
 Procedia CIRP 21 (2014) 99 – 104

Available online at www.sciencedirect.com

2212-8271 © 2014 Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/3.0/).
Selection and peer-review under responsibility of the International Scientific Committee of “24th CIRP Design Conference” in the person of the
Conference Chairs Giovanni Moroni and Tullio Tolio
doi: 10.1016/j.procir.2014.03.149

ScienceDirect

 24th CIRP Design Conference

Exchange Of Knowledge In Customized Product Development Processes

Patrick Kleina*, Dante Puglieseb, Johannes Lützenbergera, Giorgio Colombob,

Klaus-Dieter Thobena

aBIBA – Bremer Institut für Produktion und Logistik GmbH, Hochschulring 20, 28359 Bremen, Germany
bPolitecnico di Milano, Department of Mechanical Engineering, Via G. La Masa 1, 20156 Milano, Italy

* Corresponding author. Tel.:+49-421-218-50115; fax: +49-421-218-50007; E-mail address: klp@biba.uni-bremen.de

Abstract

If Customized Product Development is perceived as developing products that fulfill the customers individual requirements and in parallel
reflect production constraints, such as manufacturing capabilities, a direct demand can be derived for solutions to adapt a given design easy and
fast to new requirements based upon the companies production knowledge - at best in an automated way. The latter is usually covered by
Knowledge Based Engineering systems. KBE systems are capable to automate repetitive engineering tasks, such as the automated calculation
of ship structural design.
However, while the efficiency of implemented KBE projects is non controversial, the development or modification of an existing KBE solution
usually requires substantial investments due to knowledge acquisition, codification and software implementation. In addition most solutions are
still case based and not grounded in structural frameworks. Knowledge is often written in a proprietary language; rules and algorithms are not
compatible with other KBE-frameworks and are usually not on a level that is comprehensible for the engineers or domain experts. While this
may not be crucial for long development cycles, it may become a hurdle in terms of Customized Product Development with its short cycles. In
other words, future KBE must support an incorporation of knowledge from different domains and business units. Thus the objective of the
paper is to explain the need for a change in collaborative knowledge sharing and re-use in context of KBE. Based upon, the constraints for a
KBE related interchange format are drafted.
A three layered approach is proposed in order to adequately represent and exchange KBE knowledge. Each layer addresses different levels of
abstraction: an upper layer describing just the core knowledge at a glance, a middle layer in order to codify the knowledge on abstract level, but
with purpose of software development and a base layer covering the software code itself.
Utilizing an independent format for management of KBE knowledge, the users of CAx systems are able to exchange codified knowledge and
gain the rationale behind. Hence the full paper attempts to deliver a substantial contribution for the development of systems, which are capable
to easily adapt a given design to upcoming user-requirements, while facing the production challenges.
© 2014 The Authors. Published by Elsevier B.V.
Selection and peer-review under responsibility of the International Scientific Committee of “24th CIRP Design Conference” in the person of
the Conference Chairs Giovanni Moroni and Tullio Tolio.

Keywords: Knowledge Based Engineering; Product Development; Knowledge Mangement; Knowledge Engineer; Customized Product Development

1. Introduction

In order to gain a competitive advantage companies intend
to provide mass products, which are at most customized to
user needs. This directly impacts the company’s product
development; so called Customized Product Development
aims at developing products that fulfil the customers
individual requirements and in parallel reflect production
constraints, such as manufacturing capabilities [1]. The large
solution space, which is implied in customisation, is

challenging companies as well as customers. It is often
difficult for production companies to clearly communicate
their capabilities in sufficient details without confusing
customers and in parallel it is often difficult for customers to
clearly articulate user-requirements without assessing a given
design [2].

Facing this challenge a need for a solutions to adapt a
given design easy and fast to acquired requirements based
upon the companies production knowledge - at best in an
automated way can be identified. The latter is usually one of

© 2014 Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/3.0/).
Selection and peer-review under responsibility of the International Scientifi c Committee of “24th CIRP Design Conference” in the person of the
Conference Chairs Giovanni Moroni and Tullio Tolio

100 Patrick Klein et al. / Procedia CIRP 21 (2014) 99 – 104

the technical domains covered by Knowledge Based
Engineering systems.

