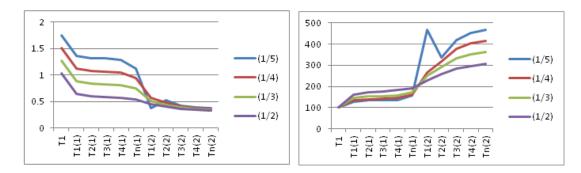


Fig. 3: MSE and PRE for Data Set 3.

Table 5: MSE and Percent Relative Efficiencies for set 4

Estimators	$\begin{pmatrix} 1/h \end{pmatrix}$				
	(1/5)	(1/4)	(1/3)	(1/2)	
T ₀	1.754905	1.514154	1.273404	1.032653	
	100.0000	100.0000	100.0000	100.0000	
T ₁₍₁₎	1.359976	1.119226	0.878475	0.637724	
	129.0394	135.2859	144.9562	161.9278	
T ₁₍₂₎	1.320490	1.079739	0.838988	0.598238	
	132.8980	140.2334	151.7785	172.6158	
T ₃₍₁₎	1.309213	1.068462	0.827711	0.586961	
	134.0428	141.7134	153.8463	175.9322	
T ₄₍₁₎	1.289961	1.049211	0.808460	0.567709	
	136.0432	144.3137	157.5098	181.8982	
T ₅₍₁₎	1.289961	1.049211	0.808460	0.567709	
	136.0432	144.3137	157.5098	181.8982	
T ₆₍₁₎	1.209431	0.976511	0.789776	0.557734	
	145.101	155.057	161.236	185.151	
$T_{n(1)}$	1.120211	0.935976	0.741965	0.536575	
	156.6585	161.7727	171.6257	192.4526	
T ₁₍₂₎	0.375025	0.568287	0.511182	0.454078	
	467.9434	266.4419	249.1094	227.4175	

$T_{n(2)}$	0.375025	0.363704	0.351224	0.336736
	467.9434	416.3145	362.5609	306.6655
T ₆₍₂₎	0.384323	0.370932	0.361234	0.344562
	456.622	408.202	161.236	299.700
T ₅₍₂₎	0.388695	0.376477	0.363049	0.347512
	451.4858	402.1904	350.7523	297.1561
T ₄₍₂₎	0.388695	0.376477	0.363049	0.347512
	451.4858	402.1904	350.7523	297.1561
T ₃₍₂₎	0.418160	0.401023	0.383551	0.365514
	419.6731	377.5729	332.0030	282.5202
T ₂₍₂₎	0.519088	0.478688	0.438287	0.397887
	338.0745	316.3134	290.5406	259.5339



Estimators	(1/h)				
	(1/5)	(1/4)	(1/3)	(1/2)	
T ₀	7.189085	6.09891	5.00874	3.91856	
	100.0000	100.000	100.000	100.000	
T ₁₍₁₎	6.004701	4.91453	3.82435	2.73418	
	119.7243	124.099	130.969	143.317	
T ₁₍₂₎	5.196541	4.10637	3.01619	1.92602	
	138.3436	148.523	166.062	203.454	
T ₃₍₁₎	5.148907	4.05873	2.96856	1.87838	
	139.6235	150.266	168.726	208.613	
T ₄₍₁₎	5.063383	3.97321	2.88303	1.79286	
	141.9819	153.501	173.731	218.565	
T ₅₍₁₎	5.063383	3.97321	2.88303	1.79286	
	141.9819	153.501	173.731	218.565	
T ₆₍₁₎	3.075342	2.69991	1.87231	1.00883	
	233.765	225.89	267.51	388.42	
$T_{n(1)}$	1.922057	1.62707	1.30278	0.93888	
	374.0309	374.840	384.464	417.365	

Table 6: MSE and Percent Relative Efficiencies for set 5

		A. K	han et al.: An l	Exponential Ra	atio Type
T ₁₍₂₎	4.482800 160.3704	3.77310 161.642	3.06340 163.502	2.35370 166.485	
T ₂₍₂₎	2.053222 350.1367	1.74888 348.733	1.44453 346.738	1.14018 343.677	
T ₃₍₂₎	1.405338 511.5556	1.28379 475.069	1.14377 437.916	0.96823 404.714	
T ₄₍₂₎	1.158345 620.6343	1.06884 570.608	0.97809 512.089	0.88527 442.638	
T ₅₍₂₎	1.158345 620.6343	1.06884 570.608	0.97809 512.089	0.88527 442.638	
T ₆₍₂₎	0.858345 837.55	0.82063 743.19	0.77644 645.09	0.67527 580.29	
$T_{n(2)}$	0.715302 1005.042	0.67843 898.972	0.63625 787.234	0.58470 670.182	

