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Abstract 

If Customized Product Development is perceived as developing products that fulfill the customers individual requirements and in parallel 
reflect production constraints, such as manufacturing capabilities, a direct demand can be derived for solutions to adapt a given design easy and 
fast to new requirements based upon the companies production knowledge - at best in an automated way. The latter is usually covered by 
Knowledge Based Engineering systems. KBE systems are capable to automate repetitive engineering tasks, such as the automated calculation 
of ship structural design.  
However, while the efficiency of implemented KBE projects is non controversial, the development or modification of an existing KBE solution 
usually requires substantial investments due to knowledge acquisition, codification and software implementation. In addition most solutions are 
still case based and not grounded in structural frameworks. Knowledge is often written in a proprietary language; rules and algorithms are not 
compatible with other KBE-frameworks and are usually not on a level that is comprehensible for the engineers or domain experts. While this 
may not be crucial for long development cycles, it may become a hurdle in terms of Customized Product Development with its short cycles. In 
other words, future KBE must support an incorporation of knowledge from different domains and business units. Thus the objective of the 
paper is to explain the need for a change in collaborative knowledge sharing and re-use in context of KBE. Based upon, the constraints for a 
KBE related interchange format are drafted.  
A three layered approach is proposed in order to adequately represent and exchange KBE knowledge. Each layer addresses different levels of 
abstraction: an upper layer describing just the core knowledge at a glance, a middle layer in order to codify the knowledge on abstract level, but 
with purpose of software development and a base layer covering the software code itself.  
Utilizing an independent format for management of KBE knowledge, the users of CAx systems are able to exchange codified knowledge and 
gain the rationale behind. Hence the full paper attempts to deliver a substantial contribution for the development of systems, which are capable 
to easily adapt a given design to upcoming user-requirements, while facing the production challenges.  
© 2014 The Authors. Published by Elsevier B.V. 
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the Conference Chairs Giovanni Moroni and Tullio Tolio. 
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1. Introduction 

In order to gain a competitive advantage companies intend 
to provide mass products, which are at most customized to 
user needs. This directly impacts the company’s product 
development; so called Customized Product Development 
aims at developing products that fulfil the customers 
individual requirements and in parallel reflect production 
constraints, such as manufacturing capabilities [1]. The large 
solution space, which is implied in customisation, is 

challenging companies as well as customers. It is often 
difficult for production companies to clearly communicate 
their capabilities in sufficient details without confusing 
customers and in parallel it is often difficult for customers to 
clearly articulate user-requirements without assessing a given 
design [2].  

Facing this challenge a need for a solutions to adapt a 
given design easy and fast to acquired requirements based 
upon the companies production knowledge - at best in an 
automated way can be identified. The latter is usually one of 
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the technical domains covered by Knowledge Based 
Engineering systems.  

Within a KBE system, design knowledge is represented in 
a formal manner and enables the system to automate specific 
design tasks mostly unique to the company’s product 
development experience. This way KBE systems are capable 
to automate repetitive engineering tasks, such as the 
automated calculation of ship structural design [3]. 

In this context the meaning of “automate” even covers 
analysis tasks in terms of validation or quality checking, such 
as compliance to required safety parameters, or international 
and national standards. 

In this sense, KBE can be seen as the process of gathering, 
managing, and using engineering knowledge to automate the 
design process (e.g. to deliver product variants) by software 
support [4]. 

Next to time savings a KBE solution can enable a broader 
variety of detailed design studies of a given master-concept by 
usage of a rule-based approach for an automated detailing and 
examination of design variants and in consequence 
extensively support the optimization of a given (mechanical) 
design against defined constraints and requirements (this incl. 
of course user requirements). KBE as an enabler for easy and 
fast examination of design variants can be seen as an enabler 
for Customized Product Development, because it enables 
differentiation in product variety, i.e. customization [5]. For 
this reason, the most fitting type of companies, where a KBE 
implementation enables its most profitable usage, is the 
Engineering To Order one. 

In conjunction with virtual or rapid prototyping those 
design alternatives will enable a fast and easy assessment of 
mass producibility and customer acceptance (e.g. [6]) and this 
way provide controls to adequately integrate customers 
feedback into product development. As a result of that, a KBE 
solution is able to anticipate the engineering operations at the 
time of the order and in parallel it produces more accurate 
proposals. 

2. Scope and Research foundation 

By nearly all KBE implementations, a notable time 
reduction from several days to a few hours for the respective 
design tasks had been achieved, while in parallel a constant 
quality due to the repeatability can be ensured (e.g. [7], [8]). 