Within a KBE system, design knowledge is represented in
a formal manner and enables the system to automate specific
design tasks mostly unique to the company’s product
development experience. This way KBE systems are capable
to automate repetitive engineering tasks, such as the
automated calculation of ship structural design [3].

In this context the meaning of “automate” even covers
analysis tasks in terms of validation or quality checking, such
as compliance to required safety parameters, or international
and national standards.

In this sense, KBE can be seen as the process of gathering,
managing, and using engineering knowledge to automate the
design process (e.g. to deliver product variants) by software
support [4].

Next to time savings a KBE solution can enable a broader
variety of detailed design studies of a given master-concept by
usage of a rule-based approach for an automated detailing and
examination of design variants and in consequence
extensively support the optimization of a given (mechanical)
design against defined constraints and requirements (this incl.
of course user requirements). KBE as an enabler for easy and
fast examination of design variants can be seen as an enabler
for Customized Product Development, because it enables
differentiation in product variety, i.e. customization [5]. For
this reason, the most fitting type of companies, where a KBE
implementation enables its most profitable usage, is the
Engineering To Order one.

In conjunction with virtual or rapid prototyping those
design alternatives will enable a fast and easy assessment of
mass producibility and customer acceptance (e.g. [6]) and this
way provide controls to adequately integrate customers
feedback into product development. As a result of that, a KBE
solution is able to anticipate the engineering operations at the
time of the order and in parallel it produces more accurate
proposals.

2. Scope and Research foundation

By nearly all KBE implementations, a notable time
reduction from several days to a few hours for the respective
design tasks had been achieved, while in parallel a constant
quality due to the repeatability can be ensured (e.g. [7], [8]).

However, while the efficiency of implemented KBE
projects is non controversial, the development or modification
of an existing KBE solution is often complex and time
consuming. A structured development of a KBE solution
means usually passing through different phases: starting from
knowledge acquisition phase, over a knowledge formalization
phase up to a knowledge representation phase [9].

In past, several projects dealt with the above mentioned
structured development of KBE, such as MOKA [10],
KOMPRESSA [11] or DEKLARE [12].

Even though the inherent approaches had been validated by
successfully implemented KBE reference projects, they found
no broad acceptance in Industry (section 2.1). Thus findings
as well as current shortcomings of those projects had been one
starting point for approaching a Rule Interchange Format

(RIF) to become a standardized knowledge representation to
be used by different KBE systems in order to make the reuse
and sharing of companies’ knowledge easier.

2.1. Identification of a need for a framework-independent
management of knowledge

Even though KBE usually requires substantial investments
and different sorts of expertise, many product developers
seem to improvise a KBE project based upon an unstructured
problem analysis [13]. In addition most solutions are still
suited to a single case and neither grounded in the workflow
organisation nor based on structural frameworks [14].

 Knowledge is often written in a proprietary language;
rules and algorithms are not compatible with other KBE-
frameworks and are usually not on a level that is
comprehensible for the engineers or domain experts. More,
the products databases are often built for specific solutions
and not for general usage.

Leading CAD applications provide add-on modules (e.g.
([15]) for KBE related features. In such modules the KBE
intelligence (e.g. a design rule) directly remains inside a
CAD-model and is directly stored within the CAD file. Based
on a parameterized CAD model, they provide functions like
formulas (to create dependencies between parameters), rules
and user defined features, allowing to partly reuse a design
procedure ([15]). Even if it would be possible to break up this
encapsulation, which is given by the proprietary structure of
such files, an utilisation of the already implemented design
knowledge by other applications would fail, due to a lack of
standardization of items, such as Namespaces, Relations or
Operators & Rules.

