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SUMMARY: In this paper, a comparison between two different machine tool columns is presented. The two
columns are realized with a different technology: classic metalworking versus metal foam sandwiches. The aim of
the experimental tests is at evaluating their different mechanical performances and characteristics, with a particular
focus on the damping. The comparison is carried in terms of both modal analysis and wide frequency range
excitation, as described in the paper. A new method is introduced by the authors to deem which technology is the
best, based on overall energy dissipated in a wide range of frequency.
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1. INTRODUCTION

It is a common practice, for machine tool manufacturers, to realize structures the most rigid as possible, in order
to perform extremely precise tool spindle positioning. If milling machines are considered, due to the variety of
milling programs and to the high amount of cutting tool types, the machine tool will be easily forced by a broad
frequency spectrum excitation, quite impossible to be forecasted during the design phase. In this case, a near-
resonance working condition could easily appear and the structure stiffness is no more enough to guarantee good
quality of the machining. In worst cases, instabilities might also appear, causing the so-called “chatter”
phenomenon [1].

It is well known, for mechanical engineers, that the damping is a key parameter, which quantifies the energy
dissipation in a mechanical system. It is trivial that the best design solution is resorting to extremely rigid
structures, which benefit also of high damped characteristics. Nowadays, this purpose could be achieved by
employing components made of metal foam sandwiches, but it is quite rare to find some experimental tests, at
least on a complete structure, like a column of a milling machine, which demonstrate the effectiveness of these
solutions with respect to the classical ones. Some results are described in [2] for the column of a microfactory
machine, but the discussion of the results, in terms of damping, is not really detailed.

Owing to the unevenness of foamed parts, the problem of defining mechanical properties of the metallic foams
has risen since their introduction, as clearly stated in handbooks, like [3]. A resonance apparatus is proposed in [4]
and the difficulties, originating from random spatial density variations or anisotropy, are discussed in [5] and more
detail in [6], where a procedure to overcome them is also proposed and tested. Loss factors »° are listed for
different commercial metal foams in [3]. Specific tests on mechanical behavior of metal foam sandwiches, as
stand-alone components, are described in the literature; in particular, energy absorption and failure mechanism are
analyzed in [7], while damping in [8].

In this paper, the authors present a comparative study about the dynamic behavior of the columns of a milling
machine with table of fixed height and vertical spindle, one made according to traditional techniques, namely in
metallic carpentry, and the other realized by means of panels of metal foam sandwiches, shaped and welded
together. With the reference to the results presented in [2], the authors introduce a new method aimed at comparing
the performances obtained between the two manufacturing solutions, in terms of dynamic behavior.
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The problem is not trivial, because, as it will be illustrated in detail, despite the geometry of the column is not very
different, the vibration modes and their damping are very different and, especially, several modes are excited in
the range of operation of the milling machine. Therefore, a simple approach based on the comparison of the
damping ratios (which are corresponding to modes at frequencies very different from each other, as it resulted also
in [2]) does not give a definite answer.

To the best of authors’ knowledge, it is the first time that both this kind of analysis, and the comparison method,
are proposed in the literature. They allowed establishing that the column made of foam sandwich has generally
superior performance in terms of vibration damping. This is a remarkable piece of information for the technology
of machine tool manufacturing.

2. COLUMN DESCRIPTION AND SETUP OF EXPERIMENTAL TESTS

The two structures considered in the paper are the main columns of the milling machine, which support the vertical
milling spindle. They are made by using two different technologies: the first one (hereafter “column A, which is
painted white in Figure 1) has a traditional “box” design and is manufactured by using classical metal carpentry,
with welded steel plates of thickness up to 30 mm. The second column is a prototype (hereafter “column B”, bare
metal in Figure 1) and is made of tiny sandwich panels filled with metal (Al based) foam, which resulted in a
lighter structure. The macro-geometry is considered very similar, so that the columns are interchangeable.

Column A Column B

Figure 1 — Columns of a milling machine with table of fixed height and vertical spindle: conventional metal carpentry (left),
panels of sandwich filled with metal foam (right). Note the position of the accelerometer on the column surfaces.

Column A has a mass of 958 kg, while that of column B is 805 kg, namely about 16% less.