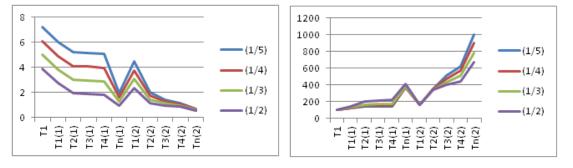


Fig. 5: MSE and PRE for a data set 5.

Table 2-6 reflects the comparison of the average MSE and PRE of the proposed and other estimators for various parameter values and response rates $\binom{1}{h}$. It is clear from table 2-6 that the proposed estimator under condition-I ($T_{n(1)}$) and condition-II ($T_{n(2)}$) have the less MSE and a large PRE than all other existing estimators. Hence, it is evident that the proposed estimator plays an important role in further reeducation of the MSE and leads to the best estimate of the population mean. Fig 1-5 describes the MSE and PRE respectively for the proposed estimators and other existing estimators. The figures clearly define the extreme decline in MSE for the proposed estimators $T_{n(1)}$, and $T_{n(2)}$ when the response rate $\binom{1}{h}$ is increases. Moreover, the line of PRE in increases and reached to it extreme end for the proposed estimators $T_{n(1)}$, and $T_{n(2)}$ when the response rate $\binom{1}{h}$ is increases.

5 Real Data Example

To confirm the performance of the proposed estimator, the following real data set was taken which is earlier used by Khare and Sinha [12].

DATA SET: The data were recorded on three different variables relating to the physical growth of high socio economic class of 95 children under the Indian council for medical research (ICMR) study, pediatrics department, at Banaras Hindu University. Among them, 25% non-responding units were found which were contacted by an expensive method. The necessary descriptive statistics are as under.

 \mathcal{Y} : Children Mass in (Kg),

x: Chest Size in (cm),

Z: Arm Circumference in (cm).

Population parameters are given below

$$\begin{split} N &= 95, \quad n_1 = 45, \quad n_2 = 35, \quad W_2 = 0.25, \quad \overline{Y} = 19.4968, \quad \overline{X} = 55.8611, \quad \overline{Z} = 16.7968\\ C_y &= 1.1562, \quad C_{y(2)} = 1.121, \quad C_x = 0.0586, \quad C_{x(2)} = 0.0541, \quad C_z = 0.0865, \\ C_{z(2)} &= 0.071251, \quad \rho_{yx} = 0.846, \quad \rho_{yx(2)} = 0.729, \quad \rho_{yz} = 0.797, \quad \rho_{yz(2)} = 0.757, \quad \rho_{xz} = 0.725, \\ \rho_{xz(2)} &= 0.641. \end{split}$$

Estimators	(1/h)					
	(1/5)	(1/4)	(1/3)	(1/2)		
T ₀	22.81579	19.40407	15.99234	12.58061		
	100.0000	100.0000	100.0000	100.0000		
T ₁₍₁₎	22.31260	18.90087	15.48915	12.07742		
	102.2552	102.6623	103.2487	104.1664		
T ₂₍₁₎	18.48649	15.07476	11.66303	8.251305		
	123.4188	128.7189	137.1199	152.4681		
T ₃₍₁₎	18.28247	14.87074	11.45902	8.047291		
	124.7960	130.4848	139.5612	156.3335		
T ₄₍₁₎	18.05642	14.64469	11.23296	7.821237		
	126.3584	132.4990	142.3697	160.8520		
T ₅₍₁₎	18.05642	14.64469	11.23296	7.821237		
	126.3584	132.4990	142.3697	160.8520		
T ₆₍₁₎	17.05632	13.76432	11.00322	7.699222		
	133.7674	140.9737	145.3424	163.4011		
$T_{n(1)}$	16.45787	13.57960	10.59816	7.509435		
	138.6315	142.8913	150.8973	167.5307		
T ₁₍₂₎	21.38414	18.20452	15.02491	11.84530		
	106.6949	106.5892	106.4388	106.2076		
T ₂₍₂₎	11.31395	9.695356	8.076763	6.458170		
	201.6608	200.1377	198.0043	194.8015		
T ₃₍₂₎	9.977321	8.654636	7.327265	5.991139		
	228.6765	224.2043	218.2580	209.9870		
T ₄₍₂₎	8.930169	7.810671	6.687695	5.557700		
	255.4912	248.4302	239.1308	226.3636		
T ₅₍₂₎	8.930169	7.810671	6.687695	5.557700		
	255.4912	248.4302	239.1308	226.3636		
T ₆₍₂₎	8.899444	7.696754	6.598997	5.528754		
	256.3732	252.1072	242.345	227.5487		
$T_{n(2)}$	8.725174	7.653399	6.572061	5.477607		
	261.4938	253.5353	243.3383	229.6735		

