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Definition for Polarization P and Magnetization M Fully Consistent

with Maxwell’s Equations

Carlo A. Gonano*, Riccardo E. Zich, and Marco Mussetta

Abstract—Dealing with the project of metamaterials scientists often have to design circuit elements
at a sub-wavelength (or “microscopic”) scale. At that scale, they use the set of Maxwell’s equations in
free-space, and neither permittivity ε nor permeability μ are formally defined. However, the objective
is to use the unit cells in order to build a bulk material with some desired “macroscopic” properties. At
that scale the set of Maxwell’s equations in matter is adopted. To pass from one approach to the other
is not obvious. In this paper we analyse the classic definitions of polarization P and magnetization M ,
highlighting their limits. Then we propose a definition for P and M fully consistent with Maxwell’s
equations at any scale.

1. INTRODUCTION

Maxwell’s equations are the well-known fundamental laws describing the ElectroMagnetic field [1].
Depending on the system, they can be written in “free-space” or in “matter”. Usually, if you are
dealing with a “microscopic” system, you use free-space Maxwell’s equations. Otherwise, if the system
is composed by “macroscopic” bulk materials, you have to use the Maxwell’s equations in matter.

In the field of metamaterials [2–4], engineers often have to project small, “microscopic”, sub-
wavelength unitary cells in order to create a “macroscopic” bulk material with some desired properties.
Designing the sub-wavelength circuit or device, you have to deal with free-space Maxwell’s equations,
while if you want to describe the macroscopic behaviour you are going to use the in-matter set. So the
problem of how to council the two different models (approaches), microscopic and macroscopic ones,
arises [5]. In particular, polarization P and magnetization M fields should be rigorously defined in order
to avoid paradoxes and contradictions.

In the first part of this work we make a comparison between the two sets of Maxwell’s Equations,
in free-space and in matter respectively, and we derive a third set in order to enlighten the role of P
and M .

In the second part we explore the limits of the distinction between “free” and “bound” charges and
currents.

In the third part of this work we analyse the classic definitions of P and M , showing they cannot
be easily extended to the microscopic case.

In the fourth and fifth parts we fix some conditions and then formally define polarization P and
magnetization M for a generic system, no matter if “microscopic” or macroscopic”, in a scale-invariant
way.

In the sixth we discuss the main results and in the seventh part we resume some conclusions.

Received 6 October 2015, Accepted 9 November 2015, Scheduled 12 November 2015
* Corresponding author: Carlo Andrea Gonano (carloandrea.gonano@polimi.it).
The authors are with the Energy Department, Politecnico di Milano, via La Masa 34, 20156 Milan, MI, Italy.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Politecnico di Milano

https://core.ac.uk/display/55259365?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


84 Gonano, Zich, and Mussetta

2. COMPARISON OF MAXWELL’S EQUATIONS SETS

2.1. Maxwell’s Equations in Free Space in the Time Domain

Maxwell’s Equations in free-space or in “vacuum” can be written as:⎧⎪⎪⎨
⎪⎪⎩

−→∇T·
(
ε0

�E
)

= ρe

−→∇ ×
(

1
μ0

�B

)
= �Je +

∂
(
ε0

�E
)

∂t

⎧⎨
⎩

−→∇T· �B = 0
−→∇ × �E = −∂ �B

∂t

(1)

where: �E is the electric field; �B is the magnetic (induction) field; ρe is the electric charge density; �Je is
the electric current per unit of surface; ε0 and μ0 are the free space electric permittivity and magnetic
permeability respectively. Here we adopt the superscript T to indicate the transposed (horizontal)
vectors and

−→∇, ensuring consistency with further matrix equations.

2.2. Maxwell’s Equations in Matter in the Time Domain

Maxwell’s Equations in matter have a similar structure to free-space ones, but they involve the
displacement field �D, the magnetic field �H, and free charge ρf and current �Jf densities. All of these
have to be expressed in terms of �E and �B via the constitutive relations in order to be tackled.⎧⎨

⎩
−→∇T· �D = ρf

−→∇ × �H = �Jf +
∂ �D

∂t

⎧⎨
⎩

−→∇T· �B = 0
−→∇ × �E = −∂ �B

∂t

(2)

The second pair of equations is the same for the two sets, and it can be rephrased in terms of scalar ϕA

and vector �A potentials. ⎧⎨
⎩

�B =
−→∇ × �A

�E = −∂ �A

∂t
−−→∇ϕA

(3)

2.3. Maxwell’s Equations for P and M

Now we focus the attention on the sets involving the sources of the EM fields, and we will try to derive
an analogous set in order to enlighten the polarization P and magnetization M . The sources of the EM
fields are electric charges and currents, and usually they are divided in free and bound ones:

ρe = ρf + ρb (4)
�Je = �Jf + �Jb (5)

The displacement �D and magnetic �H fields are related through their own definitions to �P and �M
respectively, in fact:

�D � ε0
�E + �P =⇒ ε0

�E = �D − �P (6)

�H � 1
μ0

�B − �M =⇒ 1
μ0

�B = �H + �M (7)

where the symbol � stands for “is defined to be equal to”. Subtracting the first sets of (1) and (2) one
from the other, we obtain the Maxwell’s Equations for �P and �M :⎧⎨

⎩
−→∇T·(−�P ) = ρb

−→∇ × �M = �Jb +
∂(−�P )

∂t

(8)

The structure is the same as the ones for �E, �B and �D, �H. However we underline that we have not
yet given a definition neither for polarization �P nor for magnetization �M : anyway they are required to
respect (8), otherwise a contradiction between microscopic and macroscopic Maxwell’s Equations would
arise.
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3. FREE AND BOUND CHARGES

Till now we have mentioned free and bound charges, without saying how to distinguish the former from
the latter ones. Here we are going to show that subdivision is not so rigid, and unfortunately those two
kinds of charge are usually defined in many different, non-equivalent ways, depending on the context.
We analyse some of those “definitions” of free and bound charges, highlighting their limits.