In addition, Verhagen, et al. criticize that many KBE-
solutions store and represent codified knowledge decoupled
from its original context [16]. An adequate documentation is
missing and formulas or equations remain unexplained [17],
even though knowledge formalization is fundamental not only
in order to provide the documentation to application
developers, but also to document in detail all aspects of the
automated design process for the user. The cause is often
grounded in an unstructured knowledge acquisition process.
Without a documentation of the problem in terms of
objectives, constraints etc. the traceability of the design
process of the implemented solution becomes impossible.
Along with the insufficiency of a structured knowledge
codification, a lack of knowledge reuse has been identified.
Herewith formalisation of knowledge is getting more
important, because it promotes further usage and sharing. The
acquisition and formalization activities enable a transfer of the
ownership of the technical knowledge from the individual
experts to the organization. Due to missing knowledge - e.g.
neglected alternatives for a desired solution – KBE solutions
are too often limited to their origin context and thus the reuse
of knowledge will be hindered or impossible [13].

While this may not be crucial for long development cycles,
it may become a hurdle in terms of Customized Product
Development with its twofold objectives: a maximum of
customisation and in parallel real efficiency in production. In
other words, future KBE must support an easy incorporation

101 Patrick Klein et al. / Procedia CIRP 21 (2014) 99 – 104

of knowledge from different domains and business units in
order to allow product development teams more flexibility.
This is of course not possible, if the KBE intelligence directly
remains inside encapsulated models or proprietary languages.

2.2. State of practice in context of knowledge codification –
Industrial approaches

At present, KBE solutions can be found on many levels
and in different industries. From simple templates in CAD
software to extensive stand-alone software solutions with
integration towards other CAx systems, there are many
successful projects in terms of implementing codified
knowledge on product design.

In order to identify the current state of practice in more
detail a comparative analysis has been conducted based upon
a common use case scenario. The scenario describes the
development of a KBE solution to automate the design a
bookshelf (e.g. no. of shelves as a function of the length). For
this scenario a KBE solution has been developed several times
by usage of four different frameworks: two KBE enhanced
CAD systems (CATIA V5 and NX8), one O-O programming
language framework (AML, with an embedded CAD engine)
and in addition Rulestream, which can be seen as a mixed
approach of object-orientation with a separated design process
manager. The result of the developments in all examined
frameworks is an automated design. In each solution the
geometrical model is calculated as an output, according to a
modification of a small set of input parameters (e.g. the
overall length of the bookshelf).

Further the four implementations of the bookshelf example
discovered a number of similarities like Input-Slots,
Computed-Slots etc. between the used frameworks.

Fig. 1. Communalities in KBE expressions

Differently from a CAD based KBE application, in AML
(which relies in its roots on LISP and considered as a pure O-
O language) the product hierarchy is represented by defining
elements such as classes, superclasses, objects and
relationships of inheritance, aggregation and association, by
usage of a specific operator [18]. With respect to the two
CAD based KBE implementations there is no hierarchy in
terms of classes and superclasses at first sight. But a “product
tree” or a “product structure”, which are essential parts of
contemporary CAD application, provide a substitute to such a

rigorous object oriented paradigm. KBE forms, rules etc.
always refer to elements of the CAD trees and in this way the
underlying hierarchy is used for KBE. Similarly for what
concerns the product representation, Rulestream adopts the
object oriented approach, even if there is a difference in
geometry management. In particular, AML is geometry
generative, in the sense that the geometry is created at runtime
using pure code and on the contrary, in Rulestream the
geometry creation is handled by an external CAD system,
driven by input parameters.

By developing disjunctive implementations for one
scenario it turned out that there are distinct similarities and to
some extend an overlapping in syntax and structure between
the elements, which are provided by the different frameworks.
Based on this a neutral and formal codification with respect to
the identified meta-elements (defined-objects, computed-slots
etc.) appears to be technically realizable. However, even if it
may become possible to translate code snippets from one
framework into another it may not sufficient to use the
codified knowledge for different purposes (in other KBE
solutions). As described in the following one cause lies in the
comprehensibility of the codified knowledge itself.