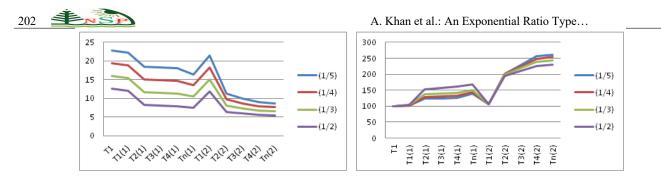


Fig. 6: MSE and PRE for a data set 6.

Table 7 presents the comparison of the average MSE and PRE of the proposed and other estimators with various values of response rates $\binom{1}{h}$ using real data. It is clear from table 7 that the proposed estimator under condition-I ($T_{n(1)}$) and condition-II ($T_{n(2)}$) have less MSE and a large PRE than all other existing estimators. Fig 6 demonstrates that the MSE for the proposed estimators is less whiles the PRE is high than other existing estimators.

5 Conclusions

The performance of the ratio, regression and exponential type estimator of the population mean depends upon auxiliary information, sample size, coefficient of variations of the study variable as well as of the auxiliary variable(s) and the strength of the correlation coefficients.

In this paper, we proposed an optimum estimator of the population mean with two phase sampling in the presence of nonresponse and its performance is measured over other estimators using simulation and a real data. In a simulation study, we considered 5% and 3% sample sizes of the population under study with different levels of correlation coefficients and coefficient of variations of the study and auxiliary variables. It is concluded that the efficiency of the proposed estimator in all situations is better than its competitors especially, in the small sample size, the performance is far better than their counterparts. The performance of the proposed estimator is compared with Hansen & Hurwitz [5], classical Cochran ratio and regression estimators [6], Singh & Kumar [7], Shabbir and Saeed [14], Boushun and Naqvi [15] and Boushun and Pandey [3] estimators where non-response was handled under two phase sampling. It is concluded that both the simulation and real data analysis favored the proposed estimator when the auxiliary variable(s) are positively correlated with a study variable. Moreover, in future, one can study the properties of the proposed estimator in other sampling design such as stratified random sampling, systematic, cluster sampling and even unequal probability sampling design with proper adjustment of the auxiliary information.

Acknowledgement

This project was supported by the deanship of scientific research at Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia.

References

- [1] Shabbir, Javid, and Nasir Saeed Khan. On estimating the finite population mean using two auxiliary variables in two phase sampling in the presence of non-response. *Communications in Statistics-Theory and Methods*, 42(22)., 4127-4145. 2013.
- [2] Bhushan, Shashi, and Nazia Naqvi. Generalized efficient classes of estimators in presence of non-response using two auxiliary variables. *Journal of Statistics and Management Systems*, 18(6)., 573-602, 2015.
- [3] Bhushan, Shashi, and Abhay Pratap Pandey. An improved estimation procedure of population mean using bivariate auxiliary information under non-response. *Communications for Statistical Applications and Methods*, 26(4)., 347-357, 2019.
- [4] Singh, Housila P., Sunil Kumar, and Marcin Kozak. Improved estimation of finite-population mean using sub-sampling to deal with non-response in two-phase sampling scheme. *Communications in Statistics—Theory and Methods*, 39(5)., 791-802, 2010.
- [5] Hansen, Morris H., and William N. Hurwitz. The problem of non-response in sample surveys. *Journal of the American Statistical Association*, 41(236)., 517-529, 1946.
- [6] Cochran, William G. Sampling techniques. John Wiley & Sons, 1977.