A preliminary analysis was performed using FEM, but the results were not deemed reliable due to several
uncertainties in the modelling. They were related to the constraints between the columns and the slideways and to
the effects of the welding on the borders of the plates, especially in the case of metal foam sandwiches, in which
the heating causes an unavoidable modification of the cell distribution and the adhesion of the metallic foam to
the plates. Therefore, an experimental campaign was setup.

2.1. Test setup

The experimental tests have been performed by following the same procedure for both the columns and aimed at
evaluating the main dynamic differences between them, in order to assess the advantages of installing columns of
type B in mass production machines.

The columns were fixed on a very massive suspended foundation by means of four special machined supports,
with realized a very stiff connection. The stiffness of the connection was checked by installing one accelerometer
on each support and another one close to it on the column side and by comparing the results of the measured
impulse response function during bump tests. Once the stiff connection has been verified, both columns have been



instrumented with 16 piezoelectric accelerometers (see Figure 1), 4 accelerometers for each lateral surface. Despite
the columns were structurally different, the accelerometers have been installed in homologous positions, since the
external geometry is quite similar.

The columns were excited by means of an impact hammer and several excitation points were considered (up to 7
positions) in order to avoid nodes of vibrating surface modes. In addition, in order to evaluate possible non-
linearities of column responses (especially for column B), several impulsive tests with different input force
amplitudes were carried on. Tests were performed resorting to a pendulum with the impulsive hammer installed.
No particular differences appeared in the impulse frequency response functions (FRFs), considering four different
amplitudes of force. Thus, both columns shown linear behavior. This fact is a first remarkable result of the test
campaign.

2.1.1. Sensors and data acquisition
The system response to the input force has been measured by means of the following devices:
e 16 PCB Piezotronics 333B30 piezoelectric accelerometers (+50g pk) conditioned with a PCB
Piezotronics 483C50 conditioning unit;
e 5 National Instruments N19239 boards (4 channels each, 24 Bit, 10 V, da 50 kS/s, antialiasing filtered)
installed on a National Instrument cDAQ 9172 (8 slots).
The impulsive excitation was provided by using a PCB Piezotronics 086D05 dynamometric hammer, equipped
with metal tip. The accelerometer positions on the column surfaces are shown in Figure 2, with a red dot (e), for
the n,, =16 accelerometers. The hammer impact points m, are also shown in Figure 2, with a blue cross (x).
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Figure 2 — Position of the accelerometers (o) and of the hammer impact points (x) on the columns.

Each time history has been acquired for 5 s at the sampling frequency of 12500 Hz, then windowed around the
decay. In order to reduce the uncorrelated measurement noise, each test was repeated n, =15 times. The impulse
FRFs have been calculated according to the H, estimator:

G, (f)

Hi(F) =3 )

(1)

where G,, and G,, represent the cross and auto spectra respectively, referred to the input signal X (f) and of the
outputs Y (f) spectra. The cross and auto spectra are defined as:

G, ()= XX (DN(F); B,(H) =YX (X,(F) @
p i=1 p i=1

where the star (*) indicates the complex conjugate. Figure 3 shows the magnitude of the calculated FRFs in
accelerometer positions #2 and #9, for both kinds of columns.
In addition, the coherence functions were calculated as:
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Figure 3 — Magnitude of FRF and coherence functions for the two columns: accelerometer #2 - impact in mx (left) and
accelerometer #9 - impact in ms (right).

where G, is immediately obtained from eq. (2) by replacing X"(f) with Y"(f). Coherence values over 0.9 are
commonly considered acceptable. Figure 3 shows the calculated coherences for sensor positions #2 and #9.

2.2. Signal processing
The modal identification of the mechanical parameters of the columns has been made by using the experimental
FRFs of eq. (1). The procedure has been divided in two steps.

1) the first one used the LSCE (Least Squares Complex Exponentials, see [9]) algorithm. In this way, for
each frequency range selected, each pole stability was evaluated at the increasing of the order of the
system.

2) In the second step, a numerical optimization of the analytical FRF was carried out with respect to the
experimental one. An analytical FRF is essentially defined as a limited sum of single degree of freedom
systems of second order, with upper and lower residual terms too:
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Actually, the modal identification relies on a multi-channel and multi-modal procedure, which allows performing
a simultaneous analysis of all the measurement channels for a quite wide frequency range.