However, while the efficiency of implemented KBE 
projects is non controversial, the development or modification 
of an existing KBE solution is often complex and time 
consuming. A structured development of a KBE solution 
means usually passing through different phases: starting from 
knowledge acquisition phase, over a knowledge formalization 
phase up to a knowledge representation phase [9].  

In past, several projects dealt with the above mentioned 
structured development of KBE, such as MOKA [10], 
KOMPRESSA [11] or DEKLARE [12]. 

Even though the inherent approaches had been validated by 
successfully implemented KBE reference projects, they found 
no broad acceptance in Industry (section 2.1). Thus findings 
as well as current shortcomings of those projects had been one 
starting point for approaching a Rule Interchange Format 

(RIF) to become a standardized knowledge representation to 
be used by different KBE systems in order to make the reuse 
and sharing of companies’ knowledge easier. 

2.1. Identification of a need for a framework-independent 
management of knowledge 

Even though KBE usually requires substantial investments 
and different sorts of expertise, many product developers 
seem to improvise a KBE project based upon an unstructured 
problem analysis [13]. In addition most solutions are still 
suited to a single case and neither grounded in the workflow 
organisation nor based on structural frameworks [14]. 

 Knowledge is often written in a proprietary language; 
rules and algorithms are not compatible with other KBE-
frameworks and are usually not on a level that is 
comprehensible for the engineers or domain experts. More, 
the products databases are often built for specific solutions 
and not for general usage. 

Leading CAD applications provide add-on modules (e.g. 
([15]) for KBE related features. In such modules the KBE 
intelligence (e.g. a design rule) directly remains inside a 
CAD-model and is directly stored within the CAD file. Based 
on a parameterized CAD model, they provide functions like 
formulas (to create dependencies between parameters), rules 
and user defined features, allowing to partly reuse a design 
procedure ([15]). Even if it would be possible to break up this 
encapsulation, which is given by the proprietary structure of 
such files, an utilisation of the already implemented design 
knowledge by other applications would fail, due to a lack of 
standardization of items, such as Namespaces, Relations or 
Operators & Rules. 

In addition, Verhagen, et al. criticize that many KBE-
solutions store and represent codified knowledge decoupled 
from its original context [16]. An adequate documentation is 
missing and formulas or equations remain unexplained [17], 
even though knowledge formalization is fundamental not only 
in order to provide the documentation to application 
developers, but also to document in detail all aspects of the 
automated design process for the user. The cause is often 
grounded in an unstructured knowledge acquisition process. 
Without a documentation of the problem in terms of 
objectives, constraints etc. the traceability of the design 
process of the implemented solution becomes impossible. 
Along with the insufficiency of a structured knowledge 
codification, a lack of knowledge reuse has been identified. 
Herewith formalisation of knowledge is getting more 
important, because it promotes further usage and sharing. The 
acquisition and formalization activities enable a transfer of the 
ownership of the technical knowledge from the individual 
experts to the organization. Due to missing knowledge - e.g. 
neglected alternatives for a desired solution – KBE solutions 
are too often limited to their origin context and thus the reuse 
of knowledge will be hindered or impossible [13]. 

While this may not be crucial for long development cycles, 
it may become a hurdle in terms of Customized Product 
Development with its twofold objectives: a maximum of 
customisation and in parallel real efficiency in production. In 
other words, future KBE must support an easy incorporation 
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of knowledge from different domains and business units in 
order to allow product development teams more flexibility. 
This is of course not possible, if the KBE intelligence directly 
remains inside encapsulated models or proprietary languages. 

2.2. State of practice in context of knowledge codification – 
Industrial approaches 

At present, KBE solutions can be found on many levels 
and in different industries. From simple templates in CAD 
software to extensive stand-alone software solutions with 
integration towards other CAx systems, there are many 
successful projects in terms of implementing codified 
knowledge on product design. 

In order to identify the current state of practice in more 
detail a comparative analysis has been conducted based upon 
a common use case scenario. The scenario describes the 
development of a KBE solution to automate the design a 
bookshelf (e.g. no. of shelves as a function of the length). For 
this scenario a KBE solution has been developed several times 
by usage of four different frameworks: two KBE enhanced 
CAD systems (CATIA V5 and NX8), one O-O programming 
language framework (AML, with an embedded CAD engine) 
and in addition Rulestream, which can be seen as a mixed 
approach of object-orientation with a separated design process 
manager. The result of the developments in all examined 
frameworks is an automated design. In each solution the 
geometrical model is calculated as an output, according to a 
modification of a small set of input parameters (e.g. the 
overall length of the bookshelf).  