Another considerable aspect is the representation of the
design process. In all approaches, a separate user interface has
to be created in order to give access to the global parameters
that drive a design configuration. However, it is important to
represent the logical and temporary order of the flow of the
design. Thus, a representation that helps the designers in
managing the company’s best practices appears to be
fundamental.

2.3. Identification of constraints and boundaries for a
framework-independent management of knowledge

As identified in the comparative analysis (bookshelf
scenario) one of the main challenges is grounded in the
comprehensibility and granularity of the domain knowledge
itself. Domain-specific knowledge, which is used to solve
complex design problems, is usually incomprehensible for
domain experts, if it is codified in rules. To provide an
example: in the bookshelf scenario a rule, that the width of a
shelf can be a function of the width of a rack, may appear as
part of a cryptic notation (If LR>LS then LR = lS*nS …).

 Understanding the rationale of the acquired knowledge
directly relates to considering the involved stakeholders.
Depending on domain and profession of involved experts,
skills in programming as well as knowledge modeling may
differ. Some developers are only used to describe their
procedural knowledge (e.g. at first we make the overall shape,
then we calculate this … , and final we measure parameter X
to calculate that …) others are focused on product structures
(e.g. we are responsible for optimizing this sub-part and have
an interface to the rest of the product …).

In addition the context (e.g. the relation to a specific
development phase) is usually not annotated in the code. For
example a function to calculate the X of Y may differ between
the initial design phase and the detailed design phase. Thus it
is crucial to know to which development phase the knowledge
snippet relates.

102 Patrick Klein et al. / Procedia CIRP 21 (2014) 99 – 104

The proposed Rule Interchange Format should improve
the transparency in terms of understanding the rationale
behind KBE solutions. It must be both human as well as
computer readable and should be accessible for all
stakeholders: domain experts, knowledge experts and
software experts.

Especially in context of Customized Product Development
the approach must have the potential to support product
developers with codified knowledge in different contexts in
order to prevent inappropriate design decisions and force a
fastened and automated product development.

3. An initial approach to exchange formalized knowledge
in Customized Product Development process

In order to address properly the given constraints and
boundaries for such a framework-independent management of
knowledge, a layered approach is proposed, which enables the
exchange of formalized knowledge.

Currently, the concept foresees to have a three layered
approach in order to adequately represent and exchange KBE
knowledge. Each layer represents different levels of
abstraction: an upper layer describing just the core knowledge
at a glance, a middle layer in order to codify the knowledge
on abstract level, but with purpose of software development
and a base layer covering the software code itself. This way
the base layer can remain in a proprietary format. Since the
codified knowledge is abstracted on a middle layer it can be
used for diverse contexts or different purposes by KBE
developers. The domain expert’s knowledge corresponds to
the upper layer. Not only that the upper layer can be used for
the knowledge acquisition process, but all layers directly
correspond to the typical KBE lifecycle (refer e.g. to [19]). In
the following sections the proposed layers are described in
more detail.

3.1. K-Brief Layer – Upper Level

The K-Brief Layer represents the upper level of
abstraction. It describes development and engineering
knowledge in a human understandable manner and
corresponds to the domain expert’s knowledge. The
Knowledge-Brief concept leans on an established concept
originated by Toyota. It has been developed and proven in
context of LEAN product development. In principle the idea
is to provide a structured one page template (an A3 sheet) for
capturing knowledge in meetings, discussions or similar
events. The template should be used in a way to capture the
knowledge in a visual and interactive way, but without
loosing context- or meta-information.

In context of our approach the K-Brief templates will be
used to represent the KBE related knowledge in a condensed
manner (similar to best practices or design guidelines). This
way not only the rationale behind existing KBE solutions is
documented, but also a guidance to support the knowledge
acquisition process is given by the template.