- [7] Singh, Housila P., and Sunil Kumar. Combination of regression and ratio estimate in presence of nonresponse. *Brazilian journal of Probability and Statistics*, 25(2)., 205-217, 2011.
- [8] Bahl, Shashi, and RK11082970727 Tuteja. Ratio and product type exponential estimators. *Journal of information and optimization sciences*, 12(1).,159-164, 1991.
- [9] Khare, B. B., and Srivastava Srivastava. Transformed ratio type estimators for the population mean in the presence of nonresponse. *Communications in Statistics-Theory and Methods*, 26(7)., 779-1791, 1997.
- [10] Särndal, Carl-Erik, and Sixten Lundström. Estimation in surveys with nonresponse. John Wiley & Sons, 2005.
- [11] Tabasum, R., and I. A. Khan. Double sampling ratio estimator for the population mean in presence of non-response. *Assam Statistical Review*, 20(1).,73-83, 2006.
- [12] Khare, B. B., and R. R. Sinha. Estimation of the ratio of the two population means using multi auxiliary characters in the presence of non-response. *Statistical Techniques in Life Testing, Reliability, Sampling Theory and Quality Control*, 1.,63-171, 2007.
- [13] Singh, Housila P., Sunil Kumar, and Sandeep Bhougal. Estimation of population mean in successive sampling by sub-sampling nonrespondents. *Journal of Modern Applied Statistical Methods*, 10(1)., 6, 2011.
- [14] Shabbir, Javid, and Nasir Saeed Khan. On estimating the finite population mean using two auxiliary variables in two phase sampling in the presence of non-response. *Communications in Statistics-Theory and Methods*, 42(22)., 4127-4145, 2013.
- [15] Bhushan, Shashi, and Nazia Naqvi. Generalized efficient classes of estimators in presence of non-response using two auxiliary variables. *Journal of Statistics and Management Systems*, 18(6)., 573-602, 2015.
- [16] Muneer, Siraj, Javid Shabbir, and Alamgir Khalil. Estimation of finite population mean in simple random sampling and stratified random sampling using two auxiliary variables. *Communications in Statistics-Theory and Methods*, 46(5)., 2181-2192, 2017.
- [17] Muneer, Siraj, Javid Shabbir, and Alamgir Khalil. A Generalized exponential type estimator of population mean in the presence of non-response. *Statistics in Transition New Series*, 19(2)., 2018.
- [18] Ünal, Ceren, and Cem Kadilar. Exponential type estimator for the population mean in the presence of non-response. *Journal of Statistics and Management Systems*, 23(3)., 603-615, 2020.

APPENDIX

NOTATIONS:

N: Size of population, N_1 : Responding population size on first attempt

 $N_{2} = N - N_{I}$ (Non-responding population size on first attempt)

 n_1 : First phase sample size, n_2 : Second phase sample size, r_1 : No. of responding units in second phase sample, r_2 : Non-respondents size,

 $k = \frac{r_2}{h}$, where $h \ge 2$, where k is the size of the subsample from non-respondings units,

$$\overline{Y} = W_1 \overline{Y}_1 + W_2 \overline{Y}_2, \ W_1 = \frac{N_1}{N}, \ W_2 = \frac{N_2}{N}, \ \overline{Y}_1 = \frac{\sum_{i=1}^{N_1} Y_i}{N_1}, \ \overline{Y}_2 = \frac{\sum_{i=1}^{N_2} Y_i}{N_2}, \ \overline{y}_{r_1} = \frac{\sum_{i=1}^{n} y_i}{r_1}, \ \overline{y}_k = \frac{\sum_{i=1}^{k} y_i}{k}$$
$$\overline{x}_{r_1} = \frac{\sum_{i=1}^{r_1} x_i}{r_1}, \ \overline{x}_k = \frac{\sum_{i=1}^{k} x_i}{k}$$