3.1. Free Charges as Charges Free to Move

A possible definition of free charges is:

Free charges are those free to move, instead of bound ones which have limited displacements.

This could be a reasonable definition [6–9], since in metals and conductors electrons can move
quite easily in the crystal lattice. In polarized dielectrics, instead, the charges are restrained by strong
internal forces and so they are bound to their position. However, that definition does not work in some
contexts.

Let’s consider a plasma, that is a ionized gas of charged unbound particles [10]. Formally, all
the charges are free, since the molecular forces are negligible and the conductivity is very high. At a
microscopic level — that in this case correspond to sizes smaller than the Debye’s length λD — the
plasma is thus usually modelled as system of free charged particles.

Δx � λD =⇒ system of free charged particles (9)

However, charges produce and are subjected to the EM forces. At a macroscopic level, that is for
systems larger than λD, the plasma is modelled as a continuous medium with average properties. For
example, in the Drude model [11] it is possible to calculate the effective permittivity ε of the plasma as:

ε(ω)
ε0

= 1 − ω2
P

ω2
(10)

where ωP is the characteristic plasma “frequency”. Since �D(ω) = ε(ω)�E(ω), the polarization of plasma
can be different from zero, in fact:

�P (ω) = (ε(ω) − ε0) �E(ω) (11)

Since �P �= �0 , except as ω → ∞, both ρb and �Jb can be different from zero and so the plasma can
contain bound charges.

Δx � λD =⇒ continuous system with bound charges (12)

Also in this case the distinction between free and bound charges seems to be related to the scale of the
system.

Let’s now make an other example. Consider a group of metallic spheres: if they are invested by
an electric field, there will be a displacement of free charges on the single surfaces (see Fig. 1). If we
look at the same system at a larger scale, interpreting the group of spheres as a bulk metamaterial,
then the displacement of charges looks quite limited. Actually, they are bound on the surface of the
little spheres and cannot move far beyond. Actually, at that macroscopic scale the system looks as a
polarized dielectric.

3.2. Free Charges as Charges in Conductors

An alternative definition of free charge could be based on the distinction between conductors and
dielectrics:

Free charges and currents are those in conductors (metals), instead of bound ones which are in
dielectrics.

In some ways this definition is even worse than the previous one, since it requires to distinguish
between metals and dielectrics. It would be hard to establish if the charge in semiconductors like silicon
and germanium is free or bound. Anyway, also this definition does not work in some contexts.
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(a) microscopic scale (b) macroscopic scale

Figure 1. (a) At a microscopic scale, the charge on the single metallic spheres is regarded as free; (b)
At macroscopic scale, the same system looks as a polarized dielectric since the charges are bound and
their displacements are small.

(a) (b) (c)

Figure 2. (a) At a microscopic scale, a magnet can be modelled through Amperian loops of bound
current; (b) Magnetic field produced by a permanent magnet; (c) Hysteresis curve. At H = 0 there are
residual B field and a net magnetization M .

Let’s consider a static permanent magnet: it generates a magnetic field �B even if there are no visible
macroscopic currents. However, a magnet is usually modelled as an ensemble of microscopic current
loops (Amperian currents, see Fig. 2). Many permanent magnets are made of conducting materials, like
iron, cobalt, nickel etcetera, so the currents inside the magnet should be free. Hence, bound currents
should be negligible: | �Jb| � | �Jf |. Surprisingly, that’s false, and the opposite is true.

In the static case ( ∂.
∂t = 0), �H and �M can be calculated as:

−→∇ × �H = �Jf ;
−→∇ × �M = �Jb (13)

Since we are considering a permanent magnet with no external currents, the �H field inside is zero (see
Fig. 3) and the magnet will produce a residual �B field which can be determined from the hysteresis
curve at H = 0. In other words, inside the permanent magnet the H field is much smaller than the
magnetization M , and so the free currents are much less intense than bound ones:

inside permanent magnet | �H| � | �M | =⇒ | �Jf | � | �Jb| (14)
Thus, even if the permanent magnet is made of a conducting material, the currents generating

its magnetic field �B are not free, but bound ones. Differently, the magnetization field �M would be
identically null.

The case of a empty inductor filled with current (Fig. 4) can be regarded as complementary to the
permanent magnet. The current flowing in the windings is usually considered as free (so �Je = �Jf ) and
since the inductor is empty inside, its magnetization �M is actually zero: �M = �0. Field H instead is
comparable to B/μ0:

inside inductor | �H | � | �M | =⇒ | �Jf | � | �Jb| (15)
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Figure 3. Fields for a permanent magnet. The
H field is zero inside, while the magnetization M
is high and equal to B/μ0.

Figure 4. Fields for an empty inductor. The
magnetization M is zero inside the solenoid,
since it is empty, while the H field is equal to
B/μ0. This case is complementary to that of the
permanent magnet.

Summarizing:

Inside a permanent magnet �B = μ0
�M ; �H = �0 =⇒ �Je = �Jb (16)

Inside an empty inductor �B = μ0
�H; �M = �0 =⇒ �Je = �Jf (17)

3.3. Concluding Remarks on Free and Bound Charges

As we have seen in the previous paragraphs, to distinguish free charges from bound ones is not so obvious
and that subdivision appears to rely on the system to be analysed, and in particular on its scale.
Generally speaking, at microscopic scales charges look to be free and discrete, while at macroscopic
scales they appear to be bound and continuous. Moreover, in numerical simulation free charges and
currents are considered instead as the known or assigned sources for the ElectroMagnetic problem. On
the contrary, bound charges and currents are considered as unknown variables to be calculated, once
the constitutive relations for the media are assigned.