Further the four implementations of the bookshelf example 
discovered a number of similarities like Input-Slots, 
Computed-Slots etc. between the used frameworks.  

Fig. 1. Communalities in KBE expressions 

Differently from a CAD based KBE application, in AML 
(which relies in its roots on LISP and considered as a pure O-
O language) the product hierarchy is represented by defining 
elements such as classes, superclasses, objects and 
relationships of inheritance, aggregation and association, by 
usage of a specific operator [18]. With respect to the two 
CAD based KBE implementations there is no hierarchy in 
terms of classes and superclasses at first sight. But a “product 
tree” or a “product structure”, which are essential parts of 
contemporary CAD application, provide a substitute to such a 

rigorous object oriented paradigm. KBE forms, rules etc. 
always refer to elements of the CAD trees and in this way the 
underlying hierarchy is used for KBE. Similarly for what 
concerns the product representation, Rulestream adopts the 
object oriented approach, even if there is a difference in 
geometry management. In particular, AML is geometry 
generative, in the sense that the geometry is created at runtime 
using pure code and on the contrary, in Rulestream the 
geometry creation is handled by an external CAD system, 
driven by input parameters. 

By developing disjunctive implementations for one 
scenario it turned out that there are distinct similarities and to 
some extend an overlapping in syntax and structure between 
the elements, which are provided by the different frameworks. 
Based on this a neutral and formal codification with respect to 
the identified meta-elements (defined-objects, computed-slots 
etc.) appears to be technically realizable. However, even if it 
may become possible to translate code snippets from one 
framework into another it may not sufficient to use the 
codified knowledge for different purposes (in other KBE 
solutions). As described in the following one cause lies in the 
comprehensibility of the codified knowledge itself. 

Another considerable aspect is the representation of the 
design process. In all approaches, a separate user interface has 
to be created in order to give access to the global parameters 
that drive a design configuration. However, it is important to 
represent the logical and temporary order of the flow of the 
design. Thus, a representation that helps the designers in 
managing the company’s best practices appears to be 
fundamental.  

2.3. Identification of constraints and boundaries for a 
framework-independent management of knowledge 

As identified in the comparative analysis (bookshelf 
scenario) one of the main challenges is grounded in the 
comprehensibility and granularity of the domain knowledge 
itself. Domain-specific knowledge, which is used to solve 
complex design problems, is usually incomprehensible for 
domain experts, if it is codified in rules. To provide an 
example: in the bookshelf scenario a rule, that the width of a 
shelf can be a function of the width of a rack, may appear as 
part of a cryptic notation (If LR>LS then LR = lS*nS … ). 

 Understanding the rationale of the acquired knowledge 
directly relates to considering the involved stakeholders. 
Depending on domain and profession of involved experts, 
skills in programming as well as knowledge modeling may 
differ. Some developers are only used to describe their 
procedural knowledge (e.g. at first we make the overall shape, 
then we calculate this … , and final we measure parameter X 
to calculate that …) others are focused on product structures 
(e.g. we are responsible for optimizing this sub-part and have 
an interface to the rest of the product …).  

In addition the context (e.g. the relation to a specific 
development phase) is usually not annotated in the code. For 
example a function to calculate the X of Y may differ between 
the initial design phase and the detailed design phase. Thus it 
is crucial to know to which development phase the knowledge 
snippet relates.  
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The proposed Rule Interchange Format should improve 
the transparency in terms of understanding the rationale 
behind KBE solutions. It must be both human as well as 
computer readable and should be accessible for all 
stakeholders: domain experts, knowledge experts and 
software experts.  

Especially in context of Customized Product Development 
the approach must have the potential to support product 
developers with codified knowledge in different contexts in 
order to prevent inappropriate design decisions and force a 
fastened and automated product development.  

3. An initial approach to exchange formalized knowledge 
in Customized Product Development process 

In order to address properly the given constraints and 
boundaries for such a framework-independent management of 
knowledge, a layered approach is proposed, which enables the 
exchange of formalized knowledge. 