In practice it means initiating a KBE solution leads to the
creation of a bunch of K-Briefs in reference to the identified
engineering knowledge (To give just one example: a company

internal calculation procedure to choose in-between welding
seams for steel parts). The K-Brief aims not to codify
knowledge in a formal manner. This will be provided by the
middle layer.

Fig. 2. K-Brief for development of a bookshelf (extract)

3.2. K-Models Layer – Middle Level

The K-Models layer despites between declarative and
procedural knowledge to define the presented knowledge
more precisely. In order to formalize the acquired knowledge
for KBE purposes the approach suggests to rely on two
different standards for each type of knowledge: UML and
IDEF0. The standardized Unified Modeling Language (UML)
allows acquiring and visualizing concepts and their relations
utilizing an object-oriented approach and is well established
in research and industry [20].

While declarative knowledge can be represented in UML
the standard does not provide sufficient support to represent
procedural knowledge. Since the procedural knowledge refers
to the product development process steps and not to the
workflow to-be covered by the KBE software it is not
convenient to make use of one or more behavioural diagrams
as provided by UML. Here IDEF0 appears to provide
appropriate complexity to capture and formalize the tackled
procedural knowledge. The main advantages from adopting
separate procedural knowledge formalization are the
following: 1. A procedural knowledge formalization allows a
focus on component relations, which differs from UML. For
example, in an industrial mixer configuration procedure, the
blade is the first object to be designed and the most important
one, but in a hierarchical representation of the product, it is
placed at a very low level [21]. A procedural representation
such as IDEF gives the correct importance to the blade, rather
than a product tree representation. 2. Since companies’
stakeholders may have different roles (salesman, designer,
technician...), there is a 1-to-many relationship between
product structure and process representation. A salesman has
a different view of the product from a designer or a
production engineer, even if all of them are dealing with the
same product.

Since the codified knowledge is abstracted on a middle
layer, it can be managed and reused for diverse contexts or
different purposes by KBE developers, while the code can be
synthetic.

103 Patrick Klein et al. / Procedia CIRP 21 (2014) 99 – 104

3.3. K-Code Layer – Base Level

The K-Code Layer represents the base level and
corresponds to the code itself. Here the codified knowledge
can remain in a proprietary format (e.g. LISP syntax as used
AML [22]). If the code itself is based upon object oriented
programming, code snippets can be directly linked to UML.
This way knowledge snippets from one KBE project can be
transferred into another if the same programming language (or
framework) and an object oriented structure is in use.

4. Evaluation

An initial evaluation of the provided approach shall be
given by referring to typical user requirements on the one
hand and outlining already identified but not solved
challenges on the other. In the following some considerations
are provided:

In a non CAD-based O-O approach complex architectures
can be calculated in advance easier than in a CAD
environment. In addition resulting CAD assemblies do not
include parts (components) which are not calculated.
A second consideration concerns the representation of
rules, formulas and dependencies. Since they are
formalized in an abstract layer and not embedded into
proprietary framework, they can be managed and
visualized in a logical way. A visual representation directly
supports common understanding. This way it becomes
possible to reuse the knowledge in different contexts or for
different tasks respectively.
In direct comparison to a CAD-based KBE framework, the
access to set-up a KBE solution on top of the three layered
approach is laborious and not yet enough intuitive. Users
have to know about UML and IDEF and KBE knowledge
snippets cannot be easily inserted by double clicking on
CAD items.
A transition between knowledge acquisition and

knowledge codification is by default difficult, because turning
knowledge from an unstructured document to a structured
format leads always to effort in categorizing the knowledge
defining relations and procedures.

4.1. The bookshelf use case

In order to demonstrate the validity of the drafted
approach, an example has been carried out taken from the
research activities (in ref. to EC-project LinkedDesign).

In particular, the activities related to the knowledge
acquisition and knowledge formalisation accomplished for
creation of an automated configuration of a bookshelf are
presented and discussed in the following.

Knowledge acquisition
In order to accomplish this task, it is necessary to take over

the role of a KBE developer, who interviews the domain
experts in bookshelf production (e.g. a carpenter).