Finally, modal frequencies, modal masses and modal damping values are obtained. In order to compare the
different identified modes between column A and B, MAC (Modal Assurance Criterion, see [10]) indexes were
calculated as:

2

> 606,
MAC(4,,, 4.,) =+ = (5)

Neh

PACRICR DA OBACN!
i=1 1

where ¢, represents the ¢ —th modal shape of column A previously identified, compared with the ¢ —th modal
shape ¢ of column B. Also AutoMAC indexes were calculated, in order to compare the modes of the same
column, by simply replacing index A with B, or vice versa, in eq. (5).

3. RESULTS

As expected, the two columns show quite different dynamic behavior, due to the different manufacturing method,
and only few modes can be directly compared.



The identified modes are reported for both columns in Table 1. As a rule of thumb, the modes of the lighter column
B have higher natural frequencies.

Table 1a — Column A: natural frequencies and damping ratios. Table 1b — Column B: natural frequencies and damping ratios.

Mode  Frequencyf [Hz] ~ Damping ratio & [%] Mode Frequency f[Hz] ~ Damping ratio & [%]
1 84.0 0.4089 1 101.0 0.3410
2 89.5 0.3104 2 112.0 0.2714
3 14855 0.0779 3 20875 0.0675
4 208.5 0.0484 4 3810 01642
. o .
7 3465 0.2061 6 4760 0.0784
8 355.5 0.1005 ! 5185 0.0385
9 3435 0.0810 8 608.0 0.0949
10 4245 0.0319 9 619.0 0.0296
11 469.0 0.0938 10 698.0 0.0201
12 508.5 0.0288 11 735.0 0.0265
13 530.5 0.0363 12 756.5 0.0279
14 569.0 0.0299 13 802.5 0.0466

14 934.0 0.0594
15 974.0 0.1283
16 10455 0.0590

The AutoMAC indexes are not displayed for the sake of brevity. While the diagonal terms are obviously equal to
one, the off-diagonal terms are much smaller than one, thus indicating that enough sensors have been used to
determine the modes and that they are well distinguished. The MAC values between the modes of columns A and
B are shown in Figure 4.

By considering only the mode pairs which show high MAC values (above 0.7 in Figure 4), which are the only ones
for which any comparison might have sense, a first possible result is reported in Table 2. For the considered mode
pairs, frequencies exhibit a sensible increase, up to 25%, in case of the structure made of metal foam sandwiches.
However, the product 2z f - &£, which is the actual system damping for the given frequency f, does not show any
clear trend. In authors’ opinion, the analysis focused on the damping, which can consider to four modes only and
neglects several others, is not adequate for a manufacturer who wants a reliable criterion for choosing the suitable
technology for the machine column.

3.1 Authors’ proposed method

For these reasons, the authors are now introducing a criterion, which should be able to perform a wide frequency
range analysis and a reliable comparison. By supposing that the quality of the milling depends only on the
vibrations in terms of displacements (which is rather likely), the idea is to compute the RMS of the displacements,
supposing an unitary exciting force for the whole spectra (i.e. F(f)=F =1[N]) of excitation. According to
Parseval’s theorem, it follows that:

RMS, = /%ixi(t)z = /i% where X (f)=FFT(x(t)) (6)

where X, (f) is the i-th element of X, (f) which has been computed according to the fast Fourier transform
(FFT) algorithm. Then, considering the same spectrum defined only for positive frequencies, it follows that:
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where X, (f) is the the i-th elements of X (f) which is the one-sided Fourier transform S’() of the original
signal x(t) . By supposing an exciting force F(f)equal to 1 N for each frequency, introduced in a mechanical
system described by the experimental FRF G(f) expressed in term of receptance, then X (f)=G(f)-F(f).
Considering the positive frequencies, the root mean square RMSgis, Of the displacement can be calculated as:

2 \/n_’%
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Table 2 — Comparison between modes with high MAC.
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Frequency [Hz] 2nf- &
ColumnA  ColumnB Ay [%] | ColumnA ColumnB Ay, [%]
¢, 84.0 101.0 20.2 216 216 0
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Figure 4 — MAC values for column A and B modes.