Shortly, the concepts of free and bound charges sound quite fuzzy and arbitrary, and trying to
impose a rigid definition of them seems useless. Actually scientists working on different topics will
adopt different definitions, suitable to their models and objectives. Here we do not mean to re-define
free and bound charges, but if we want to develop and work with coherent models we must know the
objects we are dealing with. Otherwise, we risk to achieve contradictory conclusions and misleading
results, without being aware of that.

Hereafter we assume the free and bound charges have been defined in some way by the “user”: we
are just going to require that Maxwell’s Equations have to be satisfied.

3.4. Conservation of Charge

It could be easily verified that electric charges are conserved for each set in (3), (8). Let’s consider the
“microscopic” case: we take the derivative in time for the divergence of �E, apply the divergence to the
curl of �B (identically zero) and then sum the equations together:⎧⎪⎪⎪⎨

⎪⎪⎪⎩

∂

∂t

(−→∇T·
(
ε0

�E
))

=
∂

∂t
ρe

0 =
−→∇T·

(−→∇ ×
(

1
μ0

�B

))
=

−→∇T·
⎛
⎝ �Je +

∂
(
ε0

�E
)

∂t

⎞
⎠ =⇒

(18)

∂ρe

∂t
+

−→∇T· �Je = 0 conservation of charge (19)
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With an analogous procedure, conservation laws for free and bound charge can be deduced:

∂ρf

∂t
+

−→∇T· �Jf = 0 conservation of free charge (20)

∂ρb

∂t
+

−→∇T· �Jb = 0 conservation of bound charge (21)

3.5. Fields Produced by Free and Bound Charges

Thanks to the linearity of Maxwell’s Equations, we can consider separately free charges from bound
ones and decompose the fields �E and �B on the basis of their sources. We call:

• �Ef , �Bf , �Af , ϕA,f the fields produced by free charges and currents.

• �Eb, �Bb, �Ab, ϕA,b the fields produced by bound charges and currents.

The Maxwell’s Equations for free charges will look so:⎧⎪⎪⎨
⎪⎪⎩

−→∇T·
(
ε0

�Ef

)
= ρf

−→∇ ×
(

1
μ0

�Bf

)
= �Jf +

∂
(
ε0

�Ef

)
∂t

⎧⎨
⎩

�Bf =
−→∇ × �Af

�Ef = −∂ �Af

∂t
−−→∇ϕA,f

(22)

In the same way, for bound charges will hold:⎧⎪⎪⎨
⎪⎪⎩

−→∇T·
(
ε0

�Eb

)
= ρb

−→∇ ×
(

1
μ0

�Bb

)
= �Jb +

∂
(
ε0

�Eb

)
∂t

⎧⎨
⎩

�Bb =
−→∇ × �Ab

�Eb = −∂ �Ab

∂t
−−→∇ϕA,b

(23)

The sets (22) and (23) are quite similar to (2) and (8) respectively. In fact, the sources of the fields
are unchanged. Summing together the equations in (22) with those in (23) we get the set of Maxwell’s
Equations in vacuum (1). Obviously the global fields produced by all charges and currents ρe and �Je

will be the sum of those originated by free and bound ones.

�E = �Ef + �Eb ϕA = ϕA,f + ϕA,b (24)

�B = �Bf + �Bb
�A = �Af + �Ab (25)

It should be noticed that all the fields in (22) and (23) can propagate also in vacuum, while �P

and �M are identically zero in empty space. In fact, in vacuum the permittivity and permeability are
respectively ε0 and μ0, so:

�D = ε0
�E =⇒ �P = �D − ε0

�E = �0 (26)

�H =
1
μ0

�B =⇒ �M = − �H +
1
μ0

�B = �0 (27)

In general, �P and �M are required to be zero outside any body.

4. ANALYSING THE CLASSIC DEFINITIONS FOR P AND M

Let’s now try to define polarization �P and magnetization �M . Suppose we are considering a domain Ωx

which could contain some charges, no matter if they free or bound. We want to determine �P and �M on
that domain.
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(a) microscopic scale (b) macroscopic scale

Figure 5. (a) At microscopic scale, the polarization field P among the charged particles should be
zero, since that space is vacuum (ε = ε0); (b) At macroscopic scale, the same system looks as a bulk
material with a non-zero polarization field P .

4.1. Limits of Classic Definition for Polarization P

Classically [6–9, 12] the polarization �P on the domain Ωx is defined as the net electric dipole per unit
of volume V . If all the electric dipoles �pi on Ωx are known, then �P is:

�P =
1
V

∑
Ωx

( �pi ) (28)

Unfortunately, with this definition �P is not a field �P (�x, t), but an average quantity: in fact it is not
associated to a point �x, but to a whole domain Ωx.

Let’s suppose we consider a system at microscopic scale, made by many charged particles separated
from vacuum (Fig. 5). What is the polarization field �P (�x, t) on this domain Ωx? Since in vacuum holds
�D = ε0

�E, rigorously �P (�x, t) should be zero wherever there are no charges.

�P (�x, t) = �0 ∀�x ∈ vacuum (29)

However, if we consider the same system at a larger scale, we could see a bulk material with net dipole
and polarization. So defining �P appears to be again a scale question.

4.2. Calculating a Net Electric Dipole

Another problem to face in defining �P , also as an average quantity, is how to calculate the net dipole
on a domain.

For a group of point charges Qi, the net dipole �p is equal to:

�p =
∑

i

�pi =
∑

i

Qi · (�xi − �x0) (30)

where �xi is the ith charge position, while �x0 is the reference point. More generally, for a domain Ωx the
net electric dipole �p can be calculated as:

�p =
∫

Ωx

ρ · (�x − �x0) dΩx (31)

The problem resides in the arbitrary point �x0: if the net charge Q on the domain is different from zero,
the value of �p can change depending on the choice of �x0, in fact:

Q =
∫

Ωx

ρ dΩx =⇒ �p =
∫

Ωx

(ρ · �x) dΩx − Q�x0 (32)

So the net dipole �p is independent from �x0 only if Q = 0.
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Supposing the point �x0 is fixed, holding (28), (31) the average polarization can be written as:

�P =
1
V

∫
Ωx

ρ · (�x − �x0) dΩx (33)

Now we are going to analyse the limits of the definition for magnetization �M , following an analogous
procedure.