Currently, the concept foresees to have a three layered 
approach in order to adequately represent and exchange KBE 
knowledge. Each layer represents different levels of 
abstraction: an upper layer describing just the core knowledge 
at a glance, a middle layer in order to codify the knowledge 
on abstract level, but with purpose of software development 
and a base layer covering the software code itself. This way 
the base layer can remain in a proprietary format. Since the 
codified knowledge is abstracted on a middle layer it can be 
used for diverse contexts or different purposes by KBE 
developers. The domain expert’s knowledge corresponds to 
the upper layer. Not only that the upper layer can be used for 
the knowledge acquisition process, but all layers directly 
correspond to the typical KBE lifecycle (refer e.g. to [19]). In 
the following sections the proposed layers are described in 
more detail.  

3.1. K-Brief Layer – Upper Level 

The K-Brief Layer represents the upper level of 
abstraction. It describes development and engineering 
knowledge in a human understandable manner and 
corresponds to the domain expert’s knowledge. The 
Knowledge-Brief concept leans on an established concept 
originated by Toyota. It has been developed and proven in 
context of LEAN product development. In principle the idea 
is to provide a structured one page template (an A3 sheet) for 
capturing knowledge in meetings, discussions or similar 
events. The template should be used in a way to capture the 
knowledge in a visual and interactive way, but without 
loosing context- or meta-information. 

In context of our approach the K-Brief templates will be 
used to represent the KBE related knowledge in a condensed 
manner (similar to best practices or design guidelines). This 
way not only the rationale behind existing KBE solutions is 
documented, but also a guidance to support the knowledge 
acquisition process is given by the template. 

In practice it means initiating a KBE solution leads to the 
creation of a bunch of K-Briefs in reference to the identified 
engineering knowledge (To give just one example: a company 

internal calculation procedure to choose in-between welding 
seams for steel parts). The K-Brief aims not to codify 
knowledge in a formal manner. This will be provided by the 
middle layer.  

Fig. 2. K-Brief for development of a bookshelf (extract) 

3.2. K-Models Layer – Middle Level 

The K-Models layer despites between declarative and 
procedural knowledge to define the presented knowledge 
more precisely. In order to formalize the acquired knowledge 
for KBE purposes the approach suggests to rely on two 
different standards for each type of knowledge: UML and 
IDEF0. The standardized Unified Modeling Language (UML) 
allows acquiring and visualizing concepts and their relations 
utilizing an object-oriented approach and is well established 
in research and industry [20].  

While declarative knowledge can be represented in UML 
the standard does not provide sufficient support to represent 
procedural knowledge. Since the procedural knowledge refers 
to the product development process steps and not to the 
workflow to-be covered by the KBE software it is not 
convenient to make use of one or more behavioural diagrams 
as provided by UML. Here IDEF0 appears to provide 
appropriate complexity to capture and formalize the tackled 
procedural knowledge. The main advantages from adopting 
separate procedural knowledge formalization are the 
following: 1. A procedural knowledge formalization allows a 
focus on component relations, which differs from UML. For 
example, in an industrial mixer configuration procedure, the 
blade is the first object to be designed and the most important 
one, but in a hierarchical representation of the product, it is 
placed at a very low level [21]. A procedural representation 
such as IDEF gives the correct importance to the blade, rather 
than a product tree representation. 2. Since companies’ 
stakeholders may have different roles (salesman, designer, 
technician...), there is a 1-to-many relationship between 
product structure and process representation. A salesman has 
a different view of the product from a designer or a 
production engineer, even if all of them are dealing with the 
same product. 

Since the codified knowledge is abstracted on a middle 
layer, it can be managed and reused for diverse contexts or 
different purposes by KBE developers, while the code can be 
synthetic.  
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3.3. K-Code Layer – Base Level 

The K-Code Layer represents the base level and 
corresponds to the code itself. Here the codified knowledge 
can remain in a proprietary format (e.g. LISP syntax as used 
AML [22]). If the code itself is based upon object oriented 
programming, code snippets can be directly linked to UML. 
This way knowledge snippets from one KBE project can be 
transferred into another if the same programming language (or 
framework) and an object oriented structure is in use. 