$$\begin{aligned} & \underbrace{\text{A. Khan et al.: An Exponential Ratio Type...}}_{\overline{Z}_{1}} \\ & \overline{Z}_{1} = \frac{\sum_{i=1}^{N_{1}} Z_{i}}{N_{1}}, \ \overline{Z}_{2} = \frac{\sum_{i=1}^{N_{1}} Z_{i}}{N_{2}}, \ \overline{X}_{1} = \frac{\sum_{i=1}^{N_{1}} X_{i}}{N_{1}}, \ \overline{X}_{2} = \frac{\sum_{i=1}^{N_{1}} X_{i}}{N_{2}}, \ \theta = \frac{W_{2}(h-1)}{n_{2}}, \ \lambda_{1} = \frac{1}{n_{1}} - \frac{1}{N}, \ \lambda_{2} = \frac{1}{n_{2}} - \frac{1}{N} \\ & \lambda_{3} = \frac{1}{n_{2}} - \frac{1}{n_{1}}, \ S_{y_{2}}^{2} = \frac{\sum_{i=1}^{N_{2}} (y_{i} - \overline{Y}_{2})^{2}}{N_{2} - 1}, \ S_{yx} = \frac{\sum_{i=1}^{N_{1}} (X_{i} - \overline{X})(Y_{i} - \overline{Y})}{N_{1} - 1}, \ S_{yz} = \frac{\sum_{i=1}^{N_{1}} (Z_{i} - \overline{Z})(Y_{i} - \overline{Y})}{N_{1} - 1} \\ & S_{zx} = \frac{\sum_{i=1}^{N_{1}} (Z_{i} - \overline{Z})(X_{i} - \overline{X})}{N_{1} - 1}, \ \beta_{yx} = \frac{S_{yx}}{S_{x}^{2}}, \ \beta_{yx(2)} = \frac{S_{yx(2)}}{S_{x(2)}^{2}}, \ C_{y} = \frac{S_{y}}{\overline{Y}}, \ C_{y(2)} = \frac{S_{y(2)}}{\overline{Y}}, \ C_{x} = \frac{S_{x}}{\overline{X}}, \ C_{x(2)} = \frac{S_{x(2)}}{\overline{X}}, \\ & \rho_{yx} = \frac{S_{yx}}{S_{x}S_{y}}, \quad \rho_{yx(2)} = \frac{S_{yx(2)}}{S_{x(2)}S_{y(2)}}, \\ & \left\{\overline{e}_{y}^{*} = \overline{y}^{*} - \overline{Y}, \ \overline{e}_{x1} = \overline{x}_{1} - \overline{X}, \ \overline{e}_{x} = \overline{x} - \overline{X}, \ \overline{e}_{z1} = \overline{z}_{1} - \overline{Z}, \ \overline{e}_{z}^{*} = \overline{z}^{*} - \overline{Z}, \ \overline{e}_{z}^{*} = \overline{z} - \overline{Z}, \ \overline{e}_{x}^{*} = \overline{x}^{*} - \overline{X}, \\ & E(\overline{e}_{y}^{*}) E(\overline{e}_{x}) E(\overline{e}_{x}) E(\overline{e}_{z}) = E(\overline{e}_{z}) = E(\overline{e}_{z}) = E(\overline{e}_{z}^{*}) = E(\overline{e}_{z}^{*}) = 0 \\ \\ & \left\{E(\overline{e}_{y}^{*})^{2} = \lambda_{2}S_{y}^{2} + \theta S_{y(2)}^{2}, \ E(\overline{e}_{x}^{*2}) = \lambda_{2}S_{x}^{2} + \theta S_{x(2)}^{2}, \ E(\overline{e}_{y}^{*}\overline{e}_{z}) = \lambda_{2}S_{z}^{2} + \theta S_{z(2)}^{2}, \ E(\overline{e}_{x})^{2} = \lambda_{2}S_{y}^{2}, \\ & E(\overline{e}_{y}^{*})^{2} = \lambda_{2}S_{y}^{2}, \ E(\overline{e}_{x}^{*})^{2} = \lambda_{2}S_{x}^{2}, \ E(\overline{e}_{y}^{*}\overline{e}_{z}) = \lambda_{2}S_{y}^{2}, \\ & E(\overline{e}_{y}^{*}\overline{e}_{z}) = \lambda_{2}S_{yz}^{2}, \ E(\overline{e}_{y}^{*}\overline{e}_{z}) = \lambda_{2}S_{yz}^{2}, \\ & E(\overline{e}_{y}^{*}\overline{e}_{z}) = \lambda_{2}S_{yz}^{2}, \ E(\overline{e}_{y}^{*}\overline{e}_{z}) = \lambda_{2}S_{yz}^{2}, \\ & E(\overline{e}_{y}^{*}\overline{e}_{z}) = \lambda_{2}S_{yz}^{2}, \\ & E(\overline{e}_{y}^{*}\overline{e}_{z}) = \lambda_{2}S_{yz}^{2}, \ E(\overline{e}_{y}^{*}\overline{e}_{z}) = \lambda_{2}S_{yz}^{2}, \\ & E(\overline{e}_{y}^{*}\overline{e}_{z}) = \lambda_{2}S_{yz}^{2}, \\ & E(\overline{e}_{y}^{*}\overline{e}_{z}) = \lambda_{2}S_{yz}^{$$