4.3. Limits of Classic Definition for Magnetization M

Classically [6–9, 12], the magnetization �M on the domain Ωx is defined as the net magnetic dipole per
unit of volume V . If all the magnetic dipoles �mi on Ωx are known, then �M is:

�M =
1
V

∑
Ωx

( �mi ) (34)

Similarly to (28), that quantity is not a field �M(�x, t) but an average value: in fact it is not associated
to a point �x, but to a whole domain Ωx.

Let’s suppose we consider a system at microscopic scale, made by many circular current loops
(amperian currents). What is the magnetization field �M(�x, t) on this domain Ωx?

Since in vacuum holds �H = 1
μ0

�B, rigorously �M(�x, t) should be zero wherever there are no currents.

�M (�x, t) = �0 ∀�x ∈ vacuum (35)
However, if we consider the same system at a larger scale, we could see a bulk material with net dipole
and magnetization. For example, it could be an ordinary magnet. So defining �M appears to be also a
scale question.

4.4. Calculating a Net Magnetic Dipole

Another problem to face in defining �M , also as an average quantity, is how to calculate the net magnetic
dipole on a domain.

For a group of point charges Qi, the net magnetic dipole �m is equal to:

�m =
1
2

∑
i

(�xi − �x0) × (Qi�vi) (36)

where �xi is the ith charge position, �vi is its velocity and �x0 is the reference point.
More generally, for a domain Ωx net magnetic dipole �m can be calculated as:

�m =
1
2

∫
Ωx

(�x − �x0) × (ρ�v) dΩx =
1
2

∫
Ωx

(�x − �x0) × �J dΩx (37)

Even in this case, the value of �m can change depending on the choice of reference point �x0, so it is not
uniquely defined. Supposing �x0 to be fixed, holding (34), (37) the average magnetization can be written
as:

�M =
1
V

1
2

∫
Ωx

(�x − �x0) × �J dΩx (38)

5. CONDITIONS FOR THE DEFINITION OF P AND M

Now we are going to give two definitions, one for polarization �M , one for magnetization �P , requiring
that these respect some conditions:

• both �P and �M must satisfy Maxwell’s Equations inside any material Ωx, that is:⎧⎨
⎩

−→∇T·(−�P ) = ρb

−→∇ × �M = �Jb +
∂(−�P )

∂t

∀�x ∈ Ωx (39)
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• both �P and �M must be zero in free-space, that is outside the materials:

�P = �0; �M = �0 ∀�x /∈ Ωx (40)

• The average values of �P and �M should be equal, respectively, to the net electric and magnetic
dipole per unit of volume:⎧⎪⎪⎨

⎪⎪⎩

∫
Ωx

�P dΩx = �p =
∫

Ωx

ρb · (�x − �x0) dΩx∫
Ωx

�M dΩx = �m =
1
2

∫
Ωx

(�x − �x0) × �Jb dΩx

(41)

• Moreover, the definitions for �P and �M must be valid for any kind of materials, even for a non-linear
or hysteretic one.

We cannot guarantee a priori that all these requirements can be accomplished, but we are going to
verify if that is possible or not.

5.1. Bound Charges and Currents are Null Outside Materials

Here we prove that, holding conditions (39) and (40), bound charges and currents are identically zero
outside any material Ωx. In fact:{

�P = �0
�M = �0

∀�x /∈ Ωx =⇒
⎧⎨
⎩

−→∇T·(−�0) = ρb

−→∇ ×�0 = �Jb +
∂(−�0)

∂t

=⇒
{

ρb = 0
�Jb = �0

∀�x /∈ Ωx (42)

So the bound charges and currents ρb and �Jb can exist just inside the material Ωx or at least on its
boundary ∂Ωx.

5.2. Consistency for P Definition

Here we check if the classic definition of �P as average quantity is coherent with Maxwell’s Equation (39).
We take the equation linking the divergence for �P to ρb and try to derive the electric dipole’s definition.

−→∇T·(−�P ) = ρb (43)(−→∇T· �P
)
· (�x − �x0) = −ρb · (�x − �x0) (44)

Δ�x ·
(−→∇T· �P

)
= −ρb · Δ�x (45)

We place Δ�x = �x − �x0 in order to simplify the notation, and exploit a differential identity:

Δ�x ·
(−→∇T· �P

)
= [ΔxP T ] · −→∇ − �P (46)

More explicitly:

Δxi ·
3∑

j=1

(
∂Pj

∂xj

)
=

3∑
j=1

∂

∂xj
(ΔxiPj) − Pi (47)

Replacing (46) in (45), it follows:
�P − [ΔxP T ] · −→∇ = ρb · Δ�x (48)

Integrating on the domain Ωx it yields:∫
Ωx

�P dΩx −
∫

Ωx

(
[ΔxP T ] · −→∇

)
dΩx =

∫
Ωx

(ρb · Δ�x) dΩx (49)
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Using an extension of the Gauss’ Theorem for Divergence [13], the integral on Ωx can be rephrased as
an integral on its boundary ∂Ωx, so:∫

Ωx

�P dΩx −
∮

∂Ωx

(
[ΔxP T ] · �n

)
dSx =

∫
Ωx

(ρb · Δ�x) dΩx (50)

Remembering that the electric dipole �p on Ωx is defined as:

�p =
∫

Ωx

(ρb · Δ�x) dΩx (51)

we get: ∫
Ωx

�P dΩx = �p +
∮

∂Ωx

(
Δ�x ·

(
�P T·�n

))
dSx (52)

We can notice that this result is quite different from the classic definition of �P , which would imply:∫
Ωx

�P dΩx = �p (53)

However, the residual term can be considered as a net dipole produced by the charges on the domain’s
surface ∂Ωx.