While trying to use the K-Brief notation for acquiring the
knowledge, the output could be similar to Figure 2. The

parameters are highlighted in bookshelf sketch, while the
structure is represented as a hierarchical tree of blocks, such
as frame, walls and shelves. In addition properties and
configuration rules are written.

In addition the design process has been synthesized by
three steps: Input values; Create configuration; Generate CAD
(view CAD model).

Knowledge formalization
Once collected the knowledge related to the bookshelf

design (mainly configuration rules), the researchers used a
standard language notation to describe the configuration
process of the bookshelf and the hierarchical structure of the
product, with related objects, relations, properties and
methods.

For the configuration process, the Researchers used the
IDEF0 language, whereas the description of the product
hierarchical structure is made using UML.

Fig. 3. Design process of the Bookshelf in IDEF0 (extract)

In the IDEF process (Fig. 3) tasks to be accomplished by
the actors of the design process (carpenter, designer, etc.) are
enriched by a description of the output documents (CAD
models, BOM, etc.). The knowledge sources (Carpentry
Knowledge, Configuration Rules, etc.) are on top of each task.

Fig. 4. Structure of the Bookshelf in UML (extract)

The corresponding UML model (Fig. 4) of the bookshelf
structure shows the hierarchical levels of relationships among
the parts (frame, shelves and walls), which are represented as
objects and in addition their attributes (e.g. width or height).
Further methods to calculate the dependent properties such as

104 Patrick Klein et al. / Procedia CIRP 21 (2014) 99 – 104

the quantity of the shelves or to assembly the CAD model are
displayed for each object.

Using the formalizing languages as shown in the previous
sections, it is possible to create a KBE application,
independent of the select framework.

5. Conclusion

Even though customers increasingly participate in product
development, many of them find it difficult to express needs
or ideas that differ from those of manufacturers. In order to
extract customer needs, developers create often several
prototypes or variants to allow customers a concrete
evaluation [23]. In this context Knowledge Based Engineering
is providing the enabling technology to create fast and easy
design variants and configurations respectively. However the
effort to setup up and manage KBE properly is one of the
major shortcomings.

The presented approach directly addresses current
shortcomings by providing an approach based upon three
layers. Utilizing an independent format for management of
KBE knowledge, the users of CAx systems are able to
exchange codified knowledge and gain the rationale behind.
In order to reach the mentioned results, the explicit nature of
IDEF and UML specifications has been taken into account.
This way it is possible to formalize the product- and process-
related aspects of a KBE implementation in unique files.

In particular, as next development of the project, the
specifications of the Rule Interchange Format will be
developed further. Since the design process is of course
related to the product structure. The middle layer has to
represent corresponding relationships between IDEF and
UML representations. The proposed way is to transfer both
representation into an XML representation, which includes a
combination of properly organized tags and in addition
linkages between both representations. This way the RIF will
become a standardized representation of KBE knowledge,
which can be visualized in form of interlinked UML and
IDEF representations.

Hence the approach provides a substantial contribution for
the development of systems, which are capable to easily adapt
a given design to upcoming user-requirements, while facing
the production challenges.

ACKNOWLEDGEMENTS

Part of this research has been funded under the EC 7th
Framework Programme, in the context of the LinkedDesign
project (http://www.linkeddesign.eu). The authors wish to
acknowledge the Commission and all the LinkedDesign
project partners for a fruitful collaboration.

References

[1] Shamsuzzoha A, Kyllönen S, und Helo P. Collaborative customized
product development framework, In: Industrial Management & Data
Systems, Bd. 109, Nr. 5, p. 718–735, 2009.

[2] K Sun K, Chen SL. Risk Reduction via Prototyping in Customized
Product Development. In: Interdisciplinary Design: Proceedings of the
21st CIRP Design Conference.

[3] Yang H, Chen J, Lu Q, Ma N. Application of knowledge-based
engineering for ship optimisation design. In: Ships Offshore Structure,
Bd. 0, Nr. 0, p. 1–10, Nov. 2012.