Then, a wide band analysis is carried out, by supposing four different tool-working ranges (corresponding to
spindle rotational speeds) and two different milling conditions: roughing and finishing (see Table 3). In addition,
different number of cutters are considered mounted on the tool (from 2 up to 8). The FRFs in correspondence of
the n, points of the columns has been calculated as described, after being integrated in the frequency domain, in
order to obtain the receptance values; naturally, the RMS value has been computed inside each frequency band
defined as Af, = f, — f, . The number of cutters obviously influences the final limits band definition (each band
limits of Table 3 are multiplied for the number of cutters).

The results are reported in Table 4. For each band and for each number of cutters, the RMS values of the modally
estimated displacements are reported in terms of percentage difference between column B and A.

For easy interpretation, color-coding is used in Table 4. Positive values are highlighted in yellow, meanwhile
negative ones (which mean vibration reduction for column B) in green.

It is rather easy to see that the lower levels of RMS vibrations are obtained by column B in the majority of the
frequency bands, for both roughing and finishing. Therefore, the use of the column made of panels of sandwich
metal foam in mass production machines will guarantee, in general, better quality of milled surfaces.



Table 3 — Milling band definition

Spindle rotational speed range [rpm]

Lower limit ( f,)

Higher limit ( f,)

Band #1 800 (13.3 Hz) 1100 (18.3 Hz)

Roughing Band #2 1100 (18.3 Hz) 1400 (23.3 Hz)
milling condition Band #3 1400 (23.3 Hz) 1700 (28.3 Hz)
Band #4 1700 (28.3 Hz) 2000 (33.3 Hz)

Band #1 2000 (33.3 Hz) 4500 (75.5 Hz)

Finishing Band #2 4500 (75.5 Hz) 7000 (116.7 Hz)
milling condition Band #3 7000 (116.7 Hz) 9500 (158.3 Hz)
Band #4 9500 (158.3 Hz) 12000 (2000 Hz)

4. CONCLUSIONS

An accurate analysis of the performance in milling operations, using the machine column made of panels of metal
foam sandwiches compared to the traditional manufacturing in carpentry (currently used in mass production), is
presented in this paper. The comparison is made by means of a modal characterization of the two columns and the
identification of an analytical model. A first interesting result is the linearity of the response of the column made
of metal foam sandwiches, which not obvious a priori.

Since the two columns are comparable only for the geometric dimensions (they are interchangeable on the
machine), but differ in terms of construction, a comparison based simply on modal damping does not have much
meaning. The modal analysis has shown that few modes are directly comparable, but they have very different
frequencies, so that the comparison of the damping is not significant and does not provide any clear conclusion.
The method proposed by the authors is based, instead, on the calculation of the vibration response of the models
of the two columns in the frequency range of machine operation and on the calculation of the RMS value of the
overall vibration, deemed as the influential parameter on the machined part finishing. By means of this method, it
was possible to demonstrate that the column made of metal foam sandwiches has generally less vibration under
the same wide-frequency excitation. Thus, it can ensure best finishing, once installed in the machine tool
considered.
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COLUMN A vs COLUMN B - ROUGH MILLING (800-2000 rpm)
RMS percentage difference of B wirh respect to A [%]