σb = �nT· �P =⇒
∮

∂Ωx

(
Δ�x ·

(
�P T·�n

))
dSx =

∮
∂Ωx

(σb · Δ�x) dSx (54)

In fact, even if inside a body the density of bound charge is zero (ρb = 0), the net dipole can be different
from zero thanks to the surface charge density σb.

Moreover, it should be remembered that (39) are required to be valid just inside the domain Ωx

and that the value of global dipole depends also on the choice of the reference point �x0.
Shortly, we can say that the “classic” definition of polarization �P is consistent with Maxwell’s

Equations only if we consider also the dipole related to the boundary term (54).

5.3. Consistency for M Definition

Here we check if the classic definition of �M as average quantity is coherent with Maxwell’s Equation (39).
We take the equation linking the curl for �M to �Jb and try to derive the magnetic dipole’s definition.

−→∇ × �M = �Jb +
∂(−�P )

∂t
(55)

�JB = �Jb +
∂(−�P )

∂t
=⇒ −→∇ × �M = �JB (56)

We introduce the equivalent current density �JB just to simplify the notation. Now we calculate the
moment with respect to a reference point �x0:

(�x − �x0) ×
(−→∇ × �M

)
= (�x − �x0) × �JB (57)

Δ�x ×
(−→∇ × �M

)
= Δ�x × �JB (58)

Again, Δ�x = �x − �x0 in order to simplify the notation. We exploit a differential identity for curl:

Δ�x ×
(−→∇ × �M

)
= 2 �M +

(
I
(

�MT · Δ�x
)
− [MΔxT ]

)
· −→∇ (59)

More explicitly:

(
Δ�x ×

(−→∇ × �M
))

i
= 2Mi +

∂

∂xi

⎛
⎝ 3∑

j=1

MjΔxj

⎞
⎠−

3∑
j=1

∂

∂xj
(MiΔxj) (60)
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Replacing (59) in (58), it follows:

2 �M +
(
I
(

�MT · Δ�x
)
− [MΔxT ]

)
· −→∇ = Δ�x × �JB (61)

Integrating on the domain Ωx it yields:

2
∫

Ωx

�M dΩx =
∫

Ωx

Δ�x × �JB dΩx −
∫

Ωx

(
I
(

�MT · Δ�x
)
− [MΔxT ]

)
· −→∇ dΩx (62)

In order to transform the integral on Ωx in an integral on its boundary ∂Ωx, we use the theorem:∫
Ωx

(
A · −→∇

)
dΩx =

∮
∂Ωx

(
A · �n

)
dSx (63)

where A is a generic matrix field, while �n is the normal pointing outward the domain Ωx. So if follows:∫
Ωx

(
I
(

�MT · Δ�x
)
− [MΔxT ]

)
· −→∇ dΩx =

∮
∂Ωx

(
I
(

�MT · Δ�x
)
− [MΔxT ]

)
· �n dSx (64)

Now Equation (62) can be rephrased as:

2
∫

Ωx

�M dΩx =
∫

Ωx

Δ�x × �JB dΩx −
∮

∂Ωx

(
I
(

�MT · Δ�x
)
− [MΔxT ]

)
· �n dSx (65)

2
∫

Ωx

�M dΩx =
∫

Ωx

Δ�x × �JB dΩx −
∮

∂Ωx

((
�MT · Δ�x

)
�n − �M (Δ�x · �n)

)
dSx (66)

The term inside the boundary integral can be compacted using an algebraic identity:(
�MT · Δ�x

)
�n − �M

(
Δ�xT · �n) = Δ�x ×

(
�n × �M

)
= −Δ�x ×

(
�M × �n

)
(67)

Replacing the last cross product in the integral, we obtain:

2
∫

Ωx

�M dΩx =
∫

Ωx

Δ�x × �JB dΩx +
∮

∂Ωx

(
Δ�x ×

(
�M × �n

))
dSx (68)

Remembering that the magnetic dipole �m on Ωx is defined as:

�m =
1
2

∫
Ωx

Δ�x × �Jb dΩx (69)

we can notice that (68) is quite different from the classic definition of �M , which would imply:

2
∫

Ωx

�M dΩx = 2 �m =
∫

Ωx

Δ�x × �Jb dΩx (70)

In fact:
• there is an additional term related to the value of �M on the boundary ∂Ωx,

• the current density �JB is different from the real bound one �Jb. Since �JB = �Jb + ∂(−�P )
∂t , those two

quantities are equal just if the polarization �P is constant in time.
Anyway, the residual term can be interpreted as a net magnetic dipole produced by the currents on the
domain’s surface ∂Ωx.

�JS,B = �M × �n =⇒
∮

∂Ωx

(
Δ�x ×

(
�M × �n

))
dSx =

∮
∂Ωx

(
Δ�x × �JS,B

)
dSx (71)

In fact, even if inside a body the density of generalized bound currents is zero ( �JB = �0), the net magnetic
dipole can be different from zero thanks to the surface current density �JS,B .

Moreover, it should be remembered that (39) are required to be valid just inside the domain Ωx

and that the value of the global dipole depends also on the choice of the reference point �x0.
As a consequence, we can say that the “classic” definition of magnetization �M is not fully consistent

with Maxwell’s Equations. In fact, it could be considered as a particular case, where the polarization
�P is supposed to be stationary and the surface integral is neglected.
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6. DEFINITION OF P AND M FIELDS

Now let’s observe and compare the set of Maxwell’s Equations involving ρb and �Jb. We rewrite here
(23) and (39) for clarity:⎧⎨

⎩
−→∇T·(−�P ) = ρb

−→∇ × �M = �Jb +
∂(−�P )

∂t

∀�x ∈ Ωx

⎧⎪⎪⎨
⎪⎪⎩

−→∇T·
(
ε0

�Eb

)
= ρb

−→∇ ×
(

1
μ0

�Bb

)
= �Jb +

∂
(
ε0

�Eb

)
∂t

(everywhere) (72)

We can notice that the two systems are almost identical, but the first one is required to be valid just
inside the domain Ωx occupied by the bodies: in fact, �P and �M are required to be zero outside. The
second system instead is valid everywhere, since the electric �Eb and magnetic �Bb fields can propagate
and extend also in vacuum, so outside any material.