4. Evaluation 

An initial evaluation of the provided approach shall be 
given by referring to typical user requirements on the one 
hand and outlining already identified but not solved 
challenges on the other. In the following some considerations 
are provided:  

In a non CAD-based O-O approach complex architectures 
can be calculated in advance easier than in a CAD 
environment. In addition resulting CAD assemblies do not 
include parts (components) which are not calculated. 
A second consideration concerns the representation of 
rules, formulas and dependencies. Since they are 
formalized in an abstract layer and not embedded into 
proprietary framework, they can be managed and 
visualized in a logical way. A visual representation directly 
supports common understanding. This way it becomes 
possible to reuse the knowledge in different contexts or for 
different tasks respectively.  
In direct comparison to a CAD-based KBE framework, the 
access to set-up a KBE solution on top of the three layered 
approach is laborious and not yet enough intuitive. Users 
have to know about UML and IDEF and KBE knowledge 
snippets cannot be easily inserted by double clicking on 
CAD items.  
A transition between knowledge acquisition and 

knowledge codification is by default difficult, because turning 
knowledge from an unstructured document to a structured 
format leads always to effort in categorizing the knowledge 
defining relations and procedures. 

4.1. The bookshelf use case 

In order to demonstrate the validity of the drafted 
approach, an example has been carried out taken from the 
research activities (in ref. to EC-project LinkedDesign).  

In particular, the activities related to the knowledge 
acquisition and knowledge formalisation accomplished for 
creation of an automated configuration of a bookshelf are 
presented and discussed in the following.  

Knowledge acquisition 
In order to accomplish this task, it is necessary to take over 

the role of a KBE developer, who interviews the domain 
experts in bookshelf production (e.g. a carpenter). 

While trying to use the K-Brief notation for acquiring the 
knowledge, the output could be similar to Figure 2. The 

parameters are highlighted in bookshelf sketch, while the 
structure is represented as a hierarchical tree of blocks, such 
as frame, walls and shelves. In addition properties and 
configuration rules are written. 

In addition the design process has been synthesized by 
three steps: Input values; Create configuration; Generate CAD 
(view CAD model). 

Knowledge formalization 
Once collected the knowledge related to the bookshelf 

design (mainly configuration rules), the researchers used a 
standard language notation to describe the configuration 
process of the bookshelf and the hierarchical structure of the 
product, with related objects, relations, properties and 
methods. 

For the configuration process, the Researchers used the 
IDEF0 language, whereas the description of the product 
hierarchical structure is made using UML. 

Fig. 3. Design process of the Bookshelf in IDEF0  (extract) 

In the IDEF process (Fig. 3) tasks to be accomplished by 
the actors of the design process (carpenter, designer, etc.) are 
enriched by a description of the output documents (CAD 
models, BOM, etc.). The knowledge sources (Carpentry 
Knowledge, Configuration Rules, etc.) are on top of each task. 

Fig. 4. Structure of the Bookshelf in UML (extract) 

The corresponding UML model (Fig. 4) of the bookshelf 
structure shows the hierarchical levels of relationships among 
the parts (frame, shelves and walls), which are represented as 
objects and in addition their attributes (e.g. width or height). 
Further methods to calculate the dependent properties such as 
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the quantity of the shelves or to assembly the CAD model are 
displayed for each object. 

Using the formalizing languages as shown in the previous 
sections, it is possible to create a KBE application, 
independent of the select framework. 

5. Conclusion 

Even though customers increasingly participate in product 
development, many of them find it difficult to express needs 
or ideas that differ from those of manufacturers. In order to 
extract customer needs, developers create often several 
prototypes or variants to allow customers a concrete 
evaluation [23]. In this context Knowledge Based Engineering 
is providing the enabling technology to create fast and easy 
design variants and configurations respectively. However the 
effort to setup up and manage KBE properly is one of the 
major shortcomings.  

The presented approach directly addresses current 
shortcomings by providing an approach based upon three 
layers. Utilizing an independent format for management of 
KBE knowledge, the users of CAx systems are able to 
exchange codified knowledge and gain the rationale behind. 
In order to reach the mentioned results, the explicit nature of 
IDEF and UML specifications has been taken into account. 
This way it is possible to formalize the product- and process-
related aspects of a KBE implementation in unique files. 

In particular, as next development of the project, the 
specifications of the Rule Interchange Format will be 
developed further. Since the design process is of course 
related to the product structure. The middle layer has to 
represent corresponding relationships between IDEF and 
UML representations. The proposed way is to transfer both 
representation into an XML representation, which includes a 
combination of properly organized tags and in addition 
linkages between both representations. This way the RIF will 
become a standardized representation of KBE knowledge, 
which can be visualized in form of interlinked UML and 
IDEF representations. 

Hence the approach provides a substantial contribution for 
the development of systems, which are capable to easily adapt 
a given design to upcoming user-requirements, while facing 
the production challenges.  
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