The mean Square Error of the proposed estimator under Situation-I can be obtained as:
$$\begin{split} T_{n(1)} &= k_1 \left(\overline{e}_y^* + \overline{Y} \right) \exp \left(\frac{\overline{e}_{x1} + \overline{X} - \overline{e}_x - \overline{X}}{\overline{e}_{x1} + \overline{X} + (\alpha_1 - 1)(\overline{e}_x + \overline{X})} + \frac{\overline{e}_{z1} + \overline{Z} - \overline{e}_z - \overline{Z}}{\overline{e}_{z1} + \overline{Z} + (\beta_1 - 1)(\overline{e}_z + \overline{Z})} \right), \\ T_{n(1)} &= k_1 \left(\overline{e}_y^* + \overline{Y} \right) \exp \left(\frac{\overline{e}_{x1} - \overline{e}_x}{\alpha_1 \overline{X}} \left(1 + \frac{\overline{e}_{x1} + (\alpha_1 - 1)\overline{e}_x}{\alpha_1 \overline{X}} \right)^{-1} + \frac{\overline{e}_{z1} - \overline{e}_z}{\beta_1 \overline{Z}} \left(1 + \frac{\overline{e}_{z1} + (\beta_1 - 1)\overline{e}_z}{\beta_1 \overline{Z}} \right)^{-1} \right), \\ T_{n(1)} &\approx k_1 \left(\overline{e}_y^* + \overline{Y} \right) \left(1 + \frac{\overline{e}_{x1} - \overline{e}_x}{\alpha_1 \overline{X}} \cdot \left(\frac{\overline{e}_{x1} - \overline{e}_x}{\alpha_1 \overline{X}} \right) \frac{\overline{e}_{x1} + (\alpha_1 - 1)\overline{e}_x}{\alpha_1 \overline{X}} + \frac{\overline{e}_{z1} - \overline{e}_z}{\beta_1 \overline{Z}} \cdot \left(\frac{\overline{e}_{z1} + (\beta_1 - 1)\overline{e}_z}{\beta_1 \overline{Z}} \right)^2 + \frac{1}{2} \left(\frac{\overline{e}_{x1} - \overline{e}_x}{\alpha_1 \overline{X}} \right)^2 + \frac{1}{2} \left(\frac{\overline{e}_{z1} - \overline{e}_z}{\beta_1 \overline{Z}} \right)^2 \right), \\ E \left(T_{n(1)} - \overline{Y} \right)^2 wk^2 E \left(\overline{e}_y^* \right)^2 + (k - 1)^2 \overline{Y}^2 + (k \overline{Y})^2 \frac{E(\overline{e}_{x1} - \overline{e}_x)^2}{(\alpha \overline{X})^2} + (k \overline{Y})^2 \frac{E(\overline{e}_{z1} - \overline{e}_z)^2}{(\beta \overline{Z})^2} + 2k^2 \overline{Y} \frac{\overline{Ee}_y^* (\overline{e}_{x1} - \overline{e}_x)}{\alpha \overline{X}} \right) \\ + 2k^2 \overline{Y} \frac{\overline{Ee}_y^* (\overline{e}_{z1} - \overline{e}_z)}{\beta \overline{Z}} + 2 \frac{k^2 \overline{Y}^2}{\alpha \beta \overline{X} \overline{Z}} E(\overline{e}_{x1} - \overline{e}_x)(\overline{e}_{z1} - \overline{e}_z), \\ MSE \left(T_{n(1)} \right) \approx k^2 \lambda_2 S_y^2 + k^2 \Theta S_{y(2)}^2 + (k - 1)^2 \overline{Y}^2 + \frac{(k \overline{Y})^2}{(\alpha \overline{X})^2} \lambda_1 S_x^2 + \frac{(k \overline{Y})^2}{(\alpha \overline{X})^2} \lambda_2 S_x^2 - 2 \frac{(k \overline{Y})^2}{\alpha \overline{X}} \lambda_1 S_x + 2 \frac{k^2 \overline{Y}}{\alpha \beta \overline{X} \overline{Z}} \lambda_2 S_{yx} + 2 \frac{k^2 \overline{Y}}{\beta \overline{Z}} \lambda_1 S_{yz} - 2 \frac{k^2 \overline{Y}}{\beta \overline{Z}} \lambda_2 S_{yz} + 2 \frac{k^2 \overline{Y}^2}{\alpha \beta \overline{X} \overline{Z}} \lambda_1 S_{xz} \\ - 2 \frac{k^2 \overline{Y}^2}{(\beta \overline{Z})^2} \lambda_1 S_x - 2 \frac{k^2 \overline{Y}^2}{\alpha \beta \overline{X} \overline{Z}} \lambda_1 S_{yx} - 2 \frac{k^2 \overline{Y}}{\alpha \beta \overline{X} \overline{Z}} \lambda_2 S_{yz} . \end{aligned}$$