It could be useful to define a “belonging function”∈Ω such that:

∈Ω (�x, t) =
{

1 for �x ∈ Ωx(t)
0 for �x /∈ Ωx(t)

(73)

This function is equal to 1 inside the domain Ωx(t), while it is zero outside. On the boundary ∂Ωx(t)
the belonging function is discontinuous, but it could be placed equal to 1/2 if desired. Let’s note that
Ωx(t) can change in time, so we are taking into account also the possibility of a moving (or lagrangian)
domain. Finally, the polarization �P and magnetization �M can be related to �Eb and �Bb through the
belonging function: ⎧⎨

⎩
−�P =∈Ω ε0

�Eb −Δ�P

�M =∈Ω
1
μ0

�Bb +Δ �M
(74)

The terms Δ�P and Δ �M were included for the sake of completeness, since they are associated to a kind
of “gauge transformation”. In fact, they are required to respect two conditions, deriving from (40) and
(72): { −→∇T·Δ�P = 0−→∇ × Δ �M = �0

∀�x ∈ Ωx

{
Δ�P = �0
Δ �M = �0

∀�x /∈ Ωx (75)

This ensures that Maxwell’s Equations are not affected. Hence, here we set both Δ�P and Δ �M equal to
zero.

6.1. Formal Definition of P and M

We propose these formal definitions for polarization �P and magnetization �M :

6.1.1. Definition of Polarization Field �P

Given a system of material bodies on a domain Ωx, the inner polarization field �P equals the field −ε0
�Eb

generated by the bound charges and currents inside the domain itself. Outside the domain Ωx, the
associated polarization field �P is null.

6.1.2. Definition of Magnetization Field �M

Given a system of material bodies on a domain Ωx, the inner magnetization field �M equals the field
�Bb/μ0 generated by the bound charges and currents inside. Outside the domain Ωx, the associated
magnetization field �M is null.

Mathematically: ⎧⎨
⎩

�P � − ∈Ω ε0
�Eb

�M �∈Ω
1
μ0

�Bb
(76)
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The definitions (76) can be rephrased also in function of the EM potentials ϕA,b, �Ab associated to bound
charges and currents: ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
�P �∈Ω ε0

(
∂ �Ab

∂t
+

−→∇ϕA,b

)

�M �∈Ω
1
μ0

(−→∇ × �Ab

) (77)

These definitions guarantee that �P and �M are null outside the domain Ωx and that Maxwell’s Equations
are satisfied inside it.

7. DISCUSSION OF THE RESULTS

In this section we discuss some consequences descending from the definitions (76) we have proposed.

7.1. Definition of D and H Fields

Once we have defined �P and �M , we can express straightforward the electric displacement �D and the
magnetic field �H. Substituting (76) in their own definition we find:⎧⎨

⎩
�D � ε0

�E + �P

�H � 1
μ0

�B − �M
=⇒

⎧⎪⎨
⎪⎩

�D = ε0

(
�E− ∈Ω

�Eb

)
�H =

1
μ0

(
�B− ∈Ω

�Bb

) (78)

We can express �D and �H for points outside or inside the chosen domain Ωx:

(i) If �x /∈ Ωx, so for points outside the body, then ∈Ω= 0 and thus:⎧⎨
⎩

�D = ε0
�E

�H =
1
μ0

�B
(79)

Thus �D and �H result to be respectively proportional to the global electric �E and magnetic �B in
vacuum.

(ii) If �x ∈ Ωx, so for points inside the body, then ∈Ω= 1 and thus:⎧⎪⎨
⎪⎩

�D = ε0

(
�E − �Eb

)
= ε0

�Ef

�H =
1
μ0

(
�B − �Bb

)
=

1
μ0

�Bf

(80)

Thus �D and �H result to be respectively proportional to the electric �Ef and magnetic �Bf fields
produced by free charges and currents.

7.2. Multibody Systems

As we have highlighted, the definition of �P and �M for a body or a system of bodies depends on the space
occupied by the system itself. Actually, the domain Ωx is usually chosen on the basis of the system’s
scale. Once you fix the space occupied by the system you are interested in, you are implicitly choosing
the problem’s scale. Now let’s consider a multi-body system, made of different domains Ωi, each one
associated to the ith body.

Ωx =
N⋃

i=1

( Ωi ) (81)

Ωi ∩ Ωj = ∅ ∀i �= j (82)
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The belonging functions ∈Ω i for the sub-domains Ωi will be so related:

∈Ω=
∑

i

∈Ω i =∈Ω1 (�x, t)+ ∈Ω2 (�x, t) + . . . + ∈ΩN (�x, t) (83)

We suppose to know all the charges and currents ρb, �Jb, and we want to determine the global polarization
�P and magnetization �M fields. In order to do that, we must be aware that:

• charges ρb,i and currents �Jb,i inside the domain Ωi can generate �Eb,i, �Bb,i fields extending also in
other domains Ωj .

• the global electric dipole �p on the whole domain can be different from the sum of the single domains’
dipoles �pi. In fact, the electric dipole is not a simple additive quantity.

(a) isolated charges (b) net dipole

Figure 6. (a) The electric dipoles �p1,1 and �p2,2 — calculated separately for two charges on different
domains Ω1 and Ω2 — are zero; (b) If the domains are united and considered as a global system, then
the net dipole �p can result to be different from the sum of �p1,1 and �p2,2.