[4] Prasad B. What Distinguishes KBE from Automation, 2005.
http://legacy.coe.org/newsnet/Jun05/knowledge.cfm.

[5] Tseng MM, Jiao J, Su CJ. Virtual prototyping for customized product
development. In: Integrated Manufacturing Systems, Bd. 9, Nr. 6, p.
334–343, 1998.

[6] Wu Q, Sun SQ, Dong ZX. A Computer-Aided Ergonomics Evaluation
System for Customized Furniture Design, Advanced Materials
Research, Bd. 102–104, p. 890–894, March 2010.

[7] Vermeulen B. Knowledge based method for solving complexity in
design problems. Dissertation, Delft University of Technology, Delft,
2007.

[8] Milton N. Knowledge technologies Monza: Polimetrica, 2008.
[9] Colombo G, Pugliese D, Rizzi C. Developing DA Applications in SMEs

Industrial Context. In: Computer-Aided Innovation (CAI), G. Cascini,
Hrsg. Springer US, 2008, p. 69–82.

[10] Stokes M. Managing engineering knowledge: MOKA: methodology for
knowledge based engineering applications, Bd. 3. Professional
Engineering Publishing London, 2001.

[11] Lovett P, Bancroft C. Knowledge transfer for knowledge-based
engineering. In: Proceedings of Technology Transfer and Innovation
Conference, TTI, 2000.

[12] Fothergill P, Forster J, Lacunza JA, Plaza F, Arana I. DEKLARE, A
Methodological Approach to Re-Design. In: In Opening Productive
Partnerships, Advances in Design and Manufacturing (Conference on
Integration in Manufacturing-IiM), 1995.

[13] Verhagen WJC, Bermell-Garcia P, van Dijk REC, Curran R. A critical
review of Knowledge-Based Engineering: An identification of research
challenges. In: Advanced Engineering Informatics, Bd. 26, Nr. 1, p. 5–
15, Jan. 2012.

[14] Verhagen WJ, Curran R. Knowledge-based engineering review:
conceptual foundations and research issues. In: New World Situation:
New Directions in Concurrent Engineering, Springer, 2010, p. 267–276.

[15] IBM, Dassault Systemes: Product Synthesis Solutions, 2013.
http://www.3ds.com/products-services/catia/portfolio/catia-v5/all-
products/domain/Product_Synthesis/

[16] Verhagen WJ, Bermell-Garcia P, van Dijk RE, Curran R. A critical
review of Knowledge-Based Engineering: An identification of research
challenges. In: Advanced Engineering Informatics, Bd. 26, Nr. 1, p. 5–
15, 2012.

[17] Kulon J, Broomhead P, Mynors D J. Applying knowledge-based
engineering to traditional manufacturing design. In: International
Journal of Advanced Manufacturing Technologies, Bd. 30, Nr. 9–10, p.
945–951, Okt. 2006.

[18] Rocca GL. Knowledge based engineering: Between AI and CAD.
Review of a language based technology to support engineering design.
In: Advanced Engineering Informatics, Bd. 26, Nr. 2, p. 159–179, Apr.
2012.

[19] Skarka W. Application of MOKA methodology in generative model
creation using CATIA. In: Engineering Applications of Artificial
Intelligence, Bd. 20, Nr. 5, p. 677–690, Aug. 2007.

[20] OMG. UML, 2011. http://www.omg.org/spec/UML/.
[21] Pugliese D, Colombo G, Spurio ML. About the integration between

KBE and PLM. In: Advances in Life Cycle Engineering for Sustainable
Manufacturing Businesses, Springer, 2007, p. 131–136.

[22] TechnoSoft Inc. Adaptive Modeling Language. A Technical Perspective.
2003.

[23] Terwiesch C, Loch CH. Collaborative Prototyping and the Pricing of
Custom-Designed Products. In: Management Science, Bd. 50, Nr. 2, p.
145–158, Feb. 2004.