2 cutters I I 3 cutters I I 4 cutters I 5 cutters I I 6 cutters I I 7 cutters I I 8 cutters
Band 1 2 3 a [ [ 1 2 3 s [ [ 1 2 3 4 [ 1 2 3 a [ [ 1 2 3 a [ [ 1 2 3 a [ [ 1 2 3 4
Ch. #1 2003 | 27,32 | 11,8 | -361 2291 | -627 | -7548 | -69,20 10,98 | -82,44 | 16856 | 679,42 -80,02 | 7501 | 33691 | -49,90 -45,10 | 83522 | -4517 | -10,55 14647 | -12,50 | -6,68 | -63,66 688,28 | 51,33 | -60,00 | -66,64
ch.#2 218,54 | 193,81 | 8574 | 1381 13354 | 1504 | -7560 | -78,18 12,34 | -8549 | 12579 | 668,48 -82,11 | 5533 | 362,85 | -31,98 54,89 | 799,83 | -2520 | 3602 11831 | 1575 | 38,49 | -57,30 663,68 | -33,99 | -50,40 | -78,44
ch.#3 3475 | 5001 | 14 | -1648 30,03 | 2055 | -7842 | -74,46 2464 | -8554 | 126,08 | 520,32 82,75 | 5491 | 25546 | -44,80 51,59 | 631,87 | -39,89 | -9,80 114,12 | -11,78 | -10,14 | -46,9 536,71 | -44,76 | -37,49 | -84,85
Ch. #4 2164 | 565 | 1566 | -22,85 11,33 | -1568 | -7512 | -7446 12,84 | -84,81 | 14098 | 633,40 80,96 | 59,08 | 30470 | -47,75 50,98 | 78570 | -42,52 | -2,39 12333 | 12,75 | 138 | -3447 657,31 | -48,48 | -30,28 | -66,09
Ch.#5 92,84 | 13564 | 72,81 | 911 10501 | 656 | 7831 | -2513 015 | -7547 | 386,71 | 28871 7510 | 217,42 | 16968 | 2822 033 | 367,84 | 3613 | 5834 302,48 | 61,09 | 6685 | -93,22 383,89 | 3704 | -91,33 | -53,67
Ch. #6 13863 | 8484 | 4986 | -1018 6039 | -7,29 | 79,93 | -3574 10,19 | -77,94 | 282,32 | 239,07 77,41 | 15459 | 130,71 | -32,20 11,86 | 28647 | -2610 | -4,70 21984 | 424 | -391 | -91,13 291,20 | 2511 | -90,16 | -87,67
Ch. #7 1468 | 3643 | 3362 | 13,21 4450 | 1352 | -77,47 | -3651 474 | 77,00 | 328,83 | 289,04 74,33 | 173,46 | 152,48 | -2,99 12,08 | 34169 | 120 | -530 254,84 | 3036 | -201 | -7693 34573 | 315 | -74,98 | -81,95
Ch. #8 60,6 | 107,01 | 121,75 | 34,12 117,60 | 34,06 | 7551 | -3447 2858 | -7563 | 29592 | 134,39 72,72 | 16942 | 6362 | -19.82 16,04 | 172,11 | -1475 | 716 227,23 | 2,80 6,28 5,16 19362 | -1445 | 2004 | -60,56
Ch. #9 810 | 3064 | -24,08 | -37,85 2,26 | 36,73 | -81,97 | -29,03 40,00 | -78,23 | 356,84 | 278,10 790 | 20362 | 15731 | 935 -1,48 | 34627 | 1517 | 3644 282,72 | 4087 | 2812 | -8563 36571 | 741 | -83,19 | -36,83
Ch. #10 1863 | 654 | -2650 | -23,62 971 | -2492 | -80,74 | -34,9 2804 | -7815 | 300,74 | 189,72 77,86 | 173,80 | 97,16 | -19,68 -10,30 | 246,07 | -1585 | -42,57 23883 | 1001 | -37,24 | -8887 26575 | -27,73 | -87,15 | -90,00
Ch. #11 2683 | 2662 | -864 | -36,68 11,03 | -33,94 | -80,70 | -3372 32,29 | -77,49 | 306,15 | 169,28 77,09 | 171,18 | 84,38 | -16,82 12,10 | 213,90 | -13,89 | -1451 240,05 | 362 | -1882 | -81,32 242,77 | 2292 | -7840 | -8828