For example, we can consider two single, isolated charges on domains Ω1 and Ω2 respectively
(Fig. 6). If we calculate separately the dipoles �p1,1 and �p2,2, they can be identically zero:

�p1,1 = �0; �p2,2 = �0 (84)

But if we look at the whole system, joining together the domains Ω1 and Ω2, we obtain a net dipole
different from zero:

�p �= �0 =⇒ �p �= �p1,1 + �p2,2 (85)

So the global electric dipole should be calculated considering also the interaction between the
charges on different domains.

• the global magnetic dipole �m on the whole domain can be different from the sum of the single
domains’ dipoles �mi. In fact, the magnetic dipole is not a simple additive quantity.
For example, we can consider two isolated currents flowing across the domains Ω1 and Ω2

respectively (Fig. 7). If we calculated separately the magnetic dipoles �m1,1 and �m2,2, they can
be identically zero:

�m1,1 = �0; �m2,2 = �0 (86)

But if we look at the whole system, joining together the domains Ω1 and Ω2, we obtain a net
magnetic dipole different from zero:

�m �= �0 =⇒ �m �= �m1,1 + �m2,2 (87)

So the global magnetic dipole should be calculated considering also the interaction between the
currents on different domains.

Shortly, in order to calculate the global �P and �M on a multi-body systems we must take into account
the mutual interactions among the single sub-domains Ωi.

Here we report a possible procedure aiming to determine the fields produced and induced on the
sub-domains Ωi, and the global fields on the whole domain Ωx.
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(a) isolated currents (b) net magnetic dipole

Figure 7. (a) The magnetic dipoles �m1,1 and �m2,2 — calculated separately for two currents on different
domains Ω1 and Ω2 — are zero; (b) If the domains are united and considered as a global system, then
the net dipole �m can result to be different from the sum of �m1,1 and �m2,2.

(i) Determine the densities of bound charge ρb,i and current �Jb,i inside single Ωi. If the global
distributions are already known, then it holds:{

ρb,i =∈Ωi ρb

�Jb,i =∈Ωi
�Jb

(88)

(ii) Using the Maxwell’s Equation (23), calculate the electric and magnetic fields generated by the
sources ρb,i, �Jb,i.

(iii) Calculate the polarization �Pi,j and magnetization �Mi,j on the sub-domain Ωi induced by the sources
in Ωj: ⎧⎨

⎩
�Pi,j = − ∈Ωi ε0

�Eb,j

�Mi,j =∈Ω i
1
μ0

�Bb,j
(89)

The global polarization �Pi and magnetization �Mi on the sub-domain Ωi will be equal to the sum
of all the single contributions: ⎧⎪⎪⎨

⎪⎪⎩
�Pi =

∑
j

�Pi,j = − ∈Ω i ε0
�Eb

�Mi =
∑

j

�Mi,j =∈Ω i
1
μ0

�Bb

(90)

(iv) The global polarization �P and magnetization �M on the whole domain Ω are given by the sum of
the single fields �Pi, �Mi respectively: ⎧⎪⎪⎨

⎪⎪⎩
�P =

∑
i

�Pi

�M =
∑

i

�Mi

(91)

More explicitly: ⎧⎪⎪⎨
⎪⎪⎩

�P =
∑

i

∑
j

�Pi,j = −
∑

i

∑
j

∈Ω i ε0
�Eb,j

�M =
∑

i

∑
j

�Mi,j =
∑

i

∑
j

∈Ω i
1
μ0

�Bb,j

(92)

The global electric and magnetic field are sum of the fields produced in the single domain. Moreover,
the global belonging function is equal to the sum of the other ones, so:

∈Ω=
∑

i

∈Ω i

⎧⎪⎪⎨
⎪⎪⎩

�Eb =
∑

j

�Eb,j

�Bb =
∑

j

�Bb,j

(93)
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Finally, as required we obtain: ⎧⎨
⎩

�P = − ∈Ω ε0
�Eb

�M =∈Ω
1
μ0

�Bb
(94)

So we have verified that the proposed definition works also for multi-body systems.
This property is quite important if you have to implement a numerical simulation in order to

determine the EM fields in a complex system. For example, you might be interested to determine
the effective, global permittivity ε and permeability μ for a macroscopic, bulk meta-material made of
elements with different EM properties [2, 14, 15, 25, 26].

7.3. Relativistic Body

Our definition for �P and �M was conceived to be consistent with the Special Relativity Theory, too.
Here we are going to give just some hints, since treating rigorously the problem of a body moving

at relativistic speed would require much longer explanations.
A body at rest in a reference frame A is supposed to have a certain permittivity εA and permeability

μA. More generally, it can be characterized by some polarization �PA and magnetization �MA. If we
look at the same body but in a different reference frame L, its permittivity εL and permeability μL

could be different [16–19]. Moreover, if in the ref. frame A the body’s material was isotropic, in the
moving ref. frame L it could turn out to be anisotropic. That could give rise to a formal problem,
since the constitutive relation for the material appear to be different with the change of the reference
frame [8, 9, 20, 24]. In other words, we have to face a physical law which seems not to be invariant with
the reference frame, and that is usually to be avoided in Relativity [23].

We tried to rephrase part of the problem focusing the attention on the transformation for �P and
�M . Suppose that the polarization �PA and the magnetization �MA were known in the ref. frame A. We
want to determine �PL and �ML in a ref. frame L, moving at constant speed �v with respect to A.