 $MSE(T_{n(1)}) \approx k_1^2 \lambda_3 \overline{Y}^2 \left(C_y^2 + \frac{1}{\alpha_1^2} C_x^2 + \frac{1}{\beta_1^2} C_z^2 - \frac{2\rho_{yx} C_y C_x}{\alpha_1^2} - \frac{2\rho_{yz} C_y C_z}{\beta_1^2} + \frac{2\rho_{xz} C_z C_z}{\alpha_1^2 \beta_1^2} \right)$

© 2023 NSP Natural Sciences Publishing Cor.

*

$$+(k_1^2-1)^2 \overline{Y}^2+k_1^2 \lambda_1 \overline{Y}^2 C_y^2+k_1^2 \theta \overline{Y}^2 C_{y(2)}^2,$$

where $\lambda_3 = \frac{1}{n_2} - \frac{1}{n_1}$. Similarly, in Situation-II, the bias can be derived as:

$$T_{n(2)} - \overline{Y} \approx k_2 \overline{e}_y^* + (k_2 - 1)\overline{Y} + k_2 \overline{e}_y^* \frac{(\overline{e}_{x1} - \overline{e}_x^*)}{\alpha_2 \overline{X}} + k_2 \overline{e}_y^* \frac{(\overline{e}_{z1} - \overline{e}_z^*)}{\beta_2 \overline{Z}} + k_2 \overline{Y} \frac{(\overline{e}_{x1} - \overline{e}_x^*)}{\alpha \overline{X}} + k_2 \overline{Y} \frac{(\overline{e}_{z1} - \overline{e}_z^*)}{\beta_2 \overline{Z}},$$

Also,

$$\begin{split} E\left(T_{n(2)}-\bar{Y}\right)^{2} &\approx k_{2}^{2}E\left(\bar{e}_{y}^{*}\right)^{2} + (k_{2}-1)^{2}\bar{Y}^{2} + (k_{2}\bar{Y})^{2}\frac{E(\bar{e}_{x1}-\bar{e}_{x}^{*})^{2}}{(\alpha_{2}\bar{X})^{2}} + (k_{2}\bar{Y})^{2}\frac{E(\bar{e}_{z1}-\bar{e}_{z}^{*})^{2}}{(\beta_{2}\bar{Z})^{2}} + 2k_{2}^{2}\bar{Y}\frac{E\bar{e}_{y}^{*}(\bar{e}_{x1}-\bar{e}_{x}^{*})}{\alpha_{2}\bar{X}} \\ &+ 2k_{2}^{2}\bar{Y}\frac{E\bar{e}_{y}^{*}(\bar{e}_{z1}-\bar{e}_{z}^{*})}{\beta_{2}\bar{Z}} + 2\frac{k_{2}^{2}\bar{Y}^{2}}{\alpha_{2}\beta_{2}\bar{X}\bar{Z}}E(\bar{e}_{x1}-\bar{e}_{x}^{*})(\bar{e}_{z1}-\bar{e}_{z}^{*}). \end{split}$$