Ch. #12 10387 | 6914 | 1830 | 538 4434 | 2,06 | -7964 | -32,99 834 | -77,40 | 300,67 | 16559 7672 | 163,75 | 90,63 | 403 7,68 | 21333 | 662 | -311 22941 | 3074 | -440 | 12,04 249,66 | -655 | 13,25 | -5818
Ch. #13 133 | 346 | -952 | -2811 1,14 | 31,77 | -8490 | -8334 3505 | -90,30 | 49,02 | 172,89 88,86 | 402 | 17,44 | -9333 67,14 | 213,19 | -92,67 | -21,45 40,83 | -8857 | -29,95 | -93,95 14512 | 9311 | -93,04 | -82,88
Ch. #14 532 | 283 | -3661 | -4842 1813 | -52,70 | -8598 | -82,08 5464 | -90,20 | 49,21 | 172,81 89,43 | 422 | 1973 | 9213 6504 | 21664 | -91,32 | -26,08 40,27 | -86,89 | -2626 | -9595 15568 | -91,91 | -9547 | -87,27
Ch. #15 61,24 | 71,32 | -71,70 | -64,49 69,78 | -6585 | -83,99 | -79,56 6434 | -89,26 | 87,80 | 174,29 -87,66 | 2498 | 17,96 | -92,14 61,12 | 22449 | -91,43 | -3837 71,59 | -87,06 | -41,44 | -96,18 12049 | -91,33 | -9577 | -83,63
Ch. #16 25,74 | 5854 | 4463 | -13,79 51,85 | -1061 | -7570 | -82,36 862 | -87,71 | 4660 | 170,70 8428 | 451 | 2385 | 91,47 6535 | 211,33 | -90,69 | -43,63 40,58 | -8595 | -41,04 | -94,00 12893 | -00,92 | -9323 | -8495
CFRTOT 3401 | 61,19 | -6935 | 77,24 | | -6511 | 77,36 | -94,46 | -8856 | | -7817 | 9513 | 2334 | 801 | | -o474 | 4979 | 4376 | -93901 | [ -81,29 [ 2679 | 9334 | 7634 | [ 3371 [ -0021 [ 7630 | 97,19 [ [ 733 [ 9371 [ 96,77 | -9497
COLUMN A vs COLUMN B - FINISHING MILLING (2000-12000 rpm)
RMS percentage difference of B wirh respect to A [%]
2 cutters I I 3 cutters I I 4 cutters I 5 cutters I I 6 cutters I I 7 cutters I I 8 cutters
Band 1 2 3 s [ ] 1 2 3 s [ [ 1 2 3 4 [ 1 2 3 s [ ] 1 2 3 s [ [ 1 2 3 s [ 1T 1 2 3 4
Ch. #1 9,08 | -57,97 | 151,16 | -32,06 289,14 | 10855 | -1040 | -4,26 5885 | -17,56 | 53,33 | -3534 57,75 | 3392 | 3528 | 148 6329 | 3458 | -13,80 | 38,16 72,76 | 2472 | 7,07 | 40,03 11558 | 3038 | 3854 | 1472
Ch. #2 10,75 | -47,38 | 72,90 | 665 25356 | 6322 | 27,86 | -43,18 3239 | 2594 | -1,73 | -3834 3739 | -495 | 2638 | 1835 42,8 | 7,00 | 228 | 2050 4429 | -545 | 1828 | 47,98 90,9 | 3431 | 3072 | 4348
Cch.#3 1523 | -a666 | 4011 | -13,89 237,24 | 2617 | 6624 | 14,18 2358 | 4533 | 14,01 | -2167 1950 | 32,06 | -12,47 | 29,41 3725 | 818 951 | -2533 57,61 | 5506 | -23,61 | 39,28 53,14 | -1435 | 12,77 | 22,77
Ch.#4 12,57 | -4512 | 112,04 | -1453 282,00 | 52,28 | 5206 | 416 57,23 | 3480 | 661 | -844 3965 | 2529 | 12,93 | -1546 6872 | 343 300 | -34,22 7964 | -4041 | -27,50 | 40,80 3950 | 1,89 | -11,46 | 40,69
Ch. #5 258 | 77,63 | 38 | -69,89 266,25 | -33,09 | -3800 | -39,95 5815 | 39,21 | 27,52 | -52,71 7404 | 1643 | 87,72 | -42,95 54,76 | 19,30 | -50,00 | -10,54 3463 | 2014 | -33,20 | 108,23 4028 | 59,07 | 551 | 2385
Ch. #6 853 | -8348 | -11,76 | -89,20 15519 | 22,07 | 77,69 | -73,65 39,48 | 74,39 | -72,91 | -7580 60,58 | -69,65 | -62,16 | -6581 59,22 | 72,87 | -6673 | -67,66 55,85 | -79,90 | -66,03 | -7428 58,13 | -61,43 | -6923 | -7576
Ch. #7 678 | 59,76 | 50,79 | -62,60 266,90 | 43,16 | -37,83 | -13,18 27,75 | -31,51 | 22,79 | -21,34 542 | 016 | 7919 | -1085 008 | 1777 | 1,93 | 4303 1,06 | -381 | 7,23 | 2467 238 | 6308 | 5360 | 2384
Ch. #8 12,00 | 059 | 8458 | -3408 313,86 | 29,98 | 19,13 | -60,23 6829 | 065 | -5637 | 89,46 1,10 | -3365 | 1585 | 7,53 2437 | -4895 | 34,08 | 4367 826 | -41,07 | 27,11 | 11,15 1959 | 1410 | 4378 | 7,17
Ch. #9 2,05 | -69,12 | -27,27 | -60,32 259,71 | -4411 | -27,18 | -36,88 52,81 | -29,26 | 20,43 | -50,56 7213 | 1,11 | 87,41 | 52,21 4863 | 1328 | -4964 | -9,01 27,56 | 17,25 | -42,19 | 222,89 34,42 | 5925 | 1976 | 49
Ch. #10 7,47 | 7680 | -1849 | -87,02 19531 | -27,18 | -80,88 | -79,99 37,09 | -7689 | -80,33 | -72,34 63,50 | -72,76 | -67,48 | -57,09 6211 | -7871 | -61,46 | -71,39 62,02 | -81,05 | -59,49 | -76,44 63,60 | -60,71 | -72,67 | -5846
Ch. #11 10,43 | -6591 | 2993 | -58,60 239,84 | 1801 | -37,18 | -19,57 12,07 | 3417 | 7,69 | -3419 11,66 | -1,40 | 4890 | -10,85 687 | 214 | 11,91 | 886 083 | -1594 | 337 | 27,02 1909 | 3714 | 2825 | 1614
Ch. #12 573 | 1,73 | 11527 | -24,14 368,08 | 558 | 51,85 | -34,19 92,71 | 2598 | -3081 | 8285 37,47 | 899 | 3340 | 4602 61,08 | 27,05 | 9544 | 37,45 4620 | -2503 | 4810 | 649 1536 | 4403 | 3653 | -821
Ch. #13 460 | -92,95 | 2621 | -89,8 2882 | -3473 | -8891 | -7848 76,28 | -87,21 | -69,86 | -80,43 63,09 | -8672 | -60,03 | -67,39 70,79 | -7587 | -68,06 | -66,31 70,55 | -67,03 | -69,35 | -40,69 71,12 | -61,51 | -53,99 | 1022
Ch. #14 43,02 | -94,04 | -10,17 | -91,07 -38,80 | -37,76 | -87,79 | -7816 78,59 | -86,20 | -69,42 | -81,26 71,30 | -8518 | -63,19 | -62,28 7471 | -7558 | -6547 | -74,39 67,81 | -68,88 | -70,06 | -38,69 6811 | -61,23 | -59,82 | -31,19
Ch. #15 -3842 | -94,09 | -3585 | -6538 -42,65 | -59,94 | -59,67 | -34,56 77,98 | -64,27 | -1435 | -1546 7568 | -4512 | 19,56 | -24,50 6538 | -2429 | 915 | 2602 49,42 | -511 | -17,67 | 2810 49,56 | 14,09 | 2800 | 5642
Ch. #16 41,04 | -o162 | -2606 | -7529 2633 | -53,55 | -6697 | -19,56 67,88 | -6830 | -2883 | -29,83 70,07 | -459 | -1516 | -1445 60,25 | -42,26 | -157 | 1433 52,59 | -28,78 | -12,32 | 3506 53,04 | -1743 | 3352 | -1,80
CFRTOT 17,29 | -9560 | -67,93 | 92,02 | | -5240 | 7623 | -89,23 | -8543 | [ -8577 | 89,12 | -81,24 | -81,96 | | -8626 | -86,00 | -7253 | -82,07 | [ -8552 | -82,92 | -78,89 | 7727 [ [ -8323 | -81,79 | 81,15 [ -6768 [ | -8364 | -74,29 | -7500 [ -73,60

Table 4 — Comparison of the RMS values of the modally estimated displacements.