7.3.1. Electromagnetic Tensor and Lorentz Transformation

From the definition (76) of �P and �M we can notice that these are strongly related to electric and
magnetic fields. Now, in Relativity it is possible to build the ElectroMagnetic tensor Fμν , containing
the electric �E and magnetic B fields [8]:

Fμν = F =

[
0 − �ET /c0

�E/c0 B

]
=

⎡
⎢⎣

0 −E1/c0 −E2/c0 −E3/c0

E1/c0 0 −B3 B2

E2/c0 B3 0 −B1

E3/c0 −B2 B1 0

⎤
⎥⎦ (95)

where c0 is the speed of light in vacuum and B the magnetic tensor.
The EM tensor FL in ref. frame L can be obtained applying the Lorentz Transformation to the

original one in A. The matrix (tensor) ΛLA associated to the Lorentz Transformation from A to L is:

Λμ
ν = ΛLA(�v) =

[
γ −γ�βT

−γ�β γ

]
(96)

where:
�β =

�v

c0
; γ =

1√
1 − β2

; γ = I + (γ − 1)[ββT ]/β2 (97)

The EM tensor FL in L can be so calculated as:

FL = ΛLA · FA · ΛT

LA (98)
The same equation can be rewritten with a notation more common in Relativity:

F ′αβ = Λα
μFμνΛβ

ν (99)

where F ′αβ = FL and Fμν = FA. Once the EM tensor FL has been calculated, the electric �EL and
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magnetic BL fields are known.⎧⎪⎨
⎪⎩

�EL = γ
(

�EA − �BA × �v
)

−(γ − 1)
1
v2

(
�vT · �EA

)
�v

�BL = γ

(
�BA +

1
c2
0

�EA × �v

)
−(γ − 1)

1
v2

(
�vT · �BA

)
�v

(100)

We underline that for (100) the usual 3D notation has been adopted, but since �B is a pseudovector [21],
it would be preferable to continue to express it as a tensor B. In a n-dimensional (ND) notation [13, 22]
the same transformation can be rephrased as:⎧⎪⎨

⎪⎩
�EL = γ

(
�EA − BA�v

)
− (γ − 1)

1
v2

[vvT ] · �EA

BL = γ BA γ +
γ

c2
0

(
�EA

∧∧ �v
) (101)

For sake of simplicity, in the following we are going to use the 3D notation.

7.3.2. Transformation for P and M

The EM tensor F can be transformed from one ref. frame to another, and it contains the global electric
and magnetic fields.

Thanks to Maxwell’s Equations linearity, we can decompose it in the sum of two tensors Ff and
Fb, the former associated to free charges, the latter to bound ones.

F = Ff + Fb (102)
More explicitly:

Ff =

[
0 − �ET

f /c0

�Ef/c0 Bf

]
; Fb =

[
0 − �ET

b /c0

�Eb/c0 Bb

]
(103)

Like the global EM tensor F , both Ff and Fb transform according to Lorentz. We can so define a
magnetization-polarization tensor M [8, 12, 20] equal to:

M =
1
μ0

∈Ω F b (104)

M =
1
μ0

∈Ω

[
0 − �ET

b /c0

�Eb/c0 Bb

]
(105)

Recalling the definition (76) for �P and �M , we can express the magnetization-polarization tensor M in
function of them:

M =

[
0 c0

�P T

−c0
�P M

]
(106)

The tensor M transforms like F , since ∈Ω is an invariant scalar field. In fact, an event (�x, t) can
belong or not to a space-time domain Ω(t) independently from the chosen ref. frame.

∈ΩA (�xA, tA) =∈ΩL (�xL, tL) =∈Ω (xμ) invariant scalar field, ∀A,L (107)

Finally, the magnetization-polarization tensor M in a ref. frame L can be calculated as:

ML = ΛLA ·MA · ΛT

LA (108)

Analogously to the transformation (100) for �E and �B, we can retrieve the relation for �P and �M :⎧⎪⎨
⎪⎩

�PL = γ

(
�PA +

1
c2
0

�MA × �v

)
−(γ − 1) 1

v2

(
�vT · �PA

)
�v

�ML = γ
(

�MA − �PA × �v
)

−(γ − 1)
1
v2

(
�vT · �MA

)
�v

(109)

So, if �P and �M are known in a ref. frame A, they can be rigorously determined in another frame L.
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7.3.3. Transformation for D and H

Following a similar procedure, the displacement tensor D can be constructed as:

D =
1
μ0

F −M (110)

D =

[
0 −c0

�DT

c0
�D H

]
(111)

In an another notation:

Dμν =
1
μ0

Fμν −Mμν (112)

Thus the transformations for the electric displacement �D and the magnetic field �H will be:⎧⎪⎪⎨
⎪⎪⎩

�DL = γ

(
�DA − 1

c2
0

�HA × �v

)
−(γ − 1)

1
v2

(
�vT · �DA

)
�v

�HL = γ
(

�HA + �DA × �v
)

−(γ − 1)
1
v2

(
�vT · �HA

)
�v

(113)

In principle, for every material, the constitutive relation linking �D and �H to �E and �B should be invariant
in form, even if the body is observed from different reference frames [16, 17].

8. CONCLUSIONS AND FUTURE OUTCOMES

In this work the concepts of polarization P and magnetization M have been analysed, highlighting the
limits of their classical definitions. We proposed a global definition for P and M with these features:

• it is fully consistent with the Maxwell’s equations, instead of the classical definition which in some
cases does not work (as explained in Sections 5.2, 5.3).

• fields P and M depend on the space occupied by the considered system, and thus on its scale.
• the definition for P and M is valid for any kind of material, no matter if non-linear or hysteretic.

In fact, the material’s constitutive relation should be assigned independently.
• fields P and M can be calculated also for multi-body systems, taking into account the mutual

interactions.
• the proposed definition for P and M is consistent with the Special Relativity Theory.

Here we have presented the preliminary part of a larger work: our definition can be tested in
many other contexts and problems. For example, the concepts of local and global magnetization can
be applied to the analysis of Weiss domains in ferromagnetic materials. They can be also suitable for
some lumped-parameter models for electrical machines (e.g., transformers).

As a matter of fact, this study on P and M definitions started from the problem of modelling
metamaterials at different scales: from microscopic to macroscopic ones and vice-versa. This is ongoing
research and further results will be presented in future publications.